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Abstract. This paper proposes an inference method well-suited to large
sets of medical images. The method is based upon a framework where
distinctive 3D scale-invariant features are indexed efficiently to identify
approximate nearest-neighbor (NN) feature matches in O(log N) com-
putational complexity in the number of images N . It thus scales well to
large data sets, in contrast to methods based on pair-wise image regis-
tration or feature matching requiring O(N) complexity. Our theoretical
contribution is a density estimator based on a generative model that gen-
eralizes kernel density estimation and K-nearest neighbor (KNN) meth-
ods. The estimator can be used for on-the-fly queries, without requiring
explicit parametric models or an off-line training phase. The method is
validated on a large multi-site data set of 95,000,000 features extracted
from 19,000 lung CT scans. Subject-level classification identifies all im-
ages of the same subjects across the entire data set despite deformation
due to breathing state, including unintentional duplicate scans. State-
of-the-art performance is achieved in predicting chronic pulmonary ob-
structive disorder (COPD) severity across the 5-category GOLD clinical
rating, with an accuracy of 89% if both exact and one-off predictions are
considered correct.

1 Introduction

Systems for storing and transmitting digital data are increasing rapidly in size
and bandwidth capacity. Data collection projects such as COPDGene (19,000
lung CT scans of 10,000 subjects) [1] offer unprecedented opportunities to learn
from large medical image sets, for example to discover subtle aspects of anatomy
or pathology only observable in subsets of the population. For this, image pro-
cessing algorithms must scale with the quantities of available data.

Consider an algorithm designed to discover and characterize unknown clinical
phenotypes or disease subclasses from a large set of N images. Two major chal-
lenges that must be addressed are computational complexity and robust statisti-
cal inference. The fundamental operation required is often image-to-image sim-
ilarity evaluation, which incurs a prohibitive computational complexity cost of
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O(N) when performed via traditional pair-wise methods such as registration [2,
3] or feature matching [4, 5]. For example, computing the pairwise affinity ma-
trix between 416 low resolution brain scans via efficient deformable registration
requires about one week on a 50GHz cluster computer [2]. Furthermore, robustly
estimating variables of interest requires coping with myriad confounds, including
arbitrarily misaligned data, missing data due to resection or variable scan crop-
ping (e.g. in order to reduce ionizing radiation exposure), inter-subject anatomi-
cal variability including abnormality, intra-subject variability due to growth and
deformation (e.g. lung breathing state), inter-scanner variability in multi-site
data, to name a few.

The technical contribution of this paper is a computational framework that
provides a solution to both of these challenges. The framework is closely linked
to large-scale data search methods where data are stored and indexed via nearest
neighbor (NN) queries [6, 10]. Images are represented as collections of distinc-
tive 3D scale-invariant features [7, 8], information-rich observations of salient
image content. Robust, local image-to-image similarity is computed efficiently
in O(log N) computational complexity via approximate nearest neighbor search.

The theoretical contribution is a novel estimator for class-conditional densi-
ties in a Naive Bayes classification formulation, representing a hybrid of kernel
density [11] and KNN [12] methods. A mixture density is estimated for each in-
put feature of a new image as the weighted sum of 1) a variable bandwidth kernel
density computed from a set of nearest neighbors and 2) a background distri-
bution over unrelated features. This estimator achieves state-of-the-art perfor-
mance in automatically predicting the 5-class GOLD severity label from a large
multi-site data set, improving upon previous results based on lung-specific image
processing pipelines and single-site data [13, 28, 29]. Furthermore, subject-level
classification is used to identify all instances duplicate subjects in a large set of
19,000 subjects, despite deformation due to breathing state.

2 Related Work

Our work derives from two main bodies of research, local invariant image fea-
ture methods and density estimation. Here, a local feature refers to a salient
image patch or region identified via an interest operator, e.g. extrema of the
difference-of-Gaussian operator in the popular scale-invariant feature transform
(SIFT) [7]. Local features effectively serve as a reduced set of information-rich
image content that enable highly efficient image processing algorithms, for ex-
ample feature correspondence in O(log N) computational complexity via fast
approximate NN search methods [9, 10]. Early feature detection methods identi-
fied salient image locations [14], scale-space theory [15] lead to the development
of so-called scale-invariant [7] and affine-invariant [16] feature detection methods
capable of repeatedly detecting the same image pattern despite global similarity
and affine image transforms, in addition to intensity variations.

Once detected, salient image regions are cropped and spatially normalized to
patches of size D voxels, then encoded as compact, highly distinctive descriptors
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for efficient indexing, e.g. the gradient orientation histogram (GoH) represen-
tation [7]. Note that there is a tradeoff between the patch dimension D and
the number of unique samples available to populate the space of image patches
RD. At one extreme, voxel-size patches lead to a densely sampled but rela-
tively uninformative R1 space, while at the other extreme, entire images provide
an information-rich but severely under-sampled RN space. Intermediately-sized
observations have been shown to be most effective for tasks such as classifica-
tion [17]. Note also that many patches are rarely observed in natural medical
images, and the typical set of patches is concentrated within a subspace or mani-
foldM∈ RD. Furthermore, local saliency operators further restrict the manifold
to a subset of highly informative patches M• ∈ M, as common, uninformative
image patterns are not detected, e.g. non-localizable boundary structures or re-
gions of homogenous image intensity.

Salient image content can thus be modeled as a set of local features, e.g.
within a spatial configuration or as an unordered bag-of-features representation
when inter-feature spatial relationships are difficult to model. Probabilistic mod-
els for inference typically require estimating densities from feature data. Non-
parametric density estimators such as KDE or KNN estimators are particularly
useful as an explicit model of the joint distribution is not required. They can be
computed on-the-fly without requiring computationally expensive training, e.g.
via instance-based or lazy-learning methods [18, 13, 19]. KDE seeks to quantify
density from kernel functions centered around training samples[20, 11], whereas
KNN estimators seek to quantify the density at a point from a set of K nearest
neighbor samples [12, 18, 13, 19]. An interesting property of KNN estimators is
that when used in classification, their prediction error is asymptotically upper
bounded by no more than twice the optimal Bayes error rate as the number of
data grow [12]. This property is particularly relevant given the increasing size of
medical image data sets.

In the context of medical image analysis, scale-invariant features have been
used to align and classify 3D medical image data [8, 21, 22], however they have
not yet been adapted to large-scale indexing and inference. Although our work
here focuses on inference, the feature-based correspondence framework is gener-
ally related to medical image analysis methods using nearest neighbors or prox-
imity graphs across image data, including subject-level recognition [5], manifold
learning [3, 2, 23], in particular methods based on local image characteristics [24,
25] and multi-atlas labeling[26].

The experimental portion of this paper investigates chronic pulmonary ob-
structive disorder (COPD) in a large set of multi-site lung CT images. A pri-
mary focus of COPD imaging research has been to characterize and classify
disease phenotypes. Song et al. investigate various 2D feature descriptors for
classifying lung tissues including local binary patterns and gradient orientation
histograms [27]. Several authors propose subject-level COPD prediction as an
avenue of exploratory research. Sorensen et al. [13] use texture patches in a bi-
nary classification COPD = (0,1) scenario on single-site data to achieve an area-
under-the-curve (AUC) classification of 0.71. Mets et al. [28] use densitometric
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measures computed from single-site data of 1100 male subjects, to achieve an
AUC value of 0.83 for binary COPD classification. Gu et al. [29] use automatic
lung segmentation and densitometric measures to classify single-site data accord-
ing to the GOLD range, achieving an exact classification rate of 0.37, or 0.83 if
classification into neighboring categories is considered correct. A major challenge
is classifying multi-site data acquired across different sites and scanners. On a
large multi-site data set, our method achieves exact and one-off classification
rates of 0.48 and 0.89, respectively, which to our knowledge are the highest rates
reported for GOLD classification.

3 Method

3.1 Estimating Class Probabilities

Let fi ∈ RD be a D-dimensional vector encoding the appearance of a scale-
normalized image patch, e.g. a scale-invariant feature descriptor, and let F =
{fi} be a set of such features extracted in an image. Let C be a clinical variable
of interest, e.g. a discrete measure of disease severity, defined over a set of M
values [1, . . . ,m]. Finally let Ci represent the value of C associated with feature
fi.

We seek the posterior probability p(C|F ) of clinical variable C conditioned
on feature data F extracted in a query image, which can be expressed as

p(C|F ) ∝ p(C)p(F |C) = p(C)
∏
i

p(fi|C). (1)

In Equation (1), the first equality follows from Bayes’ rule, and the second from
the so-called Naive Bayes assumption of conditional feature independence. This
strong assumption is often made for computational convenience when modeling
the true joint distribution over all features F is intractable. Nevertheless, it often
leads to robust, effective modeling even in contexts where conditional indepen-
dence does not strictly hold. Conditional independence is reasonable in the case
of local image observations fi, as patches separated in scale and space do not
typically exhibit direct correlations. On the RHS of Equation (1), p(C) is a prior
distribution over the clinical variable of interest C, and p(fi|C) is the likelihood
function of C associated with observed image feature fi.

We use a robust variant of kernel density estimation for calculating the class
conditional likelihood densities:

p(fi|C) ∝

 ∑
j:Cj=C

N

NC
exp

(
−d

2(fi, fj)

α2 + 1

)+ β
NC

N
. (2)

Here NC is the number of features of class C in the training data, and
N =

∑
C NC is the total feature count. d(fi, fj) is the distance between fi

and neighboring descriptor fj , here the Euclidean distance between descriptors.
α is an adaptive kernel bandwidth parameter that is empirically set to dNNi

for
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each input feature fi, i.e. the distance between fi and the nearest neighboring
descriptor fj in a data base of training data:

dNNi = minj { d(fi, fj) } . (3)

Finally, β is a weighting parameter empirically set to β = 1 in experiments for
best performance. Note that the overall scale of the likelihood is unimportant, as
normalization can be performed after the product in Equation (1) is computed.

In practice, Equation 2 is computed for each fi from a set of KNNi =
{ (fj , Cj) } of K feature/label pairs (fj , Cj) identified via an efficient approx-
imate KNN search over a set of training feature data. Because the adaptive
exponential kernel falls off quickly, it is not crucial to determine an optimal K
as in some KNN methods [18], but rather to set K large enough include all
features contributing to the kernel sum. Inuitively, the two terms in Equation 2
are designed as a mixture model that is aimed at increasing the robustness of
estimates when some of the features are “uninformative”. The first term is a den-
sity estimator that accounts for informative features in the data. It is a variant
that combines aspects of kernel density estimation and KNN density estima-
tion, using a kernel where the bandwidth is scaled by the distance to the first
nearest neighbor as in Breiman et al. [20]. The second term βNC

N provides a de-
fault estimate for the case of uninformative features, curiously this class-specific
value results in noticeably superior classification performance than a value that
is uniform across classes.

3.2 Computational Framework

To scale to large data sets of medical images, our inference method focuses on
rapidly indexing a large set of image features. A variety of local feature detec-
tors exist, we adopt a 3D generalization of the SIFT algorithm [8], where the
location and scale of distinctive image patches are detected as extrema of a
difference-of-Gaussian operator. Once detected, patches are reoriented, rescaled
to a fixed size (113 voxels) and transformed into a GoH representation over 8
spatial bins and 8 orientation bins, resulting in a 64-element feature descriptor.
Finally, rank-ordering[30] transforms descriptor elements into an ordinal repre-
sentation, where elements take on their rank in an array sorted according to
GoH value. Once extracted, descriptors can be stored in tree data structures
for efficient NN indexing. Again, d(fi, fj) can be defined according to a variety
of measures such as geodesic distance, here we adopt the Euclidean distance
between descriptor elements. Exact NN search is difficult for high dimensional
descriptors, however approximate KNN methods can be used to identify NNs
with high probability in O(log N) search time, for example via randomized K-D
search tree [9].

4 Experiments

Experiments focus on analyzing Chronic Obstructive Pulmonary Disorder (COPD),
an important health problem and a leading cause of death. We test our method
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on lung CT images from the COPDGene data set [1] acquired for the purpose of
characterizing COPD phenotypes and associated genetic links. The COPDGene
dataset consists of 19,000 lung CT images of 10,300 subjects with clinical and
demographic labels, where expiration and inspiration images are acquired for
most subjects. Data are acquired at 21 clinical centers with CT scanners from
a variety of different vendors, making the dataset a diverse multi-site test bed
for practical big data algorithms. The clinical COPD measurement of interest
is the GOLD score, which quantifies COPD severity on a scale of 0-4 based on
spirometry measurements.

The only data preprocessing step in our pipeline is 3D scale-invariant feature
extraction from images using the implementation described in [8]. Note that
feature extraction is robust to variations in image geometry and intensity, and
domain-specific pre-processing steps such as lung segmentation are unnecessary.
Feature extraction is a one-time processing step, requiring on the order of 20
seconds for an image of size 2563 voxels (0.6mm isotropic resolution), after which
features can be efficiently indexed. All feature extraction was performed on a
commodity cluster computing system over the course of several hours. Each lung
CT image results in approximately 5000 features, and the set of 19,000 images
results in a total of 95,000,000 features. While the original image data occupies
3.8TB when gzip-compressed, the feature data requires only 8.6GB, representing
a data reduction of 440X. Feature extraction can thus be viewed as a form of
lossy compression, where the goal is to retain as much salient information as
possible while significantly reducing the memory footprint. Given the relatively
small size and usefulness of feature data, it may be useful to include it as part
of a standard markup for efficiently indexing future image formats, e.g. DICOM
extensions.

4.1 Computer-assisted COPD Prediction

A primary goal of the COPDGene project is to identify disease phenotypes in
order to better understand and characterize COPD. To this end, we investigate
computer-assisted prediction of COPD, based on the five GOLD categories rang-
ing from 0 to 4 in increasing order of severity. For clarity we experiment with
a balanced set of data with 523 images per GOLD category, for a total of 2615
images and 13,000,000 features. We use only expiratory images in order to eval-
uate algorithm performance in isolation from confounds such as shape change
during breathing. Maximum a-posterior (MAP) estimation is used to predict the
most probable GOLD score CMAP for each new feature set F in a leave-one-out
manner:

CMAP = argmax
C

{p(C|F )} . (4)

Note that for experiments, the prior p(C) from Equation (1) is taken to be
uniform. The leave-one-out methodology is implemented efficiently using the K-
D search tree method of Muja and Lowe [9] to compute NN correspondences. In
this method, features are indexed in a set of independent search trees, whose data
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splits are chosen randomly amongst the subset of feature descriptor elements
exhibiting the highest variability. As a figure of merit we consider both the
accuracy of exact prediction and one-off prediction, i.e. where CMAP predicts
a GOLD score one off from the true label. Prediction is also tested on various
training set sizes, in order to investigate the effect on prediction accuracy. Graphs
of prediction results are shown in Figure 1, and Table 1 lists the confusion matrix
for prediction on 2615 training subjects.

a) b)

Fig. 1. a) GOLD prediction accuracy (one-off and exact) as a function of the number of
training subjects. b) Curves for predicted vs. actual GOLD values for all 2615 training
subjects. State-of-the art classification is achieved, with an accuracy of 48% for exact
prediction and 89% for one-off prediction. Note the gradual transitions across predicted
GOLD labels in b), as expected in the case of a COPD severity continuum.

Table 1. Confusion matrix for COPD GOLD category prediction, 523 subjects per
category using K=100. Bold values indicate exact prediction.

GOLD Predicted GOLD
0 1 2 3 4

0 303 164 43 5 8
1 141 283 60 21 18
2 95 160 132 87 49
3 21 43 98 188 173
4 5 9 21 114 374

In our method, feature-wise densities p(fi|C) quantify the informativeness
of individual features fi with respect to labels Ci, e.g. as in feature-based mor-
phometry [21]. These densities may be useful in investigating and characterizing
COPD phenotypes, this is a topic of ongoing investigation in our group. Figure 2
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shows the 20 features with the highest p(fi|C) for images from either extreme
of the GOLD severity rating.

a) GOLD 0 b) GOLD 4

Fig. 2. Visualizing the 20 disease-informative features with the highest p(fi|C) for a)
GOLD 0 and b) GOLD 4. Informative features are typically scattered throughout the
lungs and range in size from from 2-5mm. Note feature scale is not displayed.

Parameter K is typically important in KNN estimation methods, however
our method does not vary significantly with changes in K above a certain value
due to the drop-off of the adaptive exponential kernel. Figures 3 a) and b) illus-
trate inter-feature distances and their weighted kernel values for several typical
features across K=100 neighbors. The result of prediction tends to stabilize for
K ≥ 100. We attempted KNN density estimation for various values of K via stan-
dard counting as in [13], however classification performance was relatively poor
and varied noticeably with values of K. We found the best means of improving
performance was to adopt the kernel weighting scheme in Equation (2).

Although the training sets used here for prediction are balanced in terms of
the number of subjects, individual images produce different numbers of features.
Figure 4 a) shows the feature counts NC for GOLD categories. Figures 4 b)
and c) show how changes in either α or β result in prediction that is noticeably
skewed towards or away from GOLD categories (e.g. here GOLD 1, 3 or 4) with
higher feature counts.

4.2 Subject-level Indexing

Large, multi-site image data sets can quickly become difficult to manage. Image
labeling errors may be introduced in DICOM headers [31], and images of sub-
jects may be inadvertently duplicated, removed or modified, compromising the
data integrity and usefulness. We propose subject-level indexing to identify all
instances of the same subject within a data set, in a manner similar to recent
work in brain imaging [5], in order to inspect and verify data integrity. Subject



9

a) b)

Fig. 3. a) NN feature distance d(fi, fj) for 10 typical features fi and K=100 neighbors
fj , sorted by increasing distance right-to-left. b) Weighted kernel values of Equation (2)
for the same features and neighbors, note kernel values become negligible by K=100.

a) NC b) α = 0.5 dNNi c) β = 5

Fig. 4. Graph a) illustrates feature counts NC over GOLD categories. Graphs b) and
c) illustrate skewed prediction from unoptimal kernel parameters in Equation (2), b)
α = 0.5 dNNi and c) from β = 5.

ID is used as the clinical label of interest C, and inference seeks to identify
highly probable labels p(C|F ) given feature data F from a test subject. Note
that inference must be robust to large deformations due to inhale and exhale
state, our method accomplishes this purely from local feature appearance infor-
mation, parameters of feature geometry are not used (i.e. image location, scale,
orientation).

Subject-level indexing effectively computes the image-to-image affinity ma-
trix between all 19,000 image feature sets. The processing time is ≈6 hours on
a laptop (MacBook Pro) using a single core, with a breakdown of ≈1hr for data
read-in and ≈5hrs for KNN feature correspondence (≈1 second per subject).
This is effectively equivalent to ≈180,000,000 pair-wise image registrations (as-
suming a symmetric registration technique). Note that here, correspondences are
established across significant lung shape variation due to breathing state, as both
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expiration and inspiration are used. To our knowledge, all images are correctly
grouped according to subject labels, using an empirically determined threshold
on the posterior probability. A set of 65 images are flagged as abnormal, either
duplicate images (unusually high posterior probability indicating identical fea-
ture sets) or different images of the same subject (high posterior probability). A
partial list of 20 unintentional duplicate subject scans was compiled from genetic
information, all were successfully identified as same subjects via subject-level in-
dexing. The remaining abnormalities are currently being investigated.

5 Discussion

We presented a general method for analyzing large sets of medical images, based
on nearest neighbor scale-invariant feature correspondences and kernel density
estimation. The method scales well to large medical image sets in two respects.
First, efficient approximate NN search techniques can be used to achieve cor-
respondence in O(log N) computational complexity, as to opposed O(N) pair-
wise image or feature matching algorithms which quickly become intractable for
large data sets. Second, probabilistic inference can be performed on-the-fly from
feature data, without parametric models or potentially expensive training proce-
dures. A hybrid KDE-KNN kernel density estimator with an adaptive bandwidth
parameter is used to robustly estimate likelihood factors from nearest neighbor
features.

Our method is demonstrated on 19,000 lung CT images of 10,300 subjects
from the multi-site COPDGene data set. Subject-level indexing demonstrates
that images of the same subject can be robustly identified across deformation
due to breathing, and erroneous instances of subject duplication can be flagged.
State-of-the-art results are obtained for multi-site multi-class prediction of clini-
cal GOLD scores, improving on methods involving special purpose lung segmen-
tation and densitometric measures. The prediction result is important, because
it suggests the existence of disease-related anatomical patterns that could help to
better understand COPD. It may be that the 3D SIFT representation is partic-
ularly well-tuned to anatomical structure of lung parenchyma related to COPD.
Future work will focus on analysis of disease-informative features, identifying
disease phenotypes. One avenue will be to incorporate feature geometry (e.g.
location, scale) within modeling. Finally, our method is general and could be
used to organize large sets of general medical image data, e.g. brain or full-body
scans. Software described in this paper will be provided to the public for research
use.

We believe there is a good deal of potential for studying large sets of medical
images via the local feature framework, e.g. 3D SIFT features or other suitable
data-driven extractors. While they may be a coarse approximation to the original
image, local features often contain enough salient information to robustly and
efficiently perform tasks such as registration or classification. This is particularly
true where the quantity of data an algorithm is capable of exploiting begins
to compensate for the coarseness of its representation, i.e. via efficient search
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methods. The general framework can be used to efficiently generate proximity
graphs between large sets of medical image data, and may thus be useful in the
context of other computational approaches such as manifold learning [32, 2].
Acknowledgements: This research was supported by NIH grants P41EB015902,
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