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Abstract

In this paper, we discuss techniques to
combine an interlingua translation frame-
work with phrase-based statistical meth-
ods, for translation from Chinese into En-
glish. Our goal is to achieve high-quality
translation, suitable for use in language
tutoring applications. We explore these
ideas in the context of a flight domain, for
which we have a large corpus of English
queries, obtained from users interacting
with a dialogue system. Our techniques
exploit a pre-existing English-to-Chinese
translation system to automatically pro-
duce a synthetic bilingual corpus. Sev-
eral experiments were conducted combin-
ing linguistic and statistical methods, and
manual evaluation was conducted for a set
of 460 Chinese sentences. The best per-
formance achieved an “adequate” or better
analysis (3 or above rating) on nearly 94%
of the 409 parsable subset. Using a Rover
scheme to combine four systems resulted
in an “adequate or better” rating for 88%
of all the utterances.
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2 Introduction

For over two decades, our group at MIT has been
developing multilingual conversational systems as a
natural user interface to on-line databases. Within
the last few years, our interest has broadened to-
wards the idea of configuring these dialogue sys-
tems as a means for a student of a foreign language
to practice and perfect conversational skills through
spoken interaction with the system. In this language-
learning mode, the student would be able to obtain
translation assistance at any time over the course of
a dialogue, by simply speaking a sentence in their
native language with equivalent meaning. The sys-
tem is then tasked with the challenging requirement
to provide a fluent translation of their utterance.

Two application domains where we have invested
considerable previous effort, both towards multi-
lingual dialogue interaction and towards translation
assistance between English and Chinese, are the
weather domain (Zue et al., 2000) and the flight do-
main (Seneff and Polifroni, 2000). We have pre-
viously reported on various strategies for achieving
high quality and enhancing coverage and robustness
for bidirectional speech translation in the weather
domain (Wang and Seneff, 2006a; Lee and Seneff,
2005) and for translation from English to Chinese in
the flight domain (Wang and Seneff, 2006b). This
paper is focused on the specific (new) task of trans-
lating from Chinese to English in the flight domain.

We have found in general, as might be expected,
that the flight domain is considerably more difficult
than the weather domain, due to the much larger
number of attributes that can be specified, as well as



the linguistic complexity, in terms of multiple pred-
icates and compound/complex clauses. Fortunately,
we have available to us a very valuable resource,
which is a set of over 20,000 spoken queries in En-
glish that were collected during previous data col-
lection efforts.

In this research, we are interested in addressing
the following two questions: (1) How can we exploit
the existing English corpus, along with an exist-
ing English-to-Chinese translation system, to help in
the development of a Chinese-to-English translation
system? and (2) How can we effectively combine
linguistic and statistical methods to produce a sys-
tem that exploits the strengths of both approaches?

In the remainder of this paper, we first de-
scribe the various strategies that we devised for the
Chinese-to-English translation task. We then discuss
our evaluation procedure, which is based on manual
evaluations of manually provided translations of a
set-aside English corpus. After a section detailing
our experimental results, we conclude with a discus-
sion of related research and a look to the future.

3 Approach

3.1 Phrase-based SMT

Given a corpus of English sentences within the
flight domain and a reasonably high quality English-
to-Chinese translation system (Wang and Seneff,
2006b), we can easily generate a parallel English-
Chinese corpus, which can be used to train a statisti-
cal machine translation (SMT) system. This allows
us to quickly develop a reverse Chinese-to-English
translation capability, using publicly available SMT
tools for training and decoding (Och and Ney, 2003;
Koehn, 2004).

As illustrated in Figure 1, we can automatically
generate a corpus of English-Chinese pairs from the
same interlingual representation by parsing our En-
glish corpus and then paraphrasing each utterance
into both English and Chinese. It is our belief that
the English paraphrase is preferred over the original
English sentence because it is likely to be more con-
sistent with the Chinese paraphrase. Furthermore,
the English paraphrases usually remove disfluencies
present in the original sentences (speech transcrip-
tions), which we do not want the SMT system to
capture in its translation models.
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Figure 1: Schematic of technique to automatically
generate a synthetic bilingual corpus, for training a
statistical translation system.

Once this bilingual corpus is prepared, it can be
used to train a statistical machine translation (SMT)
system. For this we made use of a state-of-the-
art phrase-based MT system developed by Philipp
Koehn (Koehn et al., 2003; Koehn, 2004).

3.2 Formal Translation

In parallel, we have developed a linguistic method
to translate the generated Chinese corpus back into
English. We can use the English grammar rules as a
reference to generate comparable Chinese grammar
rules, such that there is considerable uniformity in
the resulting meaning representations. Ideally, the
two languages would produce an identical “inter-
lingua” for sentences with equivalent meaning, and
the generation rules would be agnostic to the input
language. Our interlingual representation, in con-
trast to many other interlingual approaches, captures
both syntactic and semantic information within a hi-
erarchical structure. Through the device of a trace
mechanism (Seneff, 1992) we are able to achieve a
strong degree of parallelism in the meaning repre-
sentations derived from both languages. For exam-
ple, wh-marked NP’s in English are restored to their
deep-structure location in the clause, as are tempo-
rals and locatives in Chinese.

Figure 2 shows examples of the interlingual
meaning representation automatically derived from
a parse analysis for an English sentence and a Chi-
nese sentence of equivalent meaning. As seen in
the figure, syntactic structure is encoded in the hi-
erarchy, with structural “frames” representing three
principal linguistic categories: “{c }” = clause, “{q
}” = topic (or noun phrase), and “{p }” = pred-



meaning representation from the English input:
{c wh_question :rhet "there" :auxil “link”
:topic {q flight :trace "what" :number “pl”

:pred {p leave :mode “ing”
:pred {p temporal :topic {q weekday :name "monday" }

:prep “on”
:pred {p at_time :prep "after"

:topic {q clock_time
:pred {p clock_hour :topic 5 }

} } } } } }

meaning representation from the Chinese input:
{c wh_question :rhet "there"
:topic {q flight :trace "what"

:pred {p leave
:pred {p temporal :topic {q weekday :name "monday" }

:pred {p at_time :prep "after"
:topic {q clock_time

:pred {p clock_hour :topic 5 }
} } } } } }

Figure 2: Comparisons of meaning representations for a pair of equivalent English and Chinese sentences:
“what flights are there leaving after five o’clock on monday” and “you3 shen2 me5 xing1 qi1 yi1 wu3
dian3 zhong1 yi3 hou4 chu1 fa1 de5 hang2 ban1” (literally “have what monday five o’clock after leave
<PARTICLE> flight.”) Features missing from the Chinese analysis are highlighted in bold fonts.

icate. The trace mechanism allows the forward-
moved constituent, “what flights,” in the English
sentence to be represented identically to the un-
moved “shen2 me5 ... hang2 ban1” in Chinese.

Despite the similarity between the interlingual
frames generated from the English sentence and
its Chinese counterpart, it is often the case that
many English syntactic features are impoverished
in the Chinese representation. Generally, Chinese
does not express explicitly the definiteness (“a” vs.
“the”) and number (singular/plural) of nouns, or
the mode/number of verbs ( “leave” vs “leaves” vs
“leaving”). In the example shown in Figure 2, sev-
eral linguistic features are missing from the Chi-
nese representation, such as the :mode "ing",
:number "pl", and :prep "on". Hence,
when the parse analysis is correct, the linguistic
structure of the resulting generation string is typi-
cally well-structured, except that it may still be ap-
parent that it is a “non-native” rendering of the sen-
tence. Figure 3 illustrates some examples of English
translations derived from Chinese input, when the
missing features are not adequately handled by gen-
eration rules.

Our generation system includes a preprocessor
stage (Cowan, 2004) which can augment an interlin-
gua frame with syntactic and semantic features spe-

cific to the target language, for example, deciding
between definite/indefinite articles for noun phrases.
However, predicting definiteness in English is not
straightforward, and therefore prone to error. In this
paper, we have sought new methods to address these
hard problems, which will be described in more de-
tail in Section 3.3.

A further problem is the classical “PP-
attachment” problem, or parse ambiguity. The
grammars we have developed for both Chinese and
English, although they utilize a powerful probability
model (Seneff, 1992), are still capable of producing
erroneous parse analyses, which can lead to incor-
rect translations. We have intentionally developed
grammars based on syntactic structure, so that they
can easily be ported to other domains. However,
the flight domain is far more challenging than the
weather domain in terms of ambiguous parses, and
there is no guarantee that the correct parse analysis
will achieve the highest score.

After exploring a number of options, we found
that it was productive to empower the developer to
manually provide a set of domain-dependent “frame
rewrite rules,” to specify a reorganization of the in-
terlingua, when necessary, to reflect a semantically
more plausible alternative. While these rules are do-
main specific, their syntax is quite straightforward,



original English “impoverished” English
a later one later one
the earlier flight earlier flight
departing in the morning depart in the morning
i would like to leave on friday i want to leave friday
i am looking for flights from memphis to london i find flight from memphis to london

Figure 3: Examples of English sentences and their paraphrases after an English-to-Chinese-to-English trans-
lation cycle.

{c rule :in ( give, list, show ... )
:contents ( temporal, fare class, ... )
:to flight }

Figure 4: Example of a structure rewrite rule to
correct misplaced attachment of a “temporal” or a
“fare class” predicate.

and they allow the developer to gain control over the
problem of erroneous parses. Figure 4 shows an ex-
ample of such a rule, which specifies a list of pred-
icates which, if attached to the verb in the original
frame, should be moved to a flight noun phrase, if
it exists, essentially correcting an inappropriate PP-
attachment in the parse tree. Currently, we make use
of about 30 such rewrite rules.

For language generation, we use a generation sys-
tem, GENESIS (Baptist and Seneff, 2000), that oper-
ates from rule-templates to generate surface strings
from the interlingual meaning representation. Since
the English and Chinese grammars share a com-
mon convention in their rules, and because of the
trace mechanism to regularize the structure, we were
able to use exactly the same set of language genera-
tion rules for Chinese-to-English generation as were
used for English-to-English generation.

GENESIS uses a lexicon of context-dependent
word-sense surface strings for each vocabulary item,
along with a set of recursive rules to specify the or-
dering of the constituents in the generated string.
Generation begins by looking up the rule-template
for the top-level clause constituent of the frame,
and proceeds recursively through the rules, concate-
nating substrings contributed by the frame’s con-
stituents to form each frame’s generation string.

Typically, there is a default rule for each of
the three main constituent categories: clause,

noun phrase, and predicate, where “predicate”
refers broadly to prepositional phrases and adjective
phrases as well as verb phrases. Any constituent can
privatize its own unique generation rule, if needed,
and similar noun or verb phrases can share the same
generation rule by forming groups (e.g., “show”
and “tell”). Variability in the surface form can be
achieved by randomly selecting among alternative
rules and lexical entries, although we have not yet
exploited this capability in the flight domain genera-
tion. A recent research effort is to improve the porta-
bility of the rules. For example, a set of pre-specified
generation rules for all temporal expressions can just
be included for any domain that uses temporal ex-
pressions. The current rule set for the flight domain
in English contains about 140 unique rules.

As mentioned earlier, we have developed an in-
dependent preprocessor stage for GENESIS (Cowan,
2004) that can augment an interlingual frame with
features appropriate for a given target language. The
syntax of its rules is very similar to that of the main
processor, but its effect is to add syntactic and se-
mantic features to the frame, thus simplifying the
burden placed on the main processor.

3.3 Post-editing Methods

As noted above, Chinese utterances are typically im-
poverished in ways that could lead to classic mis-
takes that are common for a native Chinese speaker.
Since our system would be providing examples of
“correct” English usage to Chinese speakers, it is
important for it to provide accurate accounting for
these difficult-to-master aspects of the language.
Thus we sought a methodology to correct such de-
ficiencies, which would almost certainly require a
statistical approach.

There are at least two logical candidates for this:
(1) use an “English-to-English” SMT system to map



“bad” English to “good” English, and (2) use an
n-gram language model, along with a parsing step
to select preferentially for long-distance constraints
(Lee and Seneff, 2006). Statistical translation sys-
tems have the distinct advantage that they require
very little manual effort. The main requirement is
that they be provided with a high quality parallel
corpus. We had in hand a very easily obtainable
corpus: use formal methods to translate from En-
glish to Chinese to English, and to translate from
English directly to English. Figure 5 shows the gen-
eration of a parallel corpus used for training an SMT
system for correction: the English-to-English trans-
lation is the “output language,” whereas the more
errorful English-to-Chinese-to-English translation is
the “input language.”

A second method we decided to explore is one
that is a natural extension of our prior research
on correcting ill-formed sentences produced by stu-
dents of a second language (Lee and Seneff, 2006).
We again exploit the direct English-to-English trans-
lation system to provide a model of “correct” us-
age. But instead of a complete SMT system, we
use simple rewrite rules to license only a small set
of carefully selected alternative forms. For instance,
if there is expected to be ambiguity in the choice of
the article, the generation system can produce “(a
|| the || NULL)” as the output, and allow a later
stage to make the decision statistically. The schema
we developed thus uses an overgenerate-and-select
paradigm to determine appropriate usage of function
words and verb inflectional endings.

This process is illustrated in Figure 6. The for-
mal language generation system produces alterna-
tive choices for a subset of its string outputs. The
resulting word graph is processed through a stan-
dard class n-gram language model, trained on the
outputs of the English-to-English “translation” sys-
tem. The resulting N-best list (N = 10) of candidates
are then parsed with the natural language grammar
for English. The hypothesis that yields the highest
combined score (n-gram and parse) is selected.

4 Example Outputs

In order to illustrate how we exploited our English-
only flight corpus to develop and statistically train
our translation systems, we will walk through a se-

ries of derived paraphrase variants produced from
a single example taken from the corpus. Figure 7
shows outputs from various stages of processing for
the English sentence, “I need a one way flight from
boston to pittsburgh on april twenty eighth in the
morning.” The English-to-English paraphrase (2)
is slightly modified, with the ordering of the date
and time reversed, and the cardinal date converted to
an ordinal date. A separate “tagged English” para-
phrase (3) is created to train the statistical class n-
gram language model. It has all numbers and dates
converted to the appropriate printed form, and asso-
ciated with a tag (“<day>” in the figure) that pro-
vides class names for the class n-gram. This tech-
nique allows the language model to better general-
ize from the training set. The English-to-Chinese
paraphrase (4) provides training utterances for both
the SMT system and the Chinese parsing grammar.
The Chinese string is converted back to English us-
ing the same English language generation rules that
are used for English-to-English paraphrases (5). Fi-
nally, the Chinese-to-multi-English paraphrase (6)
has the same format as the tagged English, but, in
addition, has alternative choices for a select set of
function words, such as articles and prepositions. It
is used as input to the n-gram for the post-editing
correction phase.

While it may seem that maintaining all of these
different variants of the English paraphrases is cum-
bersome, it turns out that they all share a common
lexicon and set of language generation rules, as il-
lustrated in Figure 8. All of the variants are pro-
duced through a final string edit on the original out-
put string, where each of the distinct English forms
(tagged-English, multi-English, and standard En-
glish) has its own unique string rewrite rules. For
example, the original generation paraphrase might
contain a “∗quant∗” indicating a location where a
quantifier might be present, but it is wary of com-
mitting to a particular one. This is deleted by a
string rewrite rule for both standard English output
and tagged English output, but it is rewritten as ( a
|| an || the || NULL ) for the multi-English output,
allowing the statistical post-processing to select the
most probable one. The tags for the n-gram lan-
guage model are provided in the original genera-
tion output, but automatically deleted by the stan-
dard English rewrite rules.
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(1) Original English I need a one way flight from Boston to Pittsburgh on April twenty eighth
in the morning

(2) English-to-English
Paraphrase

I need a one way flight from Boston to Pittsburgh in the morning on
April twenty eight

(3) Tagged English
Paraphrase

I need a one way flight from Boston to Pittsburgh in the morning on
April 28/<day>

(4) English-to-Chinese
Paraphrase

wo3 xu1 yao4 si4 yue4 er4 shi2 ba1 hao4 shang4 wu3 cong2
bo1 shi4 dun4 dao4 pi3 zi1 bao3 dan1 cheng2 de5 hang2 ban1

Literal Translation
(for reference)

I need April twenty two afternoon from Boston to Pittsburgh
<PARTICLE> one way flight

(5) Chinese-to-English
Translation

I need one way flight from boston to pittsburgh in the morning April
twenty eight

(6) Chinese-to-Multi-
English (Tagged)

I need ( a || an || the || NULL ) one way ( flight || flights ) from Boston
to Pittsburgh in the morning ( on || NULL) April 28/<day>

Figure 7: Examples of various paraphrases produced from a single English utterance in our data collection
corpus, for use by various configurations of the Chinese-to-English translation system.
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5 Evaluation Procedure

In this section, we describe in detail the set of sys-
tem configurations we explored, and the procedures
that were used to compare and contrast the perfor-
mance of the various competing strategies. As il-
lustrated in Figure 9, we begin with two basic sys-
tems: (1) a “standard” SMT system (system I),
and (2) a “standard” interlingua-based translation
system (System II). We then applied two different
methods to attempt to further improve the outputs
of the interlingual system: (3) process the outputs
through an SMT system trained on aligned “bad”
English/“good” English pairs (System III), and (4)
process an overgenerated set of interlingual outputs
through a selection process involving n-gram statis-
tics followed by selection by parsing using the stan-
dard English grammar (System IV). Systems II, III,
and IV all depend on the Chinese understanding sys-
tem to produce an interlingua for an input sentence,
and hence would result in a null translation output
upon parse failure. Thus we will also report a perfor-
mance achieved by combining the best of Systems
II-IV with System I as a backup mechanism.

Since we did not have unseen Chinese sentences
in the flight domain for evaluation, we created the
test data by asking bilingual speakers to manually
translate English flight queries into Chinese. Using
our English-to-Chinese translation capability (Wang
and Seneff, 2006b), we automatically generated a
corpus of English/Chinese sentence pairs from our
available 20,000 English flight queries, To ensure

separation of training and test data, we obtained
about 10,700 unique parsable English queries from
the original corpus, and divided that into three sets:
training (5/6 of total data), development (1/12) and
test (1/12). The three sets have similar distribu-
tions in sentence length, ranging from 1 to around
30 words, with an average of 7.3 words per sentence.
The training set was used to generate various paral-
lel corpora for training the statistical components in
our system, as well as for discovering coverage gaps
in the formal parsing and generation rules. Both the
development and test sets were translated into Chi-
nese manually to provide data for system refinement
and evaluation.

Translations for the test utterances are generated
under each system configuration, and grouped by the
original Chinese input. Due to the effort required to
conduct manual ratings, and also so that we could
set aside data for future evaluation experiments, we
used about half of the reserved test data in our eval-
uation. We generated 1082 unique translations for
the 460 input sentences. A bilingual judge rated all
the translations for each sentence collectively, with-
out explicit knowledge of the origin of each transla-
tion. These ratings were checked by a second native
English speaker. A scale of 1 to 5 is used in the rat-
ings, with 5 being perfect, 3 being acceptable (cor-
rect syntax and semantics, but inappropriate usage
of function words or slightly odd constructs), and 1
being incorrect (either semantic content or syntactic
structure). Ratings 2 and 4 are used sporadically for
those cases that fall between the major categories.
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Figure 9: Four system configurations that were used for the evaluation experiments.

5 4 3 2 1 F

I 277 6 45 12 120 0
II 270 28 83 8 20 51
III 333 10 33 7 26 51
IV 322 15 47 8 17 51

III+I 345 11 40 13 51 0
IV+I 334 16 54 14 42 0
Rover 358 12 36 10 44 0

Table 1: Human ratings of translation outputs of var-
ious system configurations on a set of 460 Chinese
inputs.

Figure 10 shows some example translation outputs
and the corresponding human ratings.

6 Results and Discussions

Table 1 summarizes the ratings each system received
on the 460 inputs in the test data, while Table 2 ana-
lyzes the common subset of 409 sentences for which
all systems generated a non-empty translation.

The statistical system (I) and formal system (II)
received similar numbers of “perfect” ratings, al-
though the number of “bad” outputs (those receiv-
ing a rating of 1 or 2) is significantly higher in the
statistical system. It is our observation that the SMT
system tends to produce spurious words in its trans-
lation outputs when it falls apart on novel inputs.

The two post-correction methods both improved
the formal translation outputs. It is interesting to ob-

5 4 3 2 1 Average

I 265 5 38 6 95 3.83
II 270 28 83 8 20 4.27
III 333 10 33 7 26 4.51
IV 322 15 47 8 17 4.51
Rover 346 11 29 4 19 4.62

Table 2: Human ratings of translation outputs of var-
ious systems on the subset of 409 parsable Chinese
inputs.

serve that the statistical system is able to increase
the number of “perfect” translations from 270 to
333, a 23.3% improvement. A comparison of the
translations before and after the correction shows
that the SMT correction system is able to learn sys-
tematic differences between the English paraphrases
from Chinese inputs vs. from English inputs. How-
ever, because the correction is purely data-driven,
it suffers from the same problem the baseline SMT
system encountered: the number of “bad” transla-
tions also increased after the correction. On the
other hand, the post-correction method in System IV
adopted a much more conservative strategy: it con-
strains the possible types of corrections via formal
generation methods (by generating a word graph),
while using statistics to choose the preferred solu-
tion within that restricted space. It was rarely the
case that the correction resulted in a worse transla-
tion output. In fact, it is able to achieve “adequate”



1. gao4 su4 wo3 wu3 dian3 ban4 yi3 hou4 de5 hang2 ban1 .
(Literally: tell me five o’clock half after <PARTICLE> flight.)

1a. tell me the flight at five after 1
1b. tell me flight after five thirty 3
1c. tell me about flights after five thirty 5
1d. tell me the flight after five thirty 4

2. wo3 yao4 xia4 yi1 ban1 cong2 kang1 zhou1 ha1 te4 fu2 dao4 ya4 te4 lan2 da4 de5 ban1 ji1 .
(Literally: i want next <PARTICLE> from connecticut hartford to atlanta <PARTICLE> flight.)

2a. i want to go from hartford connecticut to atlanta the next one 1
2b. i want a next flight from hartford connecticut to atlanta 3
2c. i would like the next flight from hartford connecticut to atlanta 5
2d. i want the next flight from hartford connecticut to atlanta 5

3. ni3 ke3 yi3 gao4 su4 wo3 zao3 yi1 dian3 de5 hang2 ban1 ma5 ?
(Literally: you can tell me earlier <PARTICLE> flight <Q PARTICLE>?)

3a. could you tell me the earlier flight that 1
3b. can you tell me earlier flight 3
3c. can you tell me about the earlier flight 5
3d. can you tell me the earlier flight 5

Figure 10: Translation outputs and human ratings for three Chinese inputs. (5=Perfect, 3=Acceptable,
1=Incorrect)

or better translation on nearly 94% of the parsable
subset. We only experimented with a very limited
set of corrections (i.e., articles, noun singular/plural
forms, verb modes, and prepositions before date and
time expressions). It is conceivable that the space
can be expanded to cover other systematic forms of
awkwardness in the translation. Both correction sys-
tems (III and IV) achieved the same average ranking
score.

We were able to use a simple “Rover” scheme to
select among the four candidate outputs, based on
maximizing parse score, to achieve a performance
that was better than that of any single system, as
shown in the last row in Table 1 and Table 2.

7 Related Research

(Langkilde and Knight, 1998) were pioneers in in-
troducing the idea of using a linguistic genera-
tion system to overgenerate a set of candidate hy-
potheses for later selection by a statistical evalua-
tion. Their Nitrogen language generation system
processes from an underspecified semantic input,
which they call an “AMR” (abstract meaning rep-
resention). It outputs a word graph representing a
very large list of alternative realizations of the syn-
tactic sugar missing from the AMR. An n-gram lan-
guage model then selects the most plausible realiza-
tion. As in our work, they generate both singular
and plural forms of underspecified nouns, and al-

low the statistical system to select the more likely
form, given the preceding context. But they also al-
low more global rearrangements of the structure, in-
cluding active versus passive voice realization of the
verb, for example. Their generation formalism re-
sembles ours, in that a set of “keyword rules” map
semantic and syntactic roles to grammatical con-
structs. However, because their representation is
missing explicit syntactic information, the hypoth-
esized syntactic organization is encapsulated in the
(alternative) rules rather than directly in the AMR.
Their notion of an “AMR recasting rule” is similar
to our corrective rule rewrite mechanism, and allows
an original AMR to be cast into related AMR’s.

A number of projects have involved language
translation in the flight domain, particularly involv-
ing spoken language translation (Gao et al., 2002;
Ratnaparkhi, 2000; Rayner and Carter, 1997), prob-
ably due to the existence of large English speech cor-
pora obtained from spoken dialogue systems (such
as ATIS and the Darpa funded Commmunicator Pro-
gram). (Rayner and Carter, 1997) advocate combin-
ing rule-based and statistical methods to achieve ro-
bust and efficient performance within a linguistically
motivated framework. Their system translates from
English into Swedish and French, and uses statistical
methods for word-sense disambiguation. They ar-
gue for utilizing expertise to develop generic gram-
mar rules covering the core linguistic constructions



of a language, which is similar to our approach to
grammar development. Whenever the formal pars-
ing method fails to deliver a solution, a less sophisti-
cated back-off based on direct mapping from words
and phrases is utilized.

(Gao et al., 2002) have developed a reversible
spoken language English/Chinese capability, which
is based on a strictly semantic representation of
the input sentence, serving as an interlingua. This
language-independent tree-structure representation
is derived via a statistical decision-tree model ob-
tained through automatic training from an anno-
tated corpus of spoken queries. A Maximum En-
tropy based language generation approach, trained
from the same annotated corpus, is adopted for
generating the target language output, providing
both attribute ordering and lexical choice (Ratna-
parkhi, 2000). Ratnaparkhi concedes that trainable
approaches, while avoiding the expense of hand-
crafted rule development, are less accurate than rule-
based approaches.

8 Future Work

In examining the bad-english to good-english SMT
translation outputs, it has become apparent to us
that a viable approach for improving the linguistic
system is to use the SMT system’s proposed edits
as a mechanism for identifying problematic linguis-
tic translations. Corrections can be made either di-
rectly in the formal rules or in the statistical post-
processing step, on a case-by-case basis. Another
direction we plan to explore is developing a strat-
egy for deciding whether or not to trust a proposed
translation, which will allow the system to apologize
rather than risking presenting the user with false in-
formation about the linguistic constructs of the lan-
guage being learned. Such a decision could be based
on the quality of a parse analysis of the translation,
or on an n-gram score, for example. In future work,
we plan to extend the methodologies developed for
the flight domain into other domains more appropri-
ate for language learning.
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