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Abstract

Given the availability of complete genome sequences from related organisms, it should be possible
to exploit sequence conservation in predicting gene structure. In particular, one should be able to
leverage knowledge about known genes in one species when trying to identify new genes in another.
Such an approach is appealing in that high quality gene prediction can be achieved for newly-sequenced
species, such as mouse and fugu fish, using the extensive knowledge that has been accumulated about
human genes. In this research, we report a novel approach to predicting mouse genes by incorporating
constraints from orthologous human genes using techniques that have previously been exploited in
speech and natural language processing applications. Our approach uses a context-free grammar to
parse a training corpus of annotated human genes. A statistical training procedure produces a weighted
recursive transition network (RTN) intended to capture the general features of a mammalian gene. This
RTN is expanded into a finite state transducer (FST) and composed with an FST capturing the specific
features of the human ortholog. This model includes a trigram language model on the amino acid
sequence as well as exon length constraints. A final stage uses the free software package, CLUSTALW
to align the top � candidates in the search space. For a set of 98 orthologous human-mouse pairs,
we achieved 96% sensitivity and 97% specificity at the exon level on the mouse genes, given only
knowledge gleaned from the human genome.

1 Introduction

The computational biology community is experiencing an enormous growth in the number of sequenced
genes that become available for research purposes every day. Looking to the future, it will become increas-
ingly important to be able to leverage knowledge about one species to help in codifying the nucleotide
sequences obtained for other species. At this time, the knowledge available for the human is much more
precise and extensive than that for other vertebrates. However, with the recent milestone of the establish-
ment of the complete mouse genome sequence [12], it becomes of paramount importance to accelerate
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the pace at which new genomic sequences can be accurately decoded. It is now known that there is re-
markably strong conservation of the nucleotide sequences within the coding exons for related species, on
the order of 97% for humans compared with other primates, and about 85% for the much more distant
pair of human-mouse orthologs. As discussed in [2, 12], there appears to be a remarkable conservation
of individual exon length between the human and the mouse. This feature makes it feasible to exploit
statistical methods that would otherwise fall apart because of an unwieldy search space.

1.1 Goals

Our goal in this work is to develop a statistical language model for gene finding by exploiting orthologous
pairs, borrowing techniques previously applied to speech understanding. To begin our explorations, we
conducted a preliminary experiment in which we used simple � -gram statistics to attempt to match up
orthologous gene pairs. In particular, we trained an amino acid trigram language model for each human
gene of a pair and selected the highest scoring mouse protein (among 102 candidates) as the proposed
orthologous mouse gene. We found that the matching was nearly perfect. This, together with the knowl-
edge that the lengths of individual exons are strongly conserved across different mammalian species [2],
inspired us to design a gene-finding procedure that makes use of � -grams and exon length constraints as
critical components. The other necessary ingredient to success would be a generic statistical model of
a typical mammalian gene, that would map from the raw nucleotide sequence to the sequence of amino
acids specifying the resulting protein.

1.2 Background

We have long exploited natural language techniques to aid in the process of understanding human speech.
Our methods are based on parsing a corpus of orthographic transcriptions of users’ utterances based on
a context free grammar formalism [14] , then inducing a language model for the recognizer from an au-
tomatic analysis of the parse trees [15]. Our speech recognition framework [8] makes use of a finite
state transducer (FST) formalism [13, 11] to define the search space. This formalism defines a space
of interconnected “states,” with a state transition matrix characterizing the connections among the states
and supporting simultaneously a mapping from an input symbol to an output symbol, with an associated
probability. For speech, we typically map in stages from phonetic (e.g., “flap”) to phonemic (“/t/”) realiza-
tions, subsequently grouping phoneme sequences into words (“guatemala”), then optionally concatenating
words into multi-word units (“guatemala city”) and finally word classes (“city name”). A class � -gram
language model provides critical constraint for the recognition task. A more sophisticated approach is to
augment the FST with recursive transition networks (RTNs) [18], to support a hierarchical model where
selected transitions on arcs are associated with an entire sub-network, identified by a unique name. This
permits a direct encoding of a context free grammar into the recognizer’s search space.

In our research on spoken dialogue systems, we have explored several options for integration between
speech recognition and natural language understanding, where our goals were to deduce an effective sta-
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tistical language model for the recognizer directly from the natural language grammar. We have recently
been successful with two different techniques, both of which are based on parsing a large corpus of utter-
ances and tabulating counts in the parse trees to determine the probability model. The distinction between
the two approaches is in the complexity of the resulting recognizer language model. The simpler tech-
nique [15] induces a traditional class � -gram language model, whereas the more complex alternative [17]
includes component categories that are represented by a recursive transition network (RTN) [18], allowing
a structured encoding of layers above the preterminal layer in terms of a context-free grammar. We typ-
ically include bigram statistics on transitions within each layer of such an RTN, computed directly from
the parse trees acquired for the training corpus. For speech applications, we have typically found that an
RTN formulation is less successful. This is mainly because, for most applications, the RTN can not be
expanded into a finite state network, and therefore suffers from performance loss in terms of computation
required to evaluate the recursion on the fly.

Our first thought was that techniques that worked best for speech would also be preferred for the
genome parsing problem. In speech applications, words that form a natural set within a semantic class are
grouped and replaced by their class label in the training sentences, with a within-class unigram statistic ac-
counting for their internal distribution within the class. Word sequences must sometimes be concatenated
into artificial compound words in order to simplify class membership to a list of items. Thus “salt lake
city” becomes “salt lake city.” The class then stands in for all of its member words (both singletons and
compounds) in the sentence-level bigram statistics. A parallel in genomics would be to create compound
words to account for all of the codings from nucleotides to amino acids. A properly constructed gram-
mar could be used to tag exon-internal sequences according to their triple-code protein transformations,
for example, producing “classes” like “ � Leu � ” containing “word sequences” like “t t a,” “t t g,” “c t t,”
“c t a,” “c t c,” “c t c,” and “c t g.” Nucleotides in introns could be tagged for the phase of the reading
frame, in order to retain knowledge of the phase across the gap between the individual exons.

The alternative approach is to select a subset of the nonterminal categories in the NL grammar as
classes in a class � -gram, and to expand those classes using a recursive transition network (RTN), coded
directly from the rules in the grammar subsumed by the specially selected categories. While this approach
is often impractical for speech applications, the complexity of grammars needed for genomics is consid-
erably reduced, and it has the advantage that statistics can be shared across similar contexts. For example,
it seems counterproductive to split the statistics on the introns into three distinct subgroups just because
of the phase of the reading frame in flanking exons. An RTN can easily be configured such that the three
intron classes can share a common nucleotide bigram language model, which can also be used for the
nucleotide sequences flanking the outer edges of the gene.

It also becomes very straightforward to write rules to express positional bigram statistics in the 3’
and 5’ splice site motif patterns, which are then covered by a separate subnetwork within the RTN. We
found that an RTN constructed for genomic sequences in this fashion could be automatically expanded
into a finite state network, which could then be composed with FSTs representing other components of
our model to produce an efficient search graph. This thus became our preferred strategy for representing
the generic mammalian gene model.
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1.3 Overview of the Approach

Our approach makes use of a generic mammalian gene model as well as specific constraints from the
human orthologous gene when predicting the structure of a mouse gene. The generic gene model was
obtained by parsing a training corpus of 400 annotated human genes using a context-free grammar1. A
probabilistic training procedure produces a weighted recursive transition network (RTN) intended to ac-
count statistically for most of the distinct features of a typical gene (introns, exons, and 3’ and 5’ splice
sites). This network, converted into a finite state transducer (FST), defines the basic search space used in
predicting the structure of a mouse gene. The search space is further enhanced with exon length and amino
acid � -gram model constraints obtained from the corresponding human ortholog. A search through the
space, given an input mouse genomic sequence, produces an � -best list of alternative protein hypotheses,
which can be resorted using standard sequence alignment tools, such as CLUSTALW [19]. Thus a formal
alignment between the human and mouse orthologs is deferred until the post-processing stage.

All the models used in our approach make use of the finite state transducer representation, and the gene
prediction procedure utilizes the FST toolkit developed in the Spoken Language Systems group at MIT,
which is based on [13, 11].

2 Methodology

Central to our methodology is a statistical model for the genomic sequence, which is essentially a hidden
Markov model (HMM). The hidden states in the model correspond to various basic functional constituents
of a gene (e.g., exon, intron, splice sites, etc.), and the emission probability is defined as the likelihood
of observing a particular nucleotide sequence conditioned on the state. Thus, the joint probability of an
observed genomic sequence ( � ) and the corresponding state sequence ( � ) can be expressed as:

��� �����
	�� ��� ���	
��� ��
��� �
��� � ��� � � 	 ��� � ��� � ��� � 	 (1)

in which � � is the observed nucleotide sequence for state � � , and � is the total number of states.

The problem of predicting the structure for a genomic sequence can then be solved by finding the state
sequence that maximizes the probability:

����� �"!$#&%'�)(* ��� �����
	 (2)

The state sequence encodes the proposed genetic structure of the input DNA sequence.

Although our gene model is equivalent to an HMM in the probability formulation, it was trained via
an efficient parsing mechanism [14] and encoded as a weighted Recursive Transition Network (RTN). The
top level of the RTN corresponds to the HMM model states ( � � ). Some of the top level nodes are expanded

1Thus we are assuming that the human genome is representative of all mammals.
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recursively, down to a sequence of terminal nucleotides ( � � ), according to the rules of the grammar. The
emission probability of observing that sequence can be computed by multiplying the probabilities on all
the arcs visited by the expansion of the sub-level RTNs. For example, the 5’ splice site is represented as
a top level node that eventually expands into a sequence of 20 nucleotides, and the emission probability
of this sequence, ��� � ��� � � ����� �����	��
� �������
	 is computed as a product of the RTN weights2. This generic
gene model is enhanced with human ortholog-specific information, to provide effective constraints in
processing the orthologous mouse gene.

In the remainder of this section, we first give an overview of our gene prediction procedure, followed
by detailed descriptions of each component module.

2.1 Overview of gene prediction procedure

�

�

�

�

�

Over-generate all possible splicings

Apply length constraints from human ortholog gene

Apply generic gene model and ortholog-specific LM constraints

Align with human ortholog

Raw nucleotide sequence

Ambiguously tagged nucleotide sequence

Length-constrained tagged nucleotide sequence

N-best hypotheses

Selected top-scoring hypothesis

Figure 1: Block diagram of procedure used to extract mouse gene structure via analogy with known
human ortholog.

The procedure to process a single mouse gene through our model requires several steps, as outlined
in Figure 1. Each raw mouse sequence was pre-processed to over-generate all potential exons. This
FST is then pruned by imposing exon length structure constraints, obtained from the annotated human
orthologous gene3. The generic gene model is then applied to score alternative hypotheses available in the
graph, as well as translating them into amino acid hypotheses. An amino acid trigram model, trained from
the protein sequence of the human ortholog, is then applied. Finally, a hypothesized � -best list of the

2In practice, the weights on the RTN are negative log probabilities, so that a sum is used in computing the total probability.
3Hypothesized orthologs could in principle be acquired using blast analysis.
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top-ranking candidates can be re-ranked by aligning each hypothesis with the human ortholog amino acid
sequence, using a standard alignment tool such as CLUSTALW [19]. The final highest scoring alignment
provides a hypothesized protein sequence for the mouse ortholog, segmented into a sequence of proposed
exons.

2.2 Initial processing

Each raw mouse sequence was pre-processed to support hypothesized exon start and end loci wherever
they were possible according to strict rules for specific two- or three-nucleotide sequences at their edges, as
illustrated in Figure 2. This results in a finite state transducer mapping raw DNA sequences to alternatively
tagged sequences.

� exoni � before every atg
� exon � after every ag

� /exon � before every gt
� /exonf � after every STOP (taa � tag � tga )

Figure 2: Special tags inserted into raw genomic sequences in the initial processing phase. � exoni �
= beginning of initial coding exon; � exon � = beginning of internal exon; � /exon � = end of internal exon;

� /exonf � = end of final coding exon.

2.3 Generic Gene Model

To train a generic gene model for the mammalian genome, we developed a context-free grammar that
encodes critical aspects of the genomic structure, including accounting explicitly for substructure in the
motif sequences at both the 3’ and 5’ splice sites of the intron, as outlined in Figure 3. The grammar also
preserves reading frames between adjacent exons.

3’ splice site (... ag) 5’ splice site (gt ...)

intron (0|1|2)

stop (taa|tag|tga)atgpre−gene region post−gene region

exon

Figure 3: Basic structure of our gene model. Internal introns remember the reading frame to assure
correct coding of the nucleotides into amino acids.

The portion of the grammar accounting for the amino acids, as illustrated in Figure 4, captures a
statistical map from nucleotide sequences to amino acid sequences. A nucleotide bigram language model
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exon i start exon stop seq exonf end
AA ... AA

c ca Gln ... c cg Arg t1 a2 Stop
� exoni � a t g c a g ... c g a t a a � /exonf �

Figure 4: Schematic of our structural model for an exon, in the simple case of a very short single
exon gene. The preterminal symbol, “ca” stands for the specific situation of the nucleotide “a” following
the nucleotide “c” in the second position of the triplet code. The third position in the model uniquely
specifies the amino acid.

3’ motif
Nt1 Nc2 Na3 .... Nt13 Nc14 Nc15 Nc16 Nc17 Nt18 ag

t c a .... t c c c c t a g � exon �

Figure 5: System’s statistical model for the 3’ splice site motif, consisting of the twenty nucleotide
sequence up to and including the obligatory “ag.” This model captures positional bigram statistics,
which is equivalent to an inhomogeneous first-order Markov model [3].

encodes the statistics of all introns. The model for the 3’ splice site motif, which takes into account the
18 nucleotides preceding the “ag” signature of exon onset, is basically a positional bigram, as illustrated
in Figure 5. The model for the 5’ splice site motif is shorter, yet more intricate, as we wanted to account
for the known distinction between situations where the nucleotide “g” is present or absent at the position
just preceding the official end of the exon (See Figure 2 in [4]). When the exon ends in-phase with the
reading frames, it seemed too difficult to encode this “G”/“not-G” distinction along with the protein coding
process, so this distinction was only made for the out-of-phase exons. An example of the parse tree for
an exon which ends in phase 24, and ends in a “not-G” configuration, is illustrated in Figure 6. Figure 7
shows that the distributions in the next-to-last position of the 4-sequence 5’ splice site motif model are
distinctly different for the “G”/“not-G” subsets, as predicted from the literature.

ab end
nuc1 h2 exon end h

exon end h1 h2 h3 h4
g a � /exon � g t g a g t

Figure 6: Model for the 5’ splice site motif in the case where two nucleotides of the split codon have
immediately preceded the exon boundary, and the last nucleotide before the boundary was not “G.”

The gene model is trained by parsing annotated human genes using this grammar. A corpus of about
400 human genes was used in estimating the probabilities of the model. The training genes were truncated

4Intron splits codon after second position.
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Figure 7: Log probabilities obtained in our models for the four nucleotides in position X in the 5’
splice site motif: “n n G �H � /exon � g t n n X n”, conditional on G or H ( � ACT � ) at position “G �H.”

at 1000 nucleotides preceding the first coding exon and 1000 nucleotides subsequent to the end of the last
coding exon. Some characteristics on these genes are presented in Table 1. Statistics were tabulated from
the parse trees for this corpus, and an RTN model was produced encoding the grammar, with negative log
probabilities on transitions. This RTN was then expanded into a finite state transducer, such that it could
be combined with additional constraints from the human ortholog.

2.4 Length constraints

As discussed in both [12] and [2], it appears that the lengths of corresponding exons of human and mouse
orthologs are strongly conserved. Batzoglou et al. [2] found that 73% of exon lengths were identical, and
the differences, when they occurred, were quite small and were nearly always a multiple of three. The
introns, on the contrary, seemed to have considerably different lengths between the two species.

We used a finite state transducer to encode the intron/exon length constraints. In our FST length model,
the introns are represented by a single state supporting all possible nucleotides in a self-loop, resulting in
no length constraints for introns. The exons are represented as a cascade of one-nucleotide acceptors; the
length of the cascade encodes the exon length explicitly. Given an annotated genomic sequence, we could
derive a “strict” length model, essentially insisting that the length be conserved for all the exons in the
gene. A more general solution would be to allow insertions and deletions of up to � codons (multiples of
3 nucleotides) in each exon, to support the most common types of variations.

There are other types of exon length variations, including merging and splitting of exons, and lengths
differing by other than a multiple of three. We can account for the merging of two human exons easily
in our model, by providing a transition by-passing the intron state. The inverse problem of splitting an
exon into two is more difficult, due to the many possible sites in which splitting could occur. In general,
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one could account for all the variations with a more complex model, but at the expense of significantly
increased ambiguity. We chose to ignore the less common variations (except merging) in our model,
recognizing that our approach will not be able to recover those exons correctly. In Section 3, we will
describe an experiment analyzing the trade-offs in selecting � , the maximum number of codons we allow
an exon to insert or delete.

Figure 8 illustrates our model (for � ��� ) with a simple example.

a:a

c:c
g:g
t:t

a:a

c:c
g:g
t:t

a:a

c:c
g:g
t:t

c:cc:c c:c c:c c:c c:c c:c c:c c:c c:c c:c c:c
a:aa:a a:a a:a a:a a:a a:a a:a a:a a:a

g:gg:g g:g g:g g:g g:g g:g g:g g:g g:g g:g g:g
t:tt:t t:t t:t t:t t:t t:t t:t t:t t:t t:t t:t

<exoni>:<exoni>
</exon>:</exon> <exon>:<exon>

ε:ε

ε:ε

ε:ε
ε:ε

</exonf>:</exonf>
a:a a:a

Figure 8: An example length constraint FST for a made-up sequence “... � exoni � a t g t a � /exon �
g t ... a g � exon � a � /exonf � ...”. In this example, we allow up to one codon insertion or deletion in
each exon, as well as a merge of exons. In addition to the original exon length pattern “5 1”, this FST also
supports the following combinations: “2 1”, “8 1”, “2 4”, “5 4”, “8 4”, “3”, “6”, “9”, and “12”.

2.5 Amino-acid language model

We applied an amino acid trigram model, also encoded as an FST, to adapt the generic gene model to
the particular ortholog under consideration. The model is estimated from the amino acid counts in each
human protein sequence. The Deleted Interpolation technique [1] is used for smoothing, with probabilities
estimated using a variation of the expectation maximization (EM) algorithm [6]. This technique is identical
to that used for our speech applications. The vocabulary of this language model is based on the 20 amino
acids, but is enhanced with three phase markers at exon boundaries.

2.6 Post-processing via alignment

Global alignment between human and mouse orthologous protein sequences can in theory provide stronger
constraints than � -gram models, which are simply based on frequencies of localized patterns. Thus, it is
possible to further improve the system performance after the � -gram model is applied, by explicitly align-
ing the human ortholog with each of the � -best hypotheses produced by the system, in a re-ranking step.
For this purpose, we used the publicly available general purpose multiple sequence alignment program
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CLUSTALW. CLUSTALW can calculate the best match between multiple DNA or protein sequences, and
produce a score associated with each match. We converted the � -best hypotheses into protein sequences
and aligned each of them with the known protein sequence of the human ortholog. The one with the high-
est alignment score is then chosen to be the system output. We used the default settings of CLUSTALW,
so that no special tuning was done to adapt the tool for aligning human-mouse orthologs. The � -best list
size is fixed to be 100 in our experiments, although one could optimize this parameter if an independent
set of development data is available.

3 Results and Discussion

We evaluated our approach using the same set of human-mouse ortholog pairs that had been used in [2].
The original data set contains a total of 117 pairs of orthologs. However, some of the genes contain
alternatively spliced coding sequences based on the GenBank “CDS” annotation. We also found that
there are about 3 mouse genes whose introns have the non-consensus terminal dinucleotides (“gc..ag”),
a recognized variant, and 6 mouse genes with dinucleotides other than “gt..ag” or “gc..ag” (possibly due
to sequencing or annotation errors). These data were excluded from our evaluation, leaving 102 ortholog
pairs in our final test set. These genes are on average shorter than the ones we used for training our generic
gene model, as shown in Table 1.

Training Testing
Property MIN MAX MIN MAX
total length (nucleotides) 1500 17,000 700 13,500
total length of coding sequences (nucleotides) 200 4000 200 2100
total number of exons 2 25 1 18

Table 1: Distributions of 400 genes selected for training and testing our generic mammalian gene
model.

The criterion we used for evaluation is based on exactly matched coding exons. In particular, we use
the sensitivity and specificity measures [5], which correspond to precision and recall used in information
retrieval evaluations. Sensitivity is defined as the ratio of the number of correctly identified exons over
the total number of exons in the reference; specificity is defined as the ratio of the number of correctly
identified exons over the total number of hypothesized exons.

3.1 Results

The only significant parameter we chose to tune in our system is � , the maximum number of codons we
allow to insert or delete in the exon length constraints. Figure 9 summarizes the impact of � on the system
performance. We are not always able to find an orthologous mouse exon-intron structure for every human
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Figure 9: Sensitivity and specificity on correctly identifying mouse exons as a function of � , the
maximum number of codon insertion/deletions allowed in the length FST model. � varies from 1 to
13 in the plots. The labels next to the data points indicate the total number of genes that our system is able
to predict under each � .

gene. For example, we are able to predict gene structures for 98 mouse sequences (out of 102 in total)
when we allow up to 9 codon insertions/deletions in each exon. This is due to the restrictions imposed
by the length constraints; i.e., when the mouse exon length variation is beyond the coverage of the length
constraints FST, the search could fail to find any gene in the mouse genomic sequence. We consider this
a favorable feature of our algorithm - it is probably better to fail than to produce an erroneous result. For
the failed cases, one can relax the length constraints, or adopt a different approach such as those based on
alignments.

The sensitivity and specificity measures in the plots are calculated on the subset of genes that our
system can produce an answer for, for different values of � . As shown in the figure, there is clearly
a trade-off in choosing � . Since we have no chance of correctly identifying those mouse exons that
varied by more than � codons, a small � will result in a significant number of errors due to those hard
failures. It also results in more null outputs due to total search failures. As we increase � , we can generally
produce outputs for more genes. However, with a large � , the performance could degrade due to increased
ambiguity, as indicated by the downward trend in the figure beyond � ��� . The optimal performance was
96.2% sensitivity and 96.7% specificity for coding exons, which was achieved with � equal to 11 and
with post-processing using the CLUSTALW alignment tool.

3.2 Discussion

It is interesting to observe that post-processing using CLUSTALW did not yield any further improvement
over using the simple amino acid trigram model until � reaches 11. This seems to suggest that, when the
exon length constraints are relatively strict, the trigram is an adequate model for incorporating human pro-
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tein sequence constraints. However, the explicit alignment with human protein sequence via CLUSTALW
provides stronger “language model” constraints than � -grams, and eventually out-performs the trigram
model as � grows. (The trigram model, even though it was not able to predict the correct gene structure
as the top candidate, was able to produce the correct answer in its � -best outputs.)

Generic
Genome
Model

Mouse
Length
Constraints

Human
Ortholog
Trigram

ClustalW
Alignment

ClustalW
Alignment

GGM MLC TRI ALGN

System IV

System II

System I−aSystem III
System I−b

Figure 10: Schematic of experiments on different system configurations for gene prediction of the
mouse gene based on the human ortholog.

To help us analyze the relative contributions of the various components of our system, we experimented
with different system configurations, as outlined in Figure 10. All of these experiments were conducted
with length constraints derived exclusively from the annotated mouse gene. Results are provided in Ta-
ble 2. By replacing the length constraint with an exact length specification from the target mouse gene, we
can determine an upper bound on how well the rest of the system is performing. In fact, this configuration
(System I-a in the table) yielded 100% sensitivity and specificity, even without any CLUSTALW alignment
post-processing.

However, if we add even a small amount of perturbation from perfection in the mouse length con-
straints (System I-b), by allowing deviations of ��� codons from the exact lengths on all exons, both
sensitivity and specificity degrade to 98.4%. This reflects the tremendous ambiguity in allowable gene
structures for the genomic sequences. It also seems to suggest that the loss of performance due to imper-
fect knowledge of mouse exon lengths (as deduced from human orthologs) is relatively small. We reach
this conclusion since, with sufficient relaxation of length constraints from the human ortholog predictor,
we are able to achieve results that are only slightly worse than the results for System I-b. As for most of
our real experiments, addition of � -best selection from CLUSTALW alignment (System II) resulted in a
slight degradation in performance.

The other question we were interested in addressing is the degree to which the trigram language model
based on the human ortholog improves the quality of the � -best list. If the trigram is omitted from the
above configuration, performance degrades significantly, down to only 87% sensitivity and specificity
(System III). However, it is interesting that the correct hypotheses are often available within the 100-best
list, since, in this case (System IV), CLUSTALW plays a much more critical role to bring the performance
to the same level that is achieved by its analog, System II.
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Exon-level Exon-level
System Configuration Sensitivity (%) Specificity (%)

I-a MLC(exact) + GGM + TRI 100 100
I-b MLC( � � ) + GGM + TRI 98.4 98.4
II MLC( ��� ) + GGM + TRI + ALGN 97.9 98.1
III MLC( ��� ) + GGM 87.2 87.2
IV MLC( ��� ) + GGM + ALGN 98.1 98.1

Table 2: Results for various experiments discussed in text. See Figure 10 for definitions of terms.

4 Relevance of Approaches and Results

We believe that the techniques developed here will be powerful for future tasks of gene discovery for
novel species. For example, if a predicted exon structure for a mouse gene homologous to a known human
disease genes can be obtained with high accuracy, then this information could be of value in designing
knockout or transgenic mice experiments to help in understanding the underlying disease process. Another
exciting possibility is to use these techniques to improve genetic modeling in species such as the zebra
fish [7], which hold promise for inferring developmental processes through retroviral-induced mutations.

The algorithm described in this paper can also be applied to harvest genomic data for research on
alternatively spliced genes, or isoforms. It is an interesting question as to what determines if an exon
can be alternatively spliced. A promising approach to addressing this problem is to study alternatively
spliced orthologous genes: if an exon exhibits similar behavior in the orthologs, the factors would likely
be conserved across the two species [10]. However, ortholog information is generally available only on the
gene level. Our technique could contribute by matching orthologs on the isoform level with high accuracy.

We are not aware of any reported research on the topic of gene prediction by analogy with a known
orthologous exon-intron structure, although a related but harder problem of gene prediction for both hu-
man and mouse based on a joint genomic sequence model has been addressed by several researchers. For
example, Meyer and Durbin [9] take the approach of a “probabilistic pair HMM” to jointly model the two
sequences. I.e., during the “exon” state, the HMM can use known human-mouse confusion statistics to
score the joint hypotheses for amino acids read off from the paired human/mouse genes in two parallel
coding sequences. Their best results were 80% sensitivity and 79% specificity on the exon level, realized
after a post-processing step to remove implausible hypotheses. Batzoglou et al. [2] align the human mouse
orthologs through a novel iterative procedure that relies on exact matches of k-mers, with the value of k
decreasing with each iteration. They made use of standard dynamic programming methods to completely
score the final alignments that emerged from the iterative process. Statistical methods are used to score the
quality of the candidate splice sites, as in our work, but they also make use of human-mouse confusions
for the codons, as do Meyer and Durbin. Their length constraints were similar to ours except that they
penalized lengths that did not match exactly. Their results for internal exons are nearly perfect, but perfor-
mance degrades substantially on initial and final exons, where only one of the splice site motif patterns is
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available. Here they get only 71% prediction accuracy.

These results can not be directly compared with our results, because the problem is formulated as
a joint prediction of two related genes rather than a prediction of one gene based on its similarity to a
known ortholog. One would expect a substantially better performance for our system, which is confirmed
by our results. It is interesting to note, however, that we have not yet utilized any known confusion
statistics between human and mouse orthologous genes/proteins, except as they might be embedded in the
CLUSTALW alignment algorithm. We could conceivably obtain improvements by building explicit models
for these confusions into our final alignment stage. For this we could make use of another set of speech-
based tools we have developed to account for a probabilistic mapping between the idealized phonemes of
a word and their phonetic realizations in casual speech [16].
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