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Abstract
This paper examines an approach of using lexical stress mod-
els to improve the speech recognition performance on sponta-
neous telephone speech. We analyzed the correlation of various
pitch, energy, and duration measurements with lexical stress on
a large corpus of spontaneous utterances, and identified the most
informative features of stress using classification experiments.
We incorporated the stress models into the recognizer first-pass
Viterbi search and obtained modest but statistically significant
improvements over a state-of-the-art real-time performance on
theJUPITERdomain.

1. Introduction
Lexical stress is an important property for the English language.
It has been suggested in [10] that stressed syllables provideis-
lands of phonetic reliabilityin speech communication. In ad-
dition, lexical studies have demonstrated that stressed syllables
are more informative to word inference [7], and knowing the
stress pattern of a word can greatly reduce the number of com-
peting word candidates [2]. Clearly, lexical stress contains use-
ful information for automatic speech recognition.

Early work on lexical stress modeling has focused on the
recognition of stress patterns to reduce word candidates for
large-vocabulary isolated word recognition [2, 15], or to dis-
ambiguate stress-minimal word pairs [3]. More recently, there
have been attempts at utilizing stress information to improve
continuousspeech recognition. In [1, 11], the lexical stress
property was used to separate phones during training to ob-
tain more accurate acoustic models. In [6], stress-dependent
phonological rules were applied for phone to phoneme map-
ping. In [9], hidden Markov models for “weak/strong” and
“stressed/unstressed” syllables were applied to resort the recog-
nizerN -best outputs. [8, 14] also examined stress classification
in continuous speech; however, no speech recognition exper-
iments were performed using the stress models. In general,
previous research on using stress models in continuous speech
recognition has been limited, and we have not found any work
on spontaneous English speech reported in the literature.

In this paper, we test the approach of scoring the lexical
stress patterns of recognizer hypotheses to improve automatic
speech recognition performance. We expect that substitution,
insertion and deletion errors sometimes result in mismatched
stress characteristics between the hypothesized syllable nucleus
and its acoustics. By scoring the stress pattern of a hypothesis,
the additional constraints from stress models will improve over
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a system which uses segmental constraints only. However, the
acoustic manifestations of English lexical stress are quite ob-
scure. Although it has been found that prosodic attributes, i.e.,
energy, duration, and pitch, correlate with the stress property of
a vowel, these features are also highly dependent on its segmen-
tal aspects (intrinsic values). To complicate things further, not
all lexically stressed syllables are stressed in continuous speech,
e.g., mono-syllabic function words are often not stressed; and a
subset of lexically stressed syllables in a sentence also carry the
pitch accents of the spoken utterance. Although pitch accent-
edness has been argued to be a more appropriate indication of
“stress” in continuous speech, their occurrences can not be pre-
dicted from orthographical transcriptions, and hence, they are
less useful to a recognizer. On the other hand, lexical stress
can easily be encoded in the lexicon of a segment-based recog-
nizer. However, the question remains whether it can be reliably
determined from the acoustics in spontaneous speech to benefit
recognition.

We address two research issues in this study: 1) how well
can the stress property of a vowel be determined from the acous-
tics in spontaneous speech, and 2) can such information im-
prove speech recognition performance. To answer these ques-
tions, we will study the correlation of various pitch, energy, and
duration measurements with lexical stress on a large corpus of
spontaneous utterances, and identify the most informative fea-
tures of stress using classification experiments. We will also de-
velop probabilistic models for various lexical stress categories,
and combine the stress model scores with other acoustic scores
in the recognition search for improved performance. We ex-
perimented with prosodic models of various complexity, from
only considering the lexical stress property to also taking into
account the intrinsic differences among phones. We found that
using prosodic models improved over the baseline performance
on theJUPITERdomain. However, the gain by using prosodic
models seems to be achieved mainly by reducing implausible
hypotheses, rather than by distinguishing the fine differences
among various stress and segmental classes; thus, there is no
additional gain by utilizing more refined modeling.

In the following sections, we first provide some background
knowledge for the experiments, including theJUPITERcorpus
and a baselineJUPITER recognizer which incorporates stress
markings in its lexicon. After that, we study the correlation of
various pitch, energy, and duration related measurements with
lexical stress and identify the best feature set using classifica-
tion experiments. Finally, we present speech recognition exper-
iments using the basic lexical stress models and other prosodic
models of varying complexity.



Data Set Train Development Test

# Utterances 84165 1819 3028

Table 1: Summary of data sets in theJUPITERcorpus.

2. Experimental Background
2.1. JUPITERCorpus

The JUPITER system [17] is a telephone-based conversational
interface to on-line weather information developed at the Spo-
ken Language Systems group of the MIT Laboratory for Com-
puter Science. A user can call the system via a toll-free num-
ber and ask weather-related questions using natural speech.
JUPITER has real-time knowledge about the weather informa-
tion for over 500 cities, mostly within the United States, but
also some selected major cities world-wide. The system also
has some content processing capability, so that it can give spe-
cific answers to user queries regarding weather acts, tempera-
ture, wind speed, pressure, humidity, sunrise/sunset times, etc.

A tremendous amount of spontaneous telephone speech has
been collected since the system was made publicly available
via a toll-free number. There have been over 180,000 utter-
ances from over 30,000 phone calls recorded over a two year pe-
riod [17], and the data are still coming in. We use about 80,000
orthographically transcribed utterances in our experiments. Ta-
ble 1 summarizes the number of within-vocabulary utterances
in the training, development, and test sets.

2.2. BaselineJUPITERRecognizer

The baseline recognizer was adapted from an existingJUPITER

recognizer, configured from theSUMMIT recognition system [5].
Lexical stress markings were added to the 2005-word lexicon to
facilitate lexical stress modeling experiments. The initial stress
labels were obtained from the LDCPRONLEX dictionary, in
which each word has a vowel with primary stress and possibly
a vowel with secondary stress. However, the vowels of mono-
syllabic function words are likely to be unstressed or even re-
duced in continuous speech, such as in “a”, “ it”, “ is”, etc. The
JUPITERrecognizer uses a few specific reduced vowel models
as alternative pronunciations to account for them. Initially, the
full vowels in mono-syllable function words were marked with
primary stress, as inPRONLEX. However, too many vowels
(more than 60%) in the forced transcriptions derived with this
lexicon were labeled with primary stress. We thus labeled the
full vowels in mono-syllabic function words as unstressed, with
exceptions for a few wh-words such as “what”, “when”, “how”,
etc., because they are likely to be stressed in theJUPITERut-
terances. We realize that this is only a coarse approximation,
because function words can be stressed in continuous speech,
while stressed syllables in content words are not necessarily
always stressed in spoken utterances. The following example
illustrates the stress labeling of aJUPITER utterance (stressed
syllables are indicated by capital letters):

WHAT is the WEAther in BOSton ?

It is unclear if secondary stress should be grouped with primary
stress or be treated as no stress in terms of acoustic similar-
ity. We decided to defer the decision until after data analysis,
so primary and secondary stress were marked distinctively in
the lexicon. The reduced vowels were also distinguished from
unstressed full vowels in our data analysis for more detailed
comparison.

Set Sub. Del. Ins. WER SER
Development 4.3 1.6 1.7 7.6 20.2
Test 5.8 2.9 2.2 10.9 24.8

Table 2: Speech recognition error rates (in percentage) on the
development data and test data. “WER” is the word error rate,
which is the sum of the substitution, insertion, and deletion error
rates. “SER” is the sentence error rate.

The baseline system uses only boundary class models, be-
cause it was found that adding segment models did not im-
prove recognition performance unless context-dependent seg-
ment models were used, in which case the speed of the recog-
nizer was significantly slower [13]. This is possibly because
both models use features that are based on Mel-frequency Cep-
stral coefficients (MFCCs); thus the context-independent seg-
ment models are somewhat redundant when boundary models
are used. Our approach is to focus on the prosodic aspects in the
segment models. We hope that prosodic features can provide in-
dependent information to complement the boundary models to
achieve improved recognition performance. Therefore, we did
not try to retrain boundary models; the diphone labels in each
boundary model class were simply expanded to cover variations
in lexical stress. A bigram language model was used by the for-
ward Viterbi search, and trigram probabilities are applied dur-
ing the backwardA∗ search. The modified recognizer achieved
the same performance as the original recognizer, which is the
state-of-the-art real-time performance inJUPITER. The detailed
results on the development and test data are summarized in Ta-
ble 2. Various weights in the recognizer have been optimized to
achieve the lowest overall error rates on the development data.

3. Lexical Stress Classification
The primary acoustic correlates of stress for English include all
three prosodic attributes: energy, duration, and pitch. Stressed
syllables are usually indicated by high sonorant energy, long
syllable or vowel duration, and high and risingF0 [10]. Some
previous studies have also used spectral features such as sub-
band spectral energy and MFCCs [9, 12, 14]. In this section,
we study the distributions of various prosodic measurements
for each lexical stress category, and determine the “best” fea-
tures for stress using classification experiments. Some spectral
features will also be included in the classification experiments.

Forced recognition is used to generate phonetic transcrip-
tions (with stress marks on nucleus vowels) for the training
and development data. These automatically derived stress la-
bels will serve as the reference for both training and testing the
stress models. In practice, the forced alignment process is it-
erated, once the stress models are trained and incorporated into
the recognizer, to improve the quality of the transcriptions. The
stress models can also be better trained using more “distinctive”
tokens of each lexical stress category, as described in [14]. The
results shown in this section are based on iterated forced tran-
scriptions. We observed that the phone boundaries and alterna-
tive pronunciations appeared to be more accurately determined
in the forced alignments after one iteration with stress models.

3.1. Prosodic Features

The energy signal used in our analysis is the root mean square
(RMS) energy, which is computed by taking the square root of
the total energy in the amplitude spectrum from the short time
Fourier analysis of the speech. To reduce variance due to “vol-
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Figure 1: Distributions of energy integral (left) and normal-
ized duration (right) features for different stress classes in the
JUPITERdata.

ume” differences, the raw RMS energy contour is scaled so that
the average energy of each utterance in non-silence regions is
roughly equal. Three energy measurements are extracted from
each syllable nucleus vowel: the average, maximum, and inte-
gral of the RMS energy over the vowel duration.

TheF0 contour of each utterance is obtained using a robust
pitch tracking algorithm described in [16]. EachF0 contour
is normalized by a sentence-level average to reduce variances
due to speaker pitch differences. FourF0 related measurements
are included in our analysis, including the maximum, average,
and slope of theF0 contour of the nucleus vowel, and the av-
erage probability of voicing, which is available via the voicing
estimation module of our pitch detection algorithm [16]. We
expect the average voicing probability to be higher for stressed
vowels than for unstressed and reduced vowels.

The duration is also measured for the syllable nucleus vowel.
We tried to normalize the raw duration measure with a sentence-
level speaking rate to reduce the variance due to different speak-
ing rates. This is for data analysis only, because speaking rate
information is usually not available during first-pass recogni-
tion. The speaking rate is estimated from the forced transcrip-
tion of an utterance as follows:

Speaking Rate =
∑

µDur(Vi)∑
Dur(Vi)

(1)

whereDur(Vi) is the measured duration of theith vowel (Vi)
in the sentence, andµ(Vi) is the expected duration ofVi, com-
puted from the entire corpus.

We found that the statistics of most prosodic features differ
for different lexical stress classes; however, the extent of over-
lap among classes is also severe. Figure 1 shows the histogram
distributions of two prosodic features as examples. Generally
speaking, the energy features have the best separation andF0

features have the poorest separation in our data. Vowels with
secondary stress seem to be closer to unstressed full vowels,
especially by energy cues.

3.2. Classification Experiments

In addition to prosodic features, we also included the spectral
tilt and MFCC features in our classification experiments, fol-
lowing the examples in [9, 12]. Thespectral tiltis characterized
by the average logarithmic spectral energy in four frequency
bands (in Hz): [0 500], [500, 1K], [1K, 2K], and [2K, 4K]. The
MFCC features include 6 MFCCs averaged over the vowel.

For each stress feature vector, a principle component analy-
sis is first applied, and mixtures of multi-variant diagonal Gaus-
sians are used to model the distributions. Because there seem
to be some differences among all classes, and there are plenty
of training data for each class, we trained models for all four
lexical stress categories described in the previous section. We

Feature Accuracy Accuracy
(4-class) (2-class)

(1) energy integral 47.4 71.0
(2) maximum energy 47.6 69.9
(3) average energy 45.7 70.3

(4) normalized duration 37.2 62.4
(5) raw duration 36.6 62.9
(6) log duration 41.8 61.1

(7) maximum pitch 32.8 56.2
(8) average pitch 33.1 52.9
(9) pitch slope 35.4 64.0
(10) avg. prob. voicing 43.9 62.2

Table 3: Classification accuracy (in percentage) of each individ-
ual prosodic feature on the development data.

Feature Combination Accuracy Accuracy
(4-class) (2-class)

(1)+(5)+(9)+(10) 48.5 73.0
(1-3)+(5-10) 49.4 72.6

(11) sub-band energy (4 features) 44.0 68.3
(12) MFCCs (6 features) 51.4 73.9

(1)+(5)+(9)+(10)+(11) 52.4 74.6
(1)+(5)+(9)+(10)+(12) 55.9 77.0
(1)+(5)+(9)+(10)+(11)+(12) 55.9 76.9

Table 4: Classification accuracy (in percentage) of various com-
binations of features on the development data. The combina-
tions of features are described by feature indices as defined in
Table 3 and this table.

obtained both 4-class and 2-class classification accuracies for
comparison. The 2-class results are obtained by mapping the
reduced, unstressed, and secondary stress classes into one “un-
stressed” class. Maximum likelihood (ML) classification is
used, because we are interested to know how well the features
can perform without the help ofpriors.

Table 3 summarizes the classification accuracy using each
individual prosodic feature. As expected from the data analy-
sis, the energy features performed the best, while the maximum
and average pitch yielded the poorest results. We notice that the
normalized duration did not outperform the unnormalized du-
rations at stress classification, possibly due to intrinsic duration
interferences. We will discuss this in detail in the next section.

Based on the results of individual features, we tried clas-
sification experiments using various combinations of features,
including both the prosodic and the spectral measurements,
as summarized in Table 4. The best set ofprosodic features
for stress classification consists of the integral of energy, raw
duration, pitch slope, and the average probability of voicing.
Adding spectral features improved stress classification perfor-
mance, possibly because they capture the correlations between
lexical stress and broad phone class. The highest accuracy was
achieved by combining MFCC features with the best prosodic
feature set.

4. Speech Recognition Experiments
We incorporated the four-class stress model into the first-pass
Viterbi search to improve recognition performance. Only sylla-
ble nucleus vowels are scored by the lexical stress models: for
segments that do not carry lexical stress, such as consonants and



System Sub. Del. Ins. WER SER
Baseline 4.3 1.6 1.7 7.6 20.2
+ Stress 4.1 1.6 1.5 7.2 19.6

Table 5: Speech recognition error rates (in percentage) on the
development data. “WER” is the word error rate, which is
the sum of the substitution, insertion, and deletion error rates.
“SER” is the sentence error rate.

System Sub. Del. Ins. WER Significance
Baseline 5.8 2.9 2.2 10.9
+ Stress 5.6 2.7 2.0 10.3 < 0.001

Table 6: Speech recognition error rates (in percentage) on the
test data. The significance level between the baseline perfor-
mance and the improved performance is also listed.

silences, the stress scores are simply ignored. A weight is used
with each applied stress score to avoid bias toward hypothesiz-
ing fewer stressed segments. We found that this simple model
improved the baseline performance on the development data. In
addition, the gain using only prosodic features in the model is
greater than when MFCC features are also used, even though
the stress classification results implied otherwise. This is likely
due to redundancy with the boundary models, in which MFCC
features are already used. The optimized baseline word error
rate was reduced from 7.6% to 7.2%, a 5.3% relative reduction.
The details are summarized in Table 5.

We tried to refine the models by taking into account the in-
trinsic prosodic differences among vowels for further improve-
ments. This is motivated by the observation that prosodic differ-
ences among phones are significant compared to stress-related
differences. For example, the duration of the vowel “/ih/” (as
in city) is inherently shorter than that of “/ey/” (as in Monday),
regardless of the stress properties. By grouping all vowels into
a few stress categories, the intrinsic values contribute to large
variances in the models, causing extensive overlap among the
distributions. There are two approaches to improving the mod-
els: 1) normalizing the prosodic measurements by vowel intrin-
sic values, and 2) building separate models for different vowels.
We experimented with the second approach, because there are
plenty of training data in our corpus. One extreme is to build
prosodic models for the complete inventory of vowels with dif-
ferent stress properties. However, the recognition performance
with the new set of models (of much larger size) was virtually
unchanged. We also tried less refined categories, by grouping
vowels with similar intrinsic durations into classes. However,
the changes to recognition results were also negligible.

Puzzled by these results, we performed an experiment in
which all vowels were mapped into one class to form a sin-
gle model. The recognition performance was virtually the same
as using the four-class models. This seems to suggest that the
gain by using prosodic models in our system is achieved mainly
by eliminating implausible hypotheses, rather than by distin-
guishing the fine differences among various stress and segmen-
tal classes.

We applied the prosodic models on the test data and ob-
tained similar improvements. The detailed recognition results
are summarized in Table 6. The significance level of thematched
pairs segment word error test[4] is less than 0.001. This im-
plies that the improvements by using prosodic models, although
small, are statistically significant.

5. Summary and Future Work
In this paper, we achieved small but statistically significant im-
provements over a state-of-the-art performance on theJUPITER

domain by using simple prosodic models. In this particular task,
it seems that the gain was achieved mainly by eliminating im-
plausible hypotheses, rather than by distinguishing the fine dif-
ferences among various stress and segmental classes; thus, there
is no additional gain by more refined modeling. It is not clear if
additional gain can be achieved by a post-processing approach,
in which context-dependency and more careful normalization
can be explored. We also plan to exploit prosodic features from
a different angle, i.e., as indications of recognizer confidence.
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