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Abstract
This paper describes recent advances we have made towards
the goal of empowering end users to automatically expand the
knowledge base of a dialogue system through spoken interac-
tion, in order to personalize it to their individual needs. We de-
scribe techniques used to incrementally reconfigure a preloaded
trained natural language grammar, as well as the lexicon and
language models for the speech recognition system. We also re-
port on advances in the technology to integrate a spoken pronun-
ciation with a spoken spelling, in order to improve spelling ac-
curacy. While the original algorithm was designed for a “speak
and spell” input mode, we have shown here that the same meth-
ods can be applied to separately uttered spoken and spelled
forms of the word. By concatenating the two waveforms, we
can take advantage of the mutual constraints realized in an inte-
grated composite FST. Using an OGI corpus of separately spo-
ken and spelled names, we have demonstrated letter error rates
of under 6% for in-vocabulary words and under 11% for words
not contained in the training lexicon, a 44% reduction in error
rate over that achieved without use of the spoken form. We an-
ticipate applying this technique to unknown words embedded in
a larger context, followed by solicited spellings.

1. Introduction
Spoken dialogue systems are emerging as an effective means
for humans to access information spaces through natural spo-
ken interaction with computers. A significant enhancement to
the usability of such systems would be the automatic acquisition
of new knowledge through spoken interaction with its end users.
Such knowledge would include both the spelling and pronunci-
ation of a new word, as well as an understanding of its usage
in the language (e.g., a semantic category). There has been sig-
nificant research recently on the topic of automatically learning
the meaning of words represented symbolically [4–6], assum-
ing the pronunciation and spelling of the words are provided.
Our goals are somewhat different: we assume that the mean-
ing of the new word can be inferred by its surrounding dialogue
context; subsequently, the system solicits the spelling through
dialogue interaction, and immediately integrates the spoken and
spelled forms into all relevant components.
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porting the MIT Oxygen Alliance and by DARPA under contract num-
ber NBCH1020002 monitored through the Dept. of the Interior, Na-
tional Business Center, Acquisition Services Div., Fort Huachuca, AZ.
The research at CNRI is supported by DARPA under contract number
N66001-00-2-8922, monitored through SPAWAR Systems Center, San
Diego.

In [2], we described a technology solution to the problem
of integrating the information provided by a “speak and spell”
utterance, as in “Jane J A N E,” and its subsequent incorpora-
tion into a spoken dialogue system to support automatic enroll-
ment of a person’s first and last names in the ORION task delega-
tion system [9]. This paper addresses our further goals towards
a speak-and-spell solution in situations where the spoken and
spelled utterances are disjoint. We envision that an unknown
word would be uttered in the context of a carrier utterance, such
as “What is the phone number of the Thaiku restaurant?” A sub-
sequent spelling of “Thaiku” in a follow-up subdialogue would
be processed jointly with the extracted pronounced word. Once
the name is known, the phone number could be looked up via a
Web search based on the name and presented to the user.

The remainder of this paper begins by describing ad-
vances in the NL server, which enable grammar updates, along
with subsequent regeneration of the speech recognizer’s search
space. We then present refinements in the sound-to-letter tech-
nology, and experiments that assess the feasibility of artificially
composing a “speak and spell” utterance to account for cases
where the two resources are uttered separately. We conclude
with a summary and a discussion of future work.

2. Augmenting the System with New Words
In a previous paper [2], we reported a novel algorithm to deduce
the spelling and pronunciation of a “spoken and spelled” un-
known word using sound-to-letter technology. This algorithm
was applied to process new user names during the enrollment
phase of the ORION dialogue system. This section describes the
process that ensues once the system has determined and verified
the spelling of the new words. We focus on enhancements to the
NL server, as well as interactions among the NL and recognizer
servers, which are mediated via a control program executed by a
central hub, within the Galaxy Communicator architecture [11].
Other aspects of the hub program involved in the execution of
the speak-and-spell recognition phase are detailed in [2].

The NL components of our dialogue systems employ the
TINA framework [8], which utilizes a set of context-free rules
to define allowable utterance patterns within each domain-
dependent grammar, along with a feature unification mech-
anism to enforce agreement constraints and handle move-
ment phenomena. A superimposed spacio-temporal probabil-
ity model applied to the parse tree structure provides significant
additional constraint for selecting the best candidate hypothesis
from a word graph proposed by the recognizer. The probabili-
ties are acquired by parsing a large training corpus and tabulat-
ing frequency counts on observed patterns.



Until now, the NL server typically preloads a trained gram-
mar for each domain. The grammar probabilities are computed
a priori during the training phase by observing up to several
hundred thousand utterances. Hence, the trained models, by na-
ture, are static throughout the lifetime of the running system.
Previously, incrementing the grammar by a single word would
necessitate the retraining of the entire grammar, followed by
reloading. This would require several minutes to execute, mak-
ing real-time operation infeasible. Current advances enable the
adding of new words to the grammar in real-time, via several
changes in the TINA framework. The resultant updates to the
trained grammar is designed to be as close as possible to the
trained grammar that would be created by completely retrain-
ing from a human-modified rules file.

Another important part of this new-word addition proce-
dure lies in the adoption a new capability that automatically re-
generates a class n-gram language model from the NL gram-
mar [12]. The language model is ultimately converted to a
finite-state transducer (FST) to be reloaded into the recognizer.
Here too, the process involves parsing the corpus in order to
tag selected words for their corresponding class assignments, a
procedure that would require too much time to be practical in
incremental updates. Hence we needed to not only incremen-
tally update the context-free rules and the trained NL grammar,
but also incrementally update the tagged corpus for the n-gram,
along with its word-class assignments.

We will use the ORION user enrollment example to illus-
trate how the process works. Once the user has confirmed the
spellings of both their first and last names, the hub sends to the
NL server a frame detailing the spellings and pronunciations
of both the first and last names, as determined by the letter-
to-sound system, along with an identification of the assigned
class (which is user name in this case). The NL server then
launches a procedure which completes the following steps:

1. compute an estimated count, N , of the likely number
of occurrences of the new user name in the corpus, by
averaging counts among all observed user names in the
training corpus,

2. artificially augment the training corpus with N instances
of the new user name, both in the raw untagged corpus
and in the class-tagged corpus. This is important for fu-
ture updates initiated by a system developer,

3. augment the NL vocabulary with any new words con-
tained in the user’s name and the grammar by adding
the new user’s name to the children of the category
user name; updating the observation counts for this
new entry to be N ,

4. recompute the probability model for the user name cat-
egory from the artificially modified counts,

5. write the updated trained grammar to file, for subsequent
system restarts; update control files for the recognizer’s
class n-gram,

6. launch an update of the recognizer’s vocabulary and
baseforms1, as specified by the letter-to-sound system,
rebuild the recognizer’s class n-gram language model
from the updated tagged corpus [12], and recreate the
recognizer’s fully composed FST, and

7. instruct the recognizer to reload its FST for this domain.

1If a prior pronunciation exists for a new word in the general lexicon,
it is combined with the proposed pronunciation in a single baseform
lexical entry.
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Figure 1: Illustration of a length constraint FST Li for i = 2.
Li is applied to enforce an equal number of letters proposed in
the speak and spell parts of the waveform.

While the current implementation completely rebuilds the
recognizer FST with subsequent reload, a parallel effort [7] will
in future bypass this step entirely, leading to an extremely ef-
ficient update of both the NL server and the recognizer server,
such that the user would be able to speak a newly added word
in the very next turn.

3. Sound-to-Letter Technology
In [2], we adopted an approach that uses a sequence of two
recognition passes on the speak-and-spell waveform. The first
stage is a simple letter recognizer augmented with an unknown
word model to account for the preceding spoken word. It out-
puts an FST representing a graph of hypothesized letter se-
quences. In an intermediate stage, this graph is composed with
an FST mapping pronunciations to letters, obtained through a
sublexical framework ANGIE [10], trained on a large corpus of
first and last names, as described in [1, 2]. A syllable-based n-
gram language model provides additional constraint. An FST
accounting for both the spoken and spelled portions is created
by concatenating the sound-to-letter FST with the hypothesized
letter graph. The resulting FST defines the search space for
a final sound-to-letter recognition pass. The following section
presents modifications to this initial approach for deriving im-
proved results.

3.1. Imposing Further Constraints

In [2], hypotheses are obtained by simply selecting the highest
scoring output of the pronounced portion of the final recognizer.
Clearly, given the “speak and spell” mode, further constraint can
be imposed on the system. As formulated in [2], the spoken and
spelled portions are constrained by the same letter graph derived
from the first pass. The fact that both solutions must represent
the same spelling is ignored. But this constraint could easily be
applied to an N -best list in a post-processing stage. However,
we consider alternative ways in which this knowledge can be
applied earlier, prior to the second sound-to-letter recognition.

We have investigated two strategies that are based on mod-
ifications to the FST input to the second-stage recognizer, us-
ing simple FST composition techniques. In the first method, a
length constraint is imposed, such that the spoken and spelled
hypotheses are required to contain the same number of letters.
The second method enforces a much stronger constraint that the
two hypotheses must be identical. Results are compared with a
system which enforces consistency only after further analysis
of a variable length N -best list.

3.1.1. Word Length Equality Restriction

Let F represent the output FST of the intermediate stage. As de-
scribed in [2], F defines the compact search space from the first-
stage letter recognition, and the application of various language
constraints, including a statistical sound-to-letter model [10].
Mapping phones directly to letters, F is a concatenation of two



FSTs representing the spoken and spelled part of the utterance:

F = F1 · F2 (1)

where F1 incorporates sound-to-letter mappings for the spoken
part and F2 supports the spelling recognition.

The algorithm relies on F which mandates the output of a
marker (<>) from the end of the spoken word to the beginning
of the spelled part for all paths. Therefore, we can construct an
FST Li that licenses only paths for words of length i, in speak
and spell mode. An example of Li for i = 2 is illustrated in
Figure 1. Then, FST Hi is created by the composition:

Hi = F ◦ Li (2)

Essentially, Hi captures the portion of F ’s search space where
the spoken and spelled hypotheses are all words of length i.
The composition is performed for all i up to a maximum set
arbitrarily to 20. Subsequently, the final FST is K is the union
of all Hi’s.

K =

�
i=1:max

Hi (3)

K has extracted, from the original search space F , only those
paths where the number of letters in the speak and spell part
agree, up to a maximum length.

3.1.2. Word Equality Restriction

The above method can be augmented to restrict the letter can-
didates in the two parts to be identical. This is performed as an
additional step in which FST compositions ensure that within
the search space, if lj is a candidate for the jth letter in the spo-
ken part, then the jth letter in the spelling part must also be lj .
As in the length constraint method, the equality constraint re-
lies on a composition with an FST Mi,lj . Mi,lj is similar to Li

(illustrated in Figure 1), except that the jth letter is restricted to
be lj . The algorithm is outlined below.

for i = 1..max

Compute Hi = F ◦ Li

Set T = Hi

for j = 1..i

Find Lj the set of all letters at position j in T

foreach lj ∈ Lj

Compute Tlj = T ◦ Mi,lj

end
Compute new T = �

∀lj∈Lj
Tlj

end
Set Hi = T

end
Compute K = �

i
Hi

3.2. Processing Separate Spoken and Spelled Utterances

The overall algorithm above extends naturally to any appli-
cation where a new word has been spoken and subsequently
spelled. In particular, we have implemented the case where the
spoken word is in an isolated utterance separate from the spelled
part. In a way, this poses an easier problem, obviating the need
for an unknown word model in the letter recognition stage, and
reducing the chances for alignment errors for the beginning of
the spelling part. As in the original formulation, the interme-
diate stage utilizes an FST of letter hypotheses to constrain the
search space for sound-to-letter recognition. In contrast with
Equation 1, only F1 is required.

Test Set A Test Set B
IV Words OOV Words

System LER WER LER WER

I 8.3 25.7 14.3 48.9
II (N = 10) 7.4 24.0 11.7 41.1
II (N = 50) 6.8 23.3 11.7 41.1
III (N = 1) 6.9 21.9 12.0 43.8

III (N = 10) 6.8 23.3 11.7 41.1
IV (N = 1) 7.0 23.6 11.6 41.1

Table 1: Letter Error Rates (LER) and Word Error Rates (WER)
in percentage for two tests sets representing in-vocabulary IV
(Test Set A) and OOV (Test Set B) results.

With the above modified approach, imposing mutual re-
strictions on the spoken and spelled parts, a logical next step is
to impose similar constraints for the separate spoken and spelled
waveforms. A simple implementation is to concatenate the two
waveforms together, and perform the sound-to-letter recogni-
tion stage on the concatenated waveform. Meanwhile, the in-
put FST to this stage can be computed as described above, first
concatenating two subcomponents as in Equation 1, and then
imposing restrictions described in the previous sections.

4. Experiments
Evaluations have been conducted on several unseen test sets. A
first set of experiments involves data containing an open set of
spoken and spelled names of telephone-quality speech, the same
as those used in [2]. The second set of experiments use data
from the OGI Spelled and Spoken Word corpus [3], where the
spoken and spelled names are recorded in separate utterances.

4.1. Speak and Spell Mode

As in [2], results are reported for a Test Set A, containing 416
words that have been previously observed in ANGIE’s training
vocabulary of 100,000 names, and a Test Set B, containing 219
words, that are considered out-of-vocabulary (OOV). System I
is the baseline system which does not enforce any constraints
between hypotheses from the spoken and spelled parts of the
waveform. System II examines the N -best output in a post-
processing stage, to seek agreement, if possible, in the spo-
ken and spelled portions. We report results for N = 10 and
N = 50. System III adopts the algorithm which enforces the
same number of letters for the spoken and spelled parts as in
Section 3.1.1. We report the results for the top-scoring hypoth-
esis as well as using the additional post-processing stage on a
10-best list. Finally, System IV enforces agreement between
the spoken and spelled portions in the intermediate stage as in
Section 3.1.2. The composite results are tabulated in Table 1.

4.2. Separate Spoken and Spelled Utterances

In the next experiment, results are obtained for data that com-
bines information on the spoken and spelled word, which are
recorded in separate utterances. Our test set contains 2,388 sur-
names, where, for each name, the spoken and spelled versions
are represented in separate isolated utterances. Of these, 1,967
names occurred in the ANGIE training data and 421 names are
OOV. System V represents results obtained from the top-scoring
output of the first-stage letter recognizer. System VI corre-
sponds to the algorithm where the letter graph derived from the
spelled utterance is used to define the search space to recognize



IV OOV
System LER WER LER WER

V 10.7 38.1 16.7 60.3
VI 6.0 23.3 11.9 46.3

VIIa (N = 1) 5.5 20.5 11.7 44.4
VIIb (N = 1) 5.7 21.4 10.8 41.6

Table 2: Letter Error Rates (LER) and Word Error Rates (WER)
in percentage for IV and OOV in 2,388 names with spoken and
spelled data taken from separate utterances from OGI test set.

the spoken waveform. In System VII, the spelled and spoken
waveforms are concatenated together, simulating a speak-and-
spell mode, so that the algorithm described in [2] is employed
and furthermore, we investigate alternatives that only license
paths where (VIIa) the number of letters in the spelled and spo-
ken part are equal, or (VIIb) exactly the same letters are pro-
posed in the spelled and spoken parts. Results are shown in
Table 2.

4.3. Discussion

For the speak-and-spell data, the post-processing approach us-
ing N = 10 alone has been able to achieve the optimal result
for the OOV Test Set B, although for Test Set A, examining
a deeper N -best list is better. This performance is matched
by the system that enforces the same number of letters in the
two portions of the waveform, and using a shallower N -best
list of 10. That is, the word length restriction promotes better
hypotheses towards the top of the list. Imposing the stronger
constraint in System IV also yields significant improvements
from the baseline System I, although performance does not ex-
ceed that of System III for Test Set A. The current ORION sys-
tem has adopted the strategy used in System III, where the post-
processing stage seeks equality between the spoken and spelled
parts for an N -best list of 10.

The results on the OGI data allow us to measure perfor-
mance gains obtained by integrating the sound-to-letter con-
straints into the letter recognition task. First, the improvements
between System V and the remaining systems are a direct con-
sequence of integrating the spoken name and the sound-to-letter
model. Both methods in System VII that utilize the mutual con-
straints of the pronunciation and the spelling yielded further im-
provements compared with System VI. However, no further im-
provements from the post-processing stage (omitted from the ta-
ble) are obtained. These overall results demonstrate that (1) us-
ing the spoken name can enhance the letter recognition task, and
furthermore (2) in treating the task as a speak-and-spell mode,
simultaneous constraints are successfully afforded on the two
spoken and spelled waveforms, integrated into a single search.

5. Summary and Future Work
This paper has described our recent efforts towards the goal of
empowering end users to augment the capabilities of spoken
dialogue systems through natural spoken interaction. We have
finally reached a milestone with the demonstrated ability to en-
roll a user’s first and last names through interactive dialogue, by
soliciting and processing a “speak-and-spell” spoken input.

In future work, a first step will be to incorporate the research
described in [7] to enable incremental update of the recognizer’s
preloaded FST, which should reduce the time required to update
the recognizer from a minute to a fraction of a second. This
is critical for scenarios where the user may want to speak the

new word in the very next utterance, and will enable the larger
goal of updating the vocabulary from a list of named entities
retrieved from the Web.

In the future, we envision that a dialogue system could re-
configure itself on the fly to support a set of proper nouns that
are retrieved from a Web site in order to specialize its memory
for a particular city. Thus, a user might send e-mail to ORION

instructing it to call them “to discuss restaurants in Seattle.”
ORION would then immediately download a set of restaurant
names from a Seattle-based Web site, and augment its restau-
rant class to support these names. The sound-to-letter com-
ponent, working with error-free spellings2 but without spoken
utterances as examples, would generate multiple hypothesized
pronunciations for the names, and populate the recognizer and
NL components with the results.

In line with the above discussion, future experiments will
involve general classes of unknown words such as names of ge-
ographical locations or businesses. A promising alternative to
the “speak-and-spell” model is a model where the spoken form
of the word is excised from the context of a prior utterance, and
a spelling is separately solicited in a follow-up subdialogue. We
have shown here that the speak-and-spell model can work well
by concatenating the two waveform segments spoken in isola-
tion; it remains to be seen how well the technology will perform
on an automatically detected embedded unknown word.
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