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Efficient Descriptor-Based Segmentation
of Parotid Glands with Non-Local Means

Christian Wachinger, Matthew Brennan, Greg C. Sharp, Polina Golland

Abstract—Objective: We introduce descriptor-based seg-
mentation that extends existing patch-based methods by
combining intensities, features and location information.
Since it is unclear which image features are best suited
for patch selection, we perform a broad empirical study
on a multitude of different features.

Methods: We extend non-local means segmentation by
including image features and location information. We
search larger windows with an efficient nearest neighbor
search based on kd-trees. We compare a large number of
image features.

Results: The best results were obtained for entropy im-
age features, which have not yet been used for patch-based
segmentation. We further show that searching larger image
regions with an approximate nearest neighbor search
and location information yields a significant improvement
over the bounded nearest neighbor search traditionally
employed in patch-based segmentation methods.

Conclusion: Features and location information signifi-
cantly increase the segmentation accuracy. The best fea-
tures highlight boundaries in the image.

Significance: Our detailed analysis of several aspects of
non-local means based segmentation yields new insights
about patch and neighborhood sizes together with the
inclusion of location information. The presented approach
advances the state-of-the-art in the segmentation of parotid
glands for radiation therapy planning.

Index Terms—Segmentation, Features, Patches, Loca-
tion, Parotid Glands

I. INTRODUCTION

The automatic segmentation of parotid glands in head
and neck CT images supports intensity-modulated radia-
tion therapy planning. Atlas-based segmentation methods
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often use deformable image registration to associate each
voxel in a test image with a set of voxels in training
images, and apply a label propagation scheme to segment
the test image [1]–[5]. Instead of registering whole
images, patch-based segmentation compares patches of
intensity values to establish correspondences between
test and training voxels of similar local image content
[6]–[9]. However, intensity values are just one possible
description of image content. We present a natural gen-
eralization of patch-based segmentation to descriptor-
based segmentation by including image features and
location information as well as patches of intensity
values in descriptor vectors representing local image
content. Our results show that the additional discrimina-
tive information in the descriptor improves segmentation
accuracy.

Our method is based on the non-local means (NLM)
framework introduced in [10], which produces state-of-
the-art results for patch-based segmentation [6], [7]. The
principal idea behind NLM is to compare patches across
the entire image domain and to base the comparison
solely on patch intensity values without taking their
locations in the image domain into account. In the
actual implementation of NLM for image denoising [10],
the search window is reduced from the entire image
domain to neighborhoods of 21 × 21 pixels to address
computational concerns. Similarly, [6] and [7] restrict the
search window to range from 9× 9× 9 to 15× 15× 15
voxels to improve computational efficiency, assuming an
initial affine alignment of the images. In our study, we
employ an efficient approximate nearest neighbor search
allowing us to work with larger search windows that
contain the entire parotid gland, which better reflects the
original idea of NLM to consider the entire image do-
main. Counter-intuitively, our experimental results show
that larger search windows lead to less accurate segmen-
tation results. This suggests that the spatial information
implicitly incorporated by restricting the search to small
windows not only improves computational efficiency but
also has a direct influence on segmentation accuracy.
However, spatially biasing the result by restricting search
windows has two disadvantages: (1) it imposes a hard
spatial cutoff and therefore a discontinuous rather than
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a soft bias; and (2) it does not provide spatial context
within the search window. Contrary to the idea behind
NLM, we explicitly incorporate location information
in the comparison of patches, introducing a soft bias
towards spatially closer patches. With the explicit in-
clusion of location information, we extend the search
window from small neighborhoods to regions containing
the entire target structure. The computational concerns
accompanying these large search regions are addressed
with an approximate nearest neighbor search. We find
that this approach yields a significant improvement in
segmentation accuracy over an exact nearest neighbor
search within a restricted search window.

In addition to location information, we incorporate
image features into the descriptor. A large number of im-
age features have been proposed in the computer vision
literature and a priori it is unclear which of these features
best complement patch intensity values for segmenting
medical images. In this study, we empirically evaluate
the performance of 15 features. Some of these features
were initially proposed for two-dimensional images –
we discuss and evaluate three-dimensional extensions of
these features. We investigate the parameters involved in
descriptor-based segmentation, e.g., patch sizes, feature
and location weights, the composition of the descriptor
and the number of nearest neighbors. This comprehen-
sive analysis leads to new insights into the behavior of
NLM segmentation methods in general. Notably, we find
that decoupling the size of the intensity patch and the
size of the label patch in the multi-point label propaga-
tion method improves segmentation accuracy. We also
introduce multi-scale patches that combine the intensity
information from multiple scales and therefore provide
additional context.

We evaluate our descriptor-based framework by apply-
ing it to the segmentation of parotid glands of patients
undergoing radiation therapy. In intensity-modulated ra-
diation therapy, experts delineate the most critical struc-
tures, also known as organs at risk, and use the generated
segmentations to reduce the irradiation of healthy tissue
and potential side effects. The parotid glands are critical
salivary glands. Irradiation of the parotid glands in
patients with head and neck cancer leads to xerostomia,
a condition that interferes with mastication, deglutition,
and speech in patients. The automatic segmentation of
parotid glands is particularly challenging due to the low
soft tissue contrast in CT images and the high anatomical
variability of the glands among patients.

A. Related Work

Atlas-based segmentation of parotid glands with
deformable registration has been previously investi-

gated [11], [12]. In [13], an active shape model of
parotid glands was constructed with the atlas images.
The refinement of head and neck segmentations based on
patch classification with features was proposed in [14].
The approach in [15] applied label fusion to initialize a
segmentation pipeline that employs statistical appearance
models and geodesic active contours.

Patch-based segmentation approaches as described
within the NLM framework were proposed by [6], [7].
Recently, the PatchMatch algorithm [16] was applied
for NLM-based segmentation [17]. In contrast to our
work, features and explicit location information were not
included. For the segmentation of the hippocampus, the
application of ball trees in combination with location
was proposed [18]. In previous work, we used a patch-
based method to segment the parotid glands using the
NLM framework and a random forest classifier [8], [9].
We refined the initial segmentations based on image
contours with Gaussian process regression. Sparse cod-
ing is a related extension of patch-based segmentation
which was combined with the Haar-wavelet, histogram
of oriented gradients and local binary patterns image
features by [19]. In [20], three specific features (intensity,
gradient, context) were evaluated for the segmentation
of cardiac MR. To summarize, our approach is different
from existing work by combining intensity, patches and
location; by comparing a much larger number of different
features; and by contrasting bounded search techniques
with the explicit integration of location information. A
preliminary version of this work was presented at a
workshop [21] and has been substantially extended.

II. METHOD

A. Review of Non-Local Means Segmentation

Given an atlas A = (I,S) that contains images
I = {I1, . . . , In} and their corresponding segmentations
S = {S1, . . . , Sn} over a common image domain Ω,
our objective is to compute the segmentation S of a
new image I . Patch-based methods are based on the
rationale that locations with similar image content should
have similar segmentations, where local image content
is represented by the intensity values in a patch centered
at each voxel. For a patch P (x) from the test image I at
a location x ∈ Ω and the collection of all patches in the
training images P , we seek the closest patch Patlas(x) in
the training set

Patlas(x) = arg min
P∈P
‖P (x)− P‖2. (1)

Associated with the image patch Patlas(x) is the seg-
mentation patch Sx, which is used to infer the seg-
mentation S(x) in the test image around location x.
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Beyond the nearest neighbor Patlas(x) = P 1
atlas(x), we

can identify a set of k-nearest neighbor patches from
the atlas P 1

atlas(x), . . . , P katlas(x). Two methods of label
propagation are commonly used: (1) point-wise (PW)
estimation that only considers the center location of the
patch Sx[x]; and (2) multi-point (MP) estimation [7] that
considers the entire segmentation patch Sx. The label
map L is computed under the two approaches as

LPW(x) =

∑k
i=1w(P (x), P iatlas(x)) · Six[x]∑k

i=1w(P (x), P iatlas(x))
, (2)

LMP(x) =

∑
y∈Nx

∑k
i=1w(P (y), P iatlas(y)) · Siy[x]∑

y∈Nx

∑k
i=1w(P (y), P iatlas(y))

,

(3)

where Nx is the patch neighborhood around x and Sy[x]
is the label on the location x of the segmentation patch
Sy centered at y. The weight w between patches is
defined as

w(P, P ′) = exp

(
−‖P − P

′‖22
2σ2

)
, (4)

where σ2 is the variance of the intensity values esti-
mated from the entire training set. We also consider an
unweighted version of the label propagation with w ∝ 1.
To obtain the segmentation S of the test image I , each
voxel is assigned to the parotid glands or the background,
depending on which of the labels receives the most votes.

B. Descriptor-Based Segmentation

We extend patch-based segmentation to descriptor-
based segmentation by including image features and
location information as descriptors of image content.
Image features capture additional information about con-
tours, gradients, and texture in the image. The specific
features used in this work are described in Section III.
We also include location information in the descriptor
by adding the xyz-coordinates of the center voxel in the
patch, where we assume a rough spatial alignment of
the images. Outside of the head, the spatial normalization
may be more challenging so that distances to anatomical
landmarks may be suitable alternative for the location
information. Location information imposes a soft spatial
constraint on the nearest neighbor search. This bias is
especially important when working with large search
windows, as described in Section II-C. The descriptor
vector D(x) is the concatenation of a patch P (x), an
image feature F (x), and location information L(x)

D(x) =


1

σP ·|P (x)|1/2P (x)
f1/2

σF ·|F (x)|1/2F (x)
`1/2

σL·|L(x)|1/2L(x)

 , (5)

where f and ` are positive weights and each sub-vector
is normalized by dividing by the square root of the
number of entries | · |1/2 and the corresponding standard
deviation σ. These standard deviations are estimated for
each sub-vector from the training set. The normalization
ensures that the expected contributions of each descriptor
type to the squared distances ‖D−D′‖22 is independent of
descriptor-specific magnitudes and depends only on the
weights f and `. The patch weight in Eq. (4) becomes
a descriptor weight

w(D,D′) = exp

(
− ‖D −D

′‖22
2(1 + f + `)

)
, (6)

where the denominator 2(1 + f + `) normalizes the
expected value of the exponent to −1. This can be seen
by noting that if P and P ′ are assumed to be independent
then the expected value of ‖P −P ′‖22 is 2σ2P ; combining
this with symmetric results for F and L gives that the
expected value is −1. We use this updated definition of
the weight for the label propagation in Eqs. (2) and (3)
when working with patch descriptors.

Figure 1 presents an overview of the descriptor-based
segmentation algorithm. In the first step, the patch in-
tensity values P (x), image features F (x) and location
information L(x) are extracted and combined to form the
descriptor D(x) for each voxel x in both the training and
test images. The segmentation patches Sx are extracted
from the training images. In the second step, a search
is performed over all training image descriptors to find
k nearest neighbors to descriptors in the test image. In
the third step, one of the label propagation methods in
Eqs. (2) and (3) is used to segment the test image using
the label information of the k nearest neighbors.

C. Nearest Neighbor Search

We evaluate two approaches to performing the k-
nearest neighbor search in Eq. (1): a bounded and an
approximate k-nearest neighbor search. The bounded
nearest neighbor (BNN) method searches over all loca-
tions y within a cubic search window of side length r
centered at x (‖y−x‖1 < r

2). This replicates the search
method used by [6], [7], where the search is restricted
to boxes of sizes between 9 × 9 × 9 and 15 × 15 × 15
voxels to reduce computation time. To achieve a similar
behavior, we restrict the search window to 11× 11× 11
by setting r = 11.

A disadvantage of BNN is the hard spatial cutoff it
imposes during search. Increasing the size of the search
window rectifies the problem at additional cost of com-
putational complexity. As a compromise, we consider an
unbounded approximate nearest neighbor (ANN) search.
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Fig. 1. Overview of the descriptor-based segmentation algorithm: (1) descriptors consisting of patch intensity values, features and location
information are extracted from the training and test images; labels are extracted from the training images; (2) a k-nearest neighbor (k-NN)
search is performed over the descriptors from the training images for each descriptor from the test image; and (3) the labels of the nearest
neighbors are used in label propagation to segment the test image. We compare the performance of a variety of features in (1), of bounded
and approximate k-NN searches in (2), and of point-wise and multi-point label propagation methods in (3).

We use the randomized kd-tree algorithm implemented
in FLANN [22]. The kd-tree algorithm is a frequently
used for ANN. While the method’s performance gen-
erally decreases on high-dimensional data, it has been
shown that kd-trees perform well on high-dimensional
data from image patches, likely due to strong correla-
tions in images [22]. The randomized kd-tree algorithm
splits data along a dimension randomly chosen among
the dimensions of highest variance, rather than that of
highest variance as in the classic kd-tree algorithm.
Searching over multiple randomized kd-trees improves
the performance of the algorithm. The randomized kd-
tree algorithm commonly provides more than 95% of the
correct neighbors and is two or more orders of magnitude
faster than the exact search [22].

III. IMAGE FEATURES

In this section, we describe a large variety of fea-
tures that we evaluate as candidates for the descriptor-
based segmentation. Next to basic features, we include
advanced features that are popular in computer vision.
The features are illustrated in Figure 2. For most of the
image features considered, we first process the entire
image to produce a feature image and then extract a patch
from the feature image. For example, in filtering the
feature F (x) is the patch of the filtered image around x.
The size of the patches for which F (x) is extracted
varies according to the feature and is specified later
in this section. The features F (x) are combined with
the intensity patches P (x). We evaluate our method on
intensity patch sizes ranging from 3× 3× 1 to 9× 9× 5
voxels, which includes patch sizes have been previously

proposed for patch-based segmentation [3], [4], [6]–
[9]. Small patch sizes yield localized features, which is
desirable to support segmentation. But at the same time,
small patches only provide few samples for the reliable
estimation in the presence of noise. Consequently, the
selection of the patch size is a trade-off and it is a
priori not clear, which patch sizes are best suited for
which feature. We state the used patch ranges in the
following sections; the best patch sizes are listed in
the section about optimal parameter settings. Next to
isotropic patches, we particularly consider for larger
patch sizes also anisotropic patches to account for the
anisotropy of the voxels of head and neck CT scans.

Multi-Scale Patches : Patch-based approaches contain
limited spatial context information, leading to undesir-
able pairings in the nearest neighbor search. Extracting
intensity values from larger patches increases the context
considered but leads to higher memory consumption
and computation times. Increasing the patch size also
leads to a sharp decrease in the influence of voxels
close to the center voxel on the distances ‖D − D′‖22
relative to that of peripheral voxels. For example, using
a 5 × 5 × 5 patch instead of a 3 × 3 × 3 patch results
in more than a four-fold increase in the number of
voxels, causing the added 98 outer voxels to dominate
the distances ‖D − D′‖2 in comparison to the original
27 inner voxels. Another natural approach to expanding
the limited spatial context is to employ a multi-scale ap-
proach, creating a Gaussian pyramid and downsampling
the images and segmentations. However, downsampling
the segmentations is nontrivial along the boundary of
the organ where downsampled voxels correspond to both
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(a) Image (b) Segmentation (c) Mean (d) Median

(e) Gaussian (f) Variance (g) STD (h) Sobel 1

(i) Sobel 2 (j) Gradient Magn. (k) Laplacian (l) Gabor Wavelet

(m) Entropy (n) HoG Bin Sum (o) HoG Bin 2 (p) HoG Bin 5

(q) mPb (r) LBP (s) Haar 1 (t) Haar 2

Fig. 2. Feature images computed from the intensity image shown in (a) with the corresponding manual segmentation (b). Mean, median,
Gaussian, variance and standard deviation (STD) images are computed using 5 × 5 × 3 windows. Entropy is computed over 5 × 5 × 5
patches. Two different filter orientations are shown for Sobel and Haar; one orientation is shown for the Gabor wavelet. Two of the eight
bins of histogram of oriented gradients (HoG) are shown along with the sum of all eight bins. Feature images for Laplacian filter, gradient
magnitude features, multi-scale probability of boundary (mPb), and local binary patterns (LBP) and are also shown.

organ and background in the original resolution of the
image.

We introduce multi-scale patches that
combine high resolution at their center and
low resolution in the surrounding area (see
figure on the right for a 2D illustration).
In addition to the standard intensity patch P (x) in the
center, we consider a 3 × 3 × 3 grid of blocks of the
same size as P (x) centered at x. The multi-scale patch
consists of P (x) and a summary statistic for each of the
27 blocks, which we take to be the mean intensity value.

The multi-scale patch spatially covers a volume 27 times
as large as the intensity patch while increasing the length
of the descriptor D(x) by only 27 entries. Going back to
our 2D example, the intensity patch P is a 3×3 patch and
the feature F contains 9 mean values, each computed in
a block of size 3×3. Since the resolution considered by
the multi-scale patch decreases significantly outside of
P (x), peripheral voxels in this region do not dominate
the distances ‖D − D′‖22. This design is motivated by
the human visual system, where spatial acuity peaks at
the central fovea and diminishes with distance. In this
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study, we consider only two scales; however, this feature
has a natural extension to additional scale levels. We
compute multi-scale patch features using intensity patch
sizes from 3× 3× 1 to 9× 9× 5.

Filter-Based Features: A variety of image features
can be obtained by filtering. We consider mean, me-
dian, Gaussian, variance, standard deviation (STD), So-
bel [23], gradient magnitude (GradM), Laplacian and
Gabor wavelet [24], [25] filter features. We extract
features from neighborhoods of size 1× 1× 1, 3× 3× 3
and 5× 5× 5 from each of the filtered images.
The mean, median, Gaussian, variance and standard de-
viation filtered images are computed using masks of size
5×5×3 and 9×9×5. Of the feasible mask sizes, 5×5×3
best captures image characteristics around the parotid
glands as shown in Figure 2. A mask size of 9× 9× 5
is also tested for comparison. The covariance matrix of
the Gaussian filters applied is set to be a diagonal matrix
with diagonal entries m = 1

32 log 2 · [5 5 3]T . This choice
of covariance matrix ensures that the full width at half
maximum is equal to half of the mask size. Variance and
standard deviation images are computed using a uniform
weighting over the mask.
Sobel image features are computed using two meth-
ods: (1) standard 2D Sobel kernel in the two planar
orientations along each axial direction to produce six
feature images; and (2) 3D Sobel kernel along each
axial direction to produce three feature images. Gradient
magnitude features are computed as the magnitude of
the vector at each voxel consisting of three or six Sobel
values, respectively. Laplacian features are computed
by applying a 3D Laplacian filter of size 3 × 3 × 3.
Gabor wavelet features are computed with 11× 11× 11
filters with bandwidth 4, ψ = 0 and λ = 2.5 in 16
directions (θ, φ) = (iπ/4, jπ/4) for i, j = 0, 1, 2, 3,
yielding 16 feature images. These parameters setting
were manually varied and determined to be reasonable
given the image domain. As shown in Figure 2, filtering
with these parameters captures effectively image charac-
teristics around the parotid glands and in the remainder
of the image domain.

Entropy Image: Entropy images have been first de-
veloped for multi-modal image registration [26]. The
information content of a patch is measured with the
Shannon entropy, which is computed and stored at the
center voxel of the patch. Repeating this calculation
for all voxels in the image yields the entropy image,
which represents the structural information in the image.
Entropy image features measure statistical dispersion in
a similar way to variance filters and bear similarities to
gradient magnitude features. However, unlike variance
filters and many gradient features, the entropy image is

independent of the magnitude of intensity values and
intensity differences. The entropy image also faithfully
captures the information in complex setups such as triple
junctions. We compute the entropy of patches of size
5× 5× 5 and 9× 9× 5 voxels and while using 64 bins
for density estimation. We extract patches of size 1, 3,
and 5 from the entropy image as features.

Histogram of Oriented Gradients: To compute his-
togram of oriented gradients (HoG) features, we con-
struct 3D image gradients in each patch of the im-
age [27]. These gradients are used to produce a his-
togram over gradient orientations, where the contribu-
tion of each gradient to the histogram is equal to its
magnitude. Gradients created from image noise therefore
have a lower impact than strong gradients at image
boundaries. The histograms produced have 8 bins cor-
responding to the 8 octants that the 3D vector can lie in.
For applications in computer vision, gradient strengths
are locally normalized to account for changes in illu-
mination [27]. Since we work with CT scans, where
intensities are measured in Hounsfield units, we do not
apply such a normalization. We evalute the neighborhood
size for histogram of gradients computation from 3×3×3
to 9× 9× 5.

Multi-scale Probability of Boundary: We compute the
multi-scale probability of boundary (mPb) as defined
in [28]. In the first step, we estimate image and texture
gradients per slice with the oriented gradient signal.
This method calculates the χ2 distance between the
histograms of two half-discs at each location for various
orientations and at multiple scales. Textons are com-
puted to quantify the texture by convolving the image
with 17 Gaussian derivative and center-surround filters
and by subsequently clustering with k-means into 64
classes [29]. Image and texture gradients of multiple
scales are added to yield the multi-scale probability of
boundary. Features are extracted in 1× 1× 1, 3× 3× 3
and 5× 5× 5 neighborhood from the mPb image.

Local Binary Patterns: Local binary patterns
(LBP) [30] measure the co-occurence relations between
a voxel and its neighbors, encoding these relations into
a binary word and quantifying the texture in a local
region. LBP is primarily used for 2D images. We work
with a 2D implementation applied on all xy, xz and yz
planar slices1 in the volume. The concurrence statistics
for these three planes are concatenated. Features are
extracted from 1×1×1, 3×3×3 and 5×5×5 patches
of the feature image computed using 3 × 3 and 5 × 5
LBP masks.

1http://www.mathworks.com/matlabcentral/fileexchange/36484-
local-binary-patterns



TRANSACTIONS ON BIOMEDICAL ENGINEERING 7

Haar-like Features: Haar-like features [31] are com-
puted by considering adjacent rectangular regions at
a specific location in a detection window, summing
the pixel intensities in each region and evaluating the
difference between these sums. The key advantage of
Haar-like features over most other features is their low
computation time. Integral images enable rapid feature
calculation at many scales. Haar-like features bear a
certain similarity to Haar basis functions but also con-
sider patterns that are more complex than Haar filters.
Haar-like features are computed using 106 2D integral
kernels approximating horizontal and vertical derivatives,
second order partial derivatives and Gaussian second
order partial derivatives. Since 106 filtered images are
created in this step, we extract voxels rather than patches
from each of the filtered images to be part of the
descriptor.

IV. EXPERIMENTS

We evaluate each of the methods described in Sec-
tion II and each of the features introduced in Section III
on a dataset of 18 CT scans of patients with head
and neck cancer. Each image was labeled by a trained
anatomist for treatment planning. The images contain
between 80 and 200 axial slices with a slice thickness
of 2.5mm. We resampled all 18 images to the same
in-plane resolution, since we compare voxels and they
should represent the same physical space. The in-plane
resolution selected was the most commonly encountered
in-plane spacing, which was 0.976mm. In case of sub-
stantial variations in image resolution, which was not
the case on our image corpus, more attention has to be
paid to the re-sampling, where particularly up-sampling
is not advised. All images have the left parotid labeled.
The right parotid gland was consumed by a tumor in
one patient. Three of the 18 patients have dental artifacts
that modify the image intensity values in regions around
the parotid glands. We segment the left and right parotid
glands in each image in a leave-one-out procedure, using
the remaining 17 subjects as training images. To limit the
number of patches, we only consider every other patch
in the training set in a way similar to [7]. We measure
segmentation quality by calculating the Dice volume
overlap score [32] and modified Hausdorff distance [33]
between the automatic and manual segmentations. We
identify a bounding box around the parotid glands by
template matching the mandible bone, which is adjacent
to the parotid glands. This bounding box acts as the
common image domain Ω used by the segmentation
method as described in Section II-A.

Below is an outline of our experiments in the follow-
ing sections.

IV-A. Comparison of point-wise and multi-point
methods in combination with location informa-
tion

IV-B. Comparison of bounded and approximate near-
est neighbor search in combination with en-
tropy features

IV-C. Evaluation of descriptor composition (intensity,
location, feature) for varying patch and multi-
point sizes

IV-D. Comparison of 15 features in combination with
intensities and location

IV-E. Evaluation of optimal feature parameters
IV-F. Evaluation of the multi-scale patch
In the experiments, we use the following settings if

not specified otherwise: 9 × 9 × 5 patches and k = 10
nearest neighbors. To perform the approximate nearest
neighbor search, we employ the kd-tree algorithm with
8 trees and 64 checks, specifying that at most 64 leaves
can be visited in a single search. We threshold the
image at −100 and 150 Hounsfield units, which roughly
corresponds to the range of intensity values in the parotid
glands, to lessen the effects of dental artifacts and image
noise on the computed distances between descriptors.
Images are thresholded before feature extraction.

A. Evaluation of Location and Label Propagation Meth-
ods

In this section, we evaluate the inclusion of loca-
tion information in the descriptor and compare point-
wise (PW) and multi-point (MP) label propagation meth-
ods. We also compare the weighted and unweighted
variants of the multi-point method. Figure 3 reports the
segmentation results for these methods applied to the left
parotid gland, results for the right parotid are shown in
the supplementary material. We use paired t-tests to eval-
uate the statistical significance of the differences between
the results for each of the methods. We observe a signif-
icant improvement using multi-point label propagation
over point-wise label propagation, which is consistent
with the results in [7]. We further observe a significant
improvement when including location information (Loc)
in the descriptor with both point-wise and multi-point
label propagation methods. Figure 3 shows that there
is no significant difference between the segmentation
results obtained using the unweighted and weighted
variants of multi-point label propagation. We apply the
unweighted multi-point variant in the remainder of our
experiments, since it involves a simpler voting scheme.

As shown in Figure 3, there are three outlier Dice
scores in the results of the point-wise and multi-point
labeling for the left parotid. These outliers correspond
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Fig. 3. Comparison of Dice volume overlap and modified Hausdorff distances for pointwise (PW), weighted multipoint (W-MP), unweighted
multipoint (U-MP) and the inclusion of location information (+Loc) for the left parotid gland. The red line indicates the median, the boxes
extend to the 25th and 75th percentiles, and the whiskers reach the most extreme values not considered outliers (red crosses). *, ** and ***
indicate statistical significance levels of 0.05, 0.01 and 0.001, respectively.

to patients with dental artifacts. Figure 4 provides a
visualization of qualitative segmentation results for one
of the subjects with dental artifacts together with the
corresponding Dice scores. The input CT slice demon-
strates the strong impact of the dental artifact on the
image. Including location information yields a clear
improvement in the generated segmentation as illustrated
by Figure 4 and the Dice increase by about 0.7. In this
case, location information spatially regulates the segmen-
tation, discouraging the selection of patches from distant
locations in the training images, which have a similar
intensity profile but correspond to a different anatomical
structure. Furthermore, the multi-point method smoothes
the generated segmentation along the boundary of the
parotid gland and yields a single connected component.
Based on the results in this section, we apply the
unweighted multi-point label propagation method with
location information in all further experiments.

B. Evaluation of Nearest Neighbor Methods

In this section, we compare the segmentation results
obtained by applying the bounded k-nearest neighbor
search (BNN), which restricts to a 11× 11× 11 search
window, and the approximate k-nearest neighbor search
with location information (ANN+Loc). We also evaluate
the inclusion of features in the descriptor by adding
entropy features, which we find in Section IV-D are the
optimal image features for this task, to the comparison
using the approximate search with location information
(ANN+Loc+Ent). Figure 5 reports the segmentation re-
sults for these three methods. As shown, there is an
improvement in both Dice scores and modified Hausdorff
distances on applying ANN with location over BNN.
Paired t-tests show that there is a significant improve-
ment in Dice scores when using ANN with location.

(a) MP+Loc: 0.87 (b) PW+Loc: 0.83 (c) Expert Seg.

(d) MP: 0.18 (e) PW: 0.14 (f) Test Image

Fig. 4. Comparison of segmentation results for left parotid gland
in a patient with dental artifacts and corresponding Dice scores. We
evaluated (a) multi-point with location (MP+Loc), (b) point-wise with
location (PW+Loc), (d) multi-point (MP) and (e) point-wise (PW).
The expert segmentation is shown in (c). The CT slice in (f) illustrates
the strong impact of the dental artifact.

Adding entropy image features to the descriptor further
improves the Dice scores and Hausdorff distances over
BNN. This suggests that entropy image features signifi-
cantly improve the quality of the generated segmentation
along its boundary. In both cases, the proposed meth-
ods yield significant improvements over the traditional
bounded search.

To further examine the improvement of ANN with
location information over BNN, we compare the spatial
distances between the nearest neighbors selected by the
two methods. About one fourth of the nearest neighbors
found using ANN with location information are outside
the 11 × 11 × 11 search window of BNN. This implies
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Fig. 5. Comparison of Dice volume overlap and modified Hausdorff distances on the left parotid when using bounded nearest neighbor
(BNN), approximate nearest neighbor with location information (ANN+Loc) and approximate nearest neighbor with location information
and entropy image features (ANN+Loc+Ent). The red line indicates the median, the boxes extend to the 25th and 75th percentiles, and the
whiskers reach the most extreme values not considered outliers (red crosses). *, ** and *** indicate significance levels at 0.05, 0.01 and
0.001, respectively.

that BNN excludes a substantial fraction of the nearest
neighbors found using ANN with location. Since ANN
with location significantly outperforms BNN, this sup-
ports the argument made in Section I that the hard cutoff
imposed by the restricted search window in BNN leads to
less accurate segmentations than the soft bias imposed
by location information on using ANN. Note that the
additional effect of the location information in favoring
more central patches within the search window is not
covered by this analysis.

C. Descriptor Composition

While Section IV-A highlighted the importance of
including location information in the descriptor, it is
unclear whether using only image features or image
features in combination with intensity patches leads to
the best performance. In this section, we evaluate these
different compositions of the descriptor and the influence
of the size of the intensity patch and the size of the
multi-point neighborhood. We use entropy images as a
representative feature in this evaluation.

Figure 6 reports segmentation results for each of
the three compositions of the descriptor that include
location information: (1) patch intensity values, location
information and entropy image features; (2) patch inten-
sity values and location information; and (3) location
information and entropy image features. We plot the
resulting mean Dice scores while varying (a) the size
of the intensity patch P (x); and (b) the size of the
neighborhood Nx used in multi-point label propagation
as described in Section II-A. In the first plot, the size of
patch P (x) varies while the size ofNx is held constant at
9× 9× 5, and in the second plot, the size of Nx varies
while the size of P (x) is held constant at 9 × 9 × 5.
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Fig. 6. Mean Dice volume overlap for segmentations of the left
parotid such that the descriptor contains: (1) patch intensity values,
location information and entropy image features; (2) patch intensity
values and location information; and (3) location information and
entropy image features. The first sub-figure plots the mean Dice
scores for each of these three compositions against different sizes
of the intensity patch P (x). The second sub-figure plots these Dice
scores against different sizes of the multi-point label propagation
neighborhood Nx. The size that is not varied is set to 9 × 9 × 5.
Note that the intensity patch size has no influence on the entropy
features, yielding a constant curve with slight variations only to the
randomness of the ANN search.

The experiments depicted in Figure 6 decouple the
sizes of the intensity patch P (x) and neighborhood Nx,
which are typically taken to be equal [7]. We observe
that the best results are achieved with smaller intensity
patches of 5 × 5 × 3 to 7 × 7 × 3 voxels. In contrast,
comparatively larger neighborhoods of 11× 11× 7 and
13×13×7 voxels are required to maximize segmentation
accuracy. As discussed in Section III, peripheral voxels
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Fig. 7. Comparison of Dice scores for the left and right parotid glands by feature. The top two plots show results for the left parotid gland;
the bottom two plots show results for the right parotid gland. In the box-and-whisker diagrams, the red line indicates the median, the boxes
extend to the 25th and 75th percentiles, and the whiskers reach the most extreme values not considered outliers (red crosses). The bar plots
show the mean Dice scores obtained by each feature. Features in the plots are ordered by median Dice and mean Dice, respectively. Note
that different scales on the y-axis are used in these plots.

tend to dominate the distances ‖D − D′‖2 used by
ANN as the patch size increases, potentially leading to
less desirable matches. This effect may explain the less
accurate segmentations observed at larger patch sizes.
Selecting larger multi-point neighborhood sizes transfers
larger local patterns from the training to the test image.
The increased regularization imposed by summing over
larger neighborhoods Nx in Eq.(3) may be the reason
for the improved segmentation results – it causes the
generated segmentations to account for the presence of
strong spatial correlations in CT scans of the parotid
glands.

Figure 6 also implies that patch intensities with loca-
tion generally improve over entropy image features with
location while the combination of all three consistently
yields the best segmentation results. The results for patch
intensities and location falls below that of entropy and
location for patch sizes above 11 × 11 × 5. Because
entropy image features are independent of patch size, the
mean Dice scores shown in the first subplot in Figure 6
are approximately constant, with slight variation caused
by the randomness of the ANN search. Furthermore, the
combination of patch intensity values, entropy features
and location does not exhibit the previously described
preference for small patch and large neighborhood sizes.
Instead, this combination achieves its best performance
at medium neighborhood and patch sizes of 9 × 9 × 5
voxels. Based on these results, we use intensity patch

and multi-point neighborhood sizes of 9× 9× 5 voxels
when evaluating other image features below.

D. Comparison of Features

In this section, we present the results of an empirical
study that seeks optimal feature selection. As motivated
in the previous sections, we apply the unweighted multi-
point method for label propagation and use approx-
imate neighbor search. Further, based on the results
of section IV-C, we use features in combination with
intensity and location information. The presented results
in this section are therefore not for using the feature
in isolation, but always in combination with intensities
and location. Figure 7 compares the segmentation results
for the left and right parotid glands achieved using
each of the features described in Section III to compute
the descriptor D(x). For both parotid glands, entropy
image features perform considerably better than any
other image features. The next three highest performing
features are gradient magnitude, histogram of oriented
gradients and standard deviation for both the left and
right parotid glands. These features are followed by
Sobel, multi-scale probability of boundary and variance
image features. The only feature that performs slightly
worse than including no additional image features in the
descriptor is the mean image. Details on the parameters
for each image feature are listed in the supplementary
material.
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A major difference between the results for the left and
right parotid glands is that local binary patterns is one of
medium performing features for the left parotid but one
of the worst performing features for the right parotid,
dropping from 8th to 13th place in relative feature
rankings. Gabor wavelet image features exhibit a similar
decrease in relative feature rankings from the right to
left parotid glands, from 9th to 14th place. Other than
these differences, the relative order of the performances
of each feature is fairly consistent from the left to right
parotid glands. The best performing features measure
contours in the image (entropy, gradient magnitude,
HoG, STD, Sobel, mPb and variance). It seems reason-
able that adding contour information to the descriptor im-
proves performance since this captures the change from
foreground to background in patches. Instead of only
matching patches that have an overall similar appearance,
adding gradient-based features ensures that the matched
patches contain similar contours. In contrast, smoothing
filter features such as mean, median, or Gauss features
provide less information complementary to the intensity
patch and do not yield a large improvement over patch
intensity values alone.

E. Optimal Feature Parameters

This section discusses the optimal weights f and ` for
each feature and the optimal feature-specific parameters
and implementations outlined in Section III. The weights
f and ` determine the influence of the feature and
location component in the descriptor, cf. Eq. (5). Table I
reports the range of feature weights f and location
weights ` that achieved the mean Dice scores within
0.002 of the highest mean Dice for each feature in the
results for the left parotid and within 0.003 of the highest
mean Dice in the results for the right parotid. Different
thresholds were chosen to account for the difference in
the ranges of mean Dice scores for the left and right
parotids. We evaluated weights f and ` in the range from
0.01 to 5.0. As shown in the table, the optimal location
weights ` were between 0.2 and 1.0. The optimal feature
weights f varied significantly between different features.
The features with the highest segmentation accuracy such
as entropy image features and gradient image features
generally performed well with higher feature weights.
The features with the lowest segmentation accuracy
yielded similar Dice scores with both low feature weights
of at most 0.1 and high feature weights of at least 1.0.
Features such as the mean image exhibited this trend,
which may reflect the limited additional discriminative
ability conferred by smoothed intensity values over patch
intensity values alone.
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Fig. 8. Comparison of mean Dice overlap scores for segmentations
of the left parotid such that the descriptor contains: (1) multi-
scale patch intensity values and location information; and (2) patch
intensity values and location information. The differences are not
statistically significant. The multi-point neighborhood size is set equal
to the total extent of the multi-scale patch, which is three times the
intensity patch size along each dimension, in (1). The multi-point
neighborhood size is set equal to the patch size in (2).

The optimal composition of the descriptor is patch
intensity values, location information and entropy image
features. The patch sizes should be selected between 7×
7×3 and 9×9×5; the location weights between ` = 0.3
and ` = 0.6; and the feature weights between f = 1.0
and f = 2.0. Segmenting a single test subject using
the other 17 image-segmentation pairs as an atlas ran in
about three minutes in Matlab. We believe that further
optimization could improve this runtime considerably.

F. Multi-Scale Patch

As shown in Figure 6, more accurate segmentation
results are generally obtained when the multi-point
neighborhood size Nx exceeds the size of the intensity
patch. However, using a larger multi-point neighborhood
size causes voxels outside the patch size, which were not
considered in computing the distances, to be used for
label propagation. This effect can lead to poor pairings
in the ANN search that could have been avoided by
considering additional context within the image. The
multi-scale patch overcomes this issue by considering
additional context while using a smaller core set of patch
intensity values. Figure 8 shows the improvement on
using (1) multi-scale patch intensity values and location
information over (2) patch intensity values and location
information. In (1), the multi-point neighborhood size
is set equal to the total extent of the multi-scale patch,
which is three times the intensity patch size along each
dimension. For instance, a patch size of 7 × 7 × 3
yields to a multi-scale patch that covers a region of
21 × 21 × 9 voxels, which is also multi-point size. In
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Left Parotid
Feature Entropy Grad HoG STD Sobel mPb Var LBP Haar Median Multi Gauss Laplace Gabor None Mean

Mean Dice 0.8756 0.8687 0.8685 0.8670 0.8666 0.8633 0.8616 0.8615 0.8597 0.8588 0.8577 0.8569 0.8563 0.8556 0.8537 0.8533
Optimal f 1.0-2.0 0.2-0.5 0.05-0.2 0.05-0.5 0.5-2.0 0.2-0.5 0.05-0.2 0.2-0.2 0.2-5.0 1.0-5.0 0.05-0.2 1.0-5.0 0.01-1.0 0.01-1.0 NA 0.01-2.0
Optimal ` 0.2-0.4 0.2-1.0 0.2-1.0 0.2-0.9 0.6-2.0 0.3-0.6 0.2-0.9 0.2-0.8 0.4-5.0 0.6-1.0 0.3-1.0 0.4-1.0 0.2-0.6 0.2-0.4 0.2-0.6 0.2-1.0

TABLE I
MEAN DICE AND RANGES OF OPTIMAL FEATURE WEIGHTS f AND LOCATION WEIGHTS ` FOR EACH FEATURE FOR THE LEFT PAROTID.

(2), the multi-point neighborhood size is set equal to the
patch size. The multi-scale patch presents an interesting
new patch design that provides wider context without
having peripheral voxels dominate distances computed
in the nearest neighbor search. In this study, we compute
mean intensity values as summary statistics in generating
the multi-scale patch. A future research direction is
to instead generate the multi-scale patch with image
features other than intensity values and to consider a
summary statistic different from the mean.

V. DISCUSSION

Our results indicate that including patch intensity
values, location information, and image features in the
descriptor yields the highest segmentation accuracy. The
first conclusion that can be drawn from our results is
the importance of location information. As mentioned in
Section I, including location information in the descrip-
tor diverges from the location-independent comparisons
used in non-local means [10]. However, the high per-
formance of non-local means segmentation methods [6],
[7] can be attributed to the implicit inclusion of loca-
tion as a descriptor by restricting the search to small
local windows. Our results demonstrate that the explicit
integration of location information into the descriptor
yields better segmentation results than the hard spatial
cutoff imposed by small search windows. This effect
results from the potential to simultaneously select distant
patches as nearest neighbors and impose spatial con-
straints on the nearest neighbor search. This additional
flexibility is important when segmenting structures with
large shape variations in the training set and when the
initial alignment is of limited accuracy. In our method,
the location weight parameter permits direct control over
the influence of location information on the distances
used in the ANN search. The spatial regularization
imposed by location is especially important when the
training set or test image contains image distortions
that lead to the propagation of incorrect labels when
considering image information only. In the segmentation
of parotid glands, this effect is most commonly seen
in segmenting images of patients with dental implants,
which can create strong artifacts in the image.

Our second conclusion is that features improve the
performance of intensity values. Other than at very
large patch sizes, including only image features in the
descriptor leads to worse segmentation results than those
obtained using only patch intensity values. Features
should therefore not replace patch intensities but rather
augment them with additional information in order to
obtain more accurate segmentations. From this perspec-
tive, features that provide information complementary to
patch intensities can be expected to yield the best results.
The high Dice scores achieved by entropy, HoG, and
Sobel image features suggest that image gradients and
contours provide complementary information to patch
intensities for the purpose of image segmentation. In
contrast, smoothing filters do not add much additional
information to the patch description of an image.

A general note for non-local means segmentation
is that a rough initial alignment of the structures of
interest is required. Otherwise the definition of local
search windows is not meaningful. Similarly for our
descriptor-based approach, we need rough correspon-
dences between images to obtain comparable location
information. For domains where it is complicated to
obtain an alignment of the structures of interest with
affine registration the segmentation with non-local means
techniques is challenging. Our proposed approach is
likely to offer advantages in such situations because we
do not work with a hard cut-off but instead use a soft
spatial prior in combination with larger search windows.

Our results compare positively to the approach pre-
sented in [15], which combines label fusion with sta-
tistical appearance models and geodesic active contours.
On the same dataset, a mean dice of 0.84 was reported
for the left parotid and 0.81 for right parotid. Comparing
to the results presented in Fig. 7, we see that all features
for the left parotid are above 0.84 dice, with the best
performing entropy features resulting in a dice of 0.875.
For the right parotid gland, entropy features result in a
dice of 0.823. The reported run-time in [15] is 15 minutes
per subject, where our presented method runs in about
3 minutes. These results highlight the large potential of
descriptor-based segmentation.
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VI. CONCLUSIONS

We introduced a generalization of non-local means
segmentation by moving from comparing patches to
descriptors. The proposed descriptor consists of patch
intensity values, location information and image features.
We investigated larger search windows than previous
studies that employed non-local means, enabled by an
efficient nearest neighbor search. In an extensive com-
parison of features for segmentation, we found the best
performance for entropy image features, which have
not yet been used for patch-based segmentation. Taken
together, our analysis did not only provide new insights
into NLM-based segmentation but also demonstrated the
importance of including location and features.
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