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ABSTRACT

In this paper, we introduce a pitch detection algorithm that
is particularly robust for telephone speech and prosodic
modeling. The algorithm uses a logarithmically sampled
spectral representation of speech, similar to that in the sub-
harmonic summation approach [2]. Constraints for log F0

and ∆ log F0 are combined in a dynamic programming search
to find an optimum pitch track. The search algorithm is
able to find a continuous pitch contour regardless of the
voicing status, while a separate voicing decision module
computes a probability of voicing per frame. We evaluated
the algorithm using the Keele pitch extraction reference
database [4] under both studio and telephone conditions.
Our algorithm is very robust to channel degradation, and
compares favorably to xwaves under telephone conditions.
It also significantly outperforms xwaves when used for tone
classification on a telephone quality Mandarin digit corpus.

1. INTRODUCTION

Reliable pitch detection is very crucial to the analysis and
modeling of speech prosody. The fundamental frequency
(F0) is found to be highly correlated with prosodic fea-
tures such as lexical stress, tone, and sentence intonation,
which provide important perceptual cues to human speech
communication. However, most current automatic speech
recognition and understanding (ASRU) systems under-utilize
prosodic features, especially those related to F0. Besides the
fact that speech prosody is a highly complex phenomenon,
this is also partially due to the lack of a robust parameter
space for statistical modeling. More specifically, errors in
F0 contours, both in terms of pitch accuracy and voicing
decision, can affect feature measurements dramatically.

Various pitch detection algorithms (PDAs) have been
developed in the past [3]. While some have very high accu-
racy for voiced pitch hypotheses, the error rate considering
voicing decision is still quite high; and the performance de-
grades significantly as the signal condition deteriorates. We
are interested in developing a PDA that is particularly ro-
bust for telephone quality speech and prosodic modeling in
ASRU applications. Pitch extraction for telephone speech
is an especially difficult problem, due to the fact that the
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fundamental is often weak or missing, and the signal to
noise ratio is usually low. To deal with discontinuity of the
F0 space for prosodic modeling, we believe that it is more
advantageous to emit an F0 value for each frame, even in
unvoiced regions, and to provide separately a parameter
that reflects probability of voicing. This is based on the
considerations that, first, voicing decision errors will not be
manifested as absent pitch values; second, features such as
those describing the shape of the pitch contour are more
robust to segmental misalignments; and third, a voicing
probability is more appropriate than a “hard” decision of 0
and 1, when used in statistical models.

Our PDA is based on the frequency-domain analysis of
the speech signal, namely, the discrete logarithmic Fourier
transform (DLFT) as introduced in [7]. To address the
problem of “missing fundamental” for telephone speech, we
try to rely on the overall harmonic structure to make a
decision. Our approach is similar to the subharmonic sum-
mation algorithm [2] in that the spectrum is also logarith-
mically spaced. However, both the signal processing and
the tracking algorithms are quite different.

When the DLFT based PDA was first introduced in [7],
it required an external source of voicing decision for pitch
tracking. Since then, we have implemented a dynamic pro-
gramming (DP) search module for continuous pitch track-
ing, and have added a voicing probability estimation mod-
ule. In this paper, we give a detailed description of the new
developments, and provide some formal evaluation results.

2. PITCH TRACKING

On a logarithmic frequency scale, harmonic peaks appear
at log F0, log F0 + log 2, log F0 + log 3, ..., etc. To find
the F0 value, one can sum the spectral energy spaced by
log 2, log 3, ..., etc., from the pitch candidate and choose the
maximum, as in [2]. This is equivalent to correlating the
spectrum with an n-pulse template, where n is the number
of included harmonics. As described in [7], we adopt a sim-
ilar method to find log F0 for each frame, using a carefully
constructed template in place of the pulse sequence. More
importantly, we also utilize a reliable estimate of ∆ log F0

across two adjacent voiced frames of the speech by simple
correlation. We now combine the two constraints in a DP
search to find an overall optimum solution. In the follow-
ing, we give a detailed description of the algorithm and
some enhancements.
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2.1. Two Correlation Functions

The constraints for log F0 and ∆ log F0 estimations are cap-
tured by two correlation functions.

The “template-frame” correlation function provides con-
straints for log F0 estimation by aligning the speech DLFT
spectrum with a template, as shown in Equation 1. T (n),
the template, is the weighted DLFT spectrum of a Hamming-
windowed impulse train of 200Hz, and Xt(n) is the µlaw
converted DLFT spectrum at the tth frame. The template
is normalized to have unit energy, and the correlation is
normalized by the signal energy. The bounds for the corre-
lation, [NL, NH ], are determined by the F0 range.

RTXt(n) =

∑
i
T (i)Xt(i − n)√∑

i
Xt(i)2

(NL < n < NH) (1)

The position of the correlation maximum should cor-
respond to the difference of log F0 between the signal and
the template. However, as in all PDAs, frame based peak
picking can not totally avoid the problem of pitch dou-
bling and halving. The correlation function has a relatively
high peak when the harmonic lobes of the template align
with 2F0, 4F0, 6F0, ..., etc., of the signal spectrum, especially
when the fundamental is missing. To reduce the tendency
for pitch doubling, we added negative lobes between the
positive lobes in the template, so that such an alignment
will be penalized by the negative contributions from the
3F0, 5F0, ... peaks. The weighting of negative lobes was op-
timized empirically to be 0.35.

The “cross-frame” correlation function provides con-
straints for ∆ log F0 by aligning two adjacent frames of the
signal DLFT spectra, as shown in Equation 2. The correla-
tion is normalized by the energy of both signal frames. Be-
cause F0 should not change dramatically across two frames,
the correlation bound N is set to be about 10% of the num-
ber of samples in the DLFT spectrum. The maximum of the
correlation gives a robust estimation of the log F0 difference
across two voiced frames.

RXtXt−1(n) =

∑
i
Xt(i)Xt−1(i − n)√∑

i
Xt(i)2

√∑
i
Xt−1(i)2

(|n| < N) (2)

Figure 1 shows examples of the “template-frame” and
“cross-frame” correlation functions in the voiced and un-
voiced regions of a speech signal. For unvoiced regions, it is
observed that the “template-frame” correlation is more or
less random, and the “cross-frame” correlation stays fairly
flat both within an unvoiced region and upon transition of
voicing status. This has important implications for our DP
based continuous pitch tracking algorithm.

2.2. Dynamic Programming Search

Given the two constraints as described previously, we can
easily formulate the problem of pitch tracking as a DP
search. We define the target function in an iterative man-
ner as in Equation 3, where i is the index in the “template-
frame” correlation function. The pitch value can be con-
verted from the index by inverting the logarithmic quan-
tization. The search is extended by inheriting the best
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Figure 1: Examples of “template-frame” and “cross-frame”
correlations for voiced and unvoiced DLFT spectra.

past score as weighted by the cross-frame correlation plus
the template-frame correlation for the current node. The
pointer to the best past node is saved for back tracking upon
arriving at the last frame. Due to the logarithmic sampling
of the DLFT, the search space for pitch value is naturally
quantized logarithmically, with constant ∆F0/F0.

scoret(i) =

{
maxj{scoret−1(j) · RXtXt−1(i − j)}

+RTXt(i) (t > 0)
RTX0(i) (t = 0)

(3)

The target function ensures a very smooth pitch con-
tour. An expansion of Equation 3 reveals that the internal
score of a particular node on the path is weighted by a se-
ries of cross-frame weights from that node to the current
node before contributing to the cumulative score. We also
tried replacing the multiplication in Equation 3 with addi-
tion. This score function imposes constraints only across
the neighboring frames. We obtained slight performance
improvement in pitch accuracy, because the search is more
flexible to follow abrupt changes in the pitch contour, such
as those caused by glottalization. However, we think such
sensitivity is less robust for prosodic modeling, and thus did
not pursue it further.

The DP search is forced to find a pitch value for ev-
ery frame, even in unvoiced regions. We experimented with
adding a node for unvoiced state in the search and incor-
porating the voicing probability into the target function.
We found that this increased the number of pitch errors
propagated from the voicing decision errors. It is observed
that the cross-frame correlation stays relatively flat when
at least one frame is unvoiced. Thus, upon transition into
unvoiced regions, the best past score will be inherited by all
nodes; and the scores become somewhat random. However,
once in voiced regions, the sequence of nodes corresponding
to the true pitch values will emerge because of high internal
scores enhanced by high cross-frame correlation coefficients.

Figure 2 shows the waveform, DLFT spectrogram, and
phonetic and word transcriptions for a telephone utterance.
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Figure 2: Waveform, DLFT spectrogram and transcriptions for the utterance “What is the weather forecast for Boston
this ...”. Part of the quantized search space for F0 and the chosen path are overlayed with the DLFT spectrogram.

The DLFT spectrum is computed in the [150, 1200] Hz range.
The search space for F0 is from 50Hz to 550Hz, part of
which is overlayed with the DLFT spectrogram. As shown
in the figure, the first harmonic of the spectrum is fairly
weak; nevertheless, the DP search is able to track F0 when-
ever there is clear harmonic structure. The pitch track in
unvoiced regions is arbitrarily chosen by the search and
probably does not have a meaningful interpretation.

3. VOICING PROBABILITY ESTIMATION

To increase robustness for statistical modeling, the voicing
decision module computes a voicing probability for each
frame instead of making a hard decision.

Given an observation ~O, we can obtain the posterior
probabilities by applying Bayesian Rules as shown in Equa-
tion 4, where V stands for voiced, and U for unvoiced.
P (V ), P (U), P ( ~O|V ) and P ( ~O|U) can be obtained a priori
from training data.




PV = P (V | ~O) = P ( ~O|V )P (V )/P ( ~O)
PU = P (U | ~O) = P ( ~O|U)P (U)/P ( ~O)

P ( ~O) = P ( ~O|U)P (U) + P ( ~O|V )P (V )
(4)

The observation vector has two elements. One is the
maximum of the unnormalized template-frame correlation,
which can be interpreted as the “periodic energy” of the
signal. The second element is the minimum of the cross-
frame correlation. It is small for voiced frames and close to
1 for unvoiced frames. We use the minimum of the forward
and the backward cross-frame correlations to improve the
prediction for the first and last frames of voiced regions,
following the example in [1]. Mixtures of diagonal Gaussian
models were used to model the prior distribution.

4. EVALUATION

A PDA is usually evaluated on two aspects: pitch estima-
tion and voicing decision [5]. Accuracy for voiced pitch

estimation can be evaluated in terms of “gross error” rate
(GER), which is the percentage of voiced hypotheses that
deviate from the reference by a certain amount (often 10%
or 20%), and the mean and variance of the absolute value
of the error. The voicing decision can be evaluated by the
sum of voiced to unvoiced and unvoiced to voiced errors.
Since our PDA does not make a hard decision for voicing,
we will focus the evaluation on voiced frames. Our final
goal is to apply our PDA in prosodic modeling. In this
regard, we also evaluated telephone quality Mandarin tone
classification performance using the PDA for pitch tracking.

We compared the performance of the DLFT based PDA
with an optimized PDA provided by xwaves [6] in these
aspects. To ensure similarity, both PDAs are set to have
an F0 range of 50Hz − 550Hz, and a frame rate of 100Hz.
The default is used for all internal parameters of xwaves.

4.1. Voiced Pitch Accuracy

We use the Keele pitch extraction reference database [4]
for this evaluation, because it provides reference pitch ob-
tained from a simultaneously recorded laryngograph trace
as “ground truth”. Pitch values are provided at a 100Hz
frame rate, with zero used for clearly unvoiced frames, and
negative values used for uncertain frames (refer to [4] for a
detailed description). There are five male and five female
speakers, each speaking a short story of about 35 seconds.
The Keele database is studio quality, sampled at 20KHz.
In order to evaluate the PDAs under telephone conditions,
we transmitted the waveforms through a noisy telephone
channel and recorded at a sampling rate of 8KHz. We care-
fully calibrated the transmitted waveforms with the origi-
nal, so that the pitch reference is still valid. Since we do not
have other verified data to optimize the parameters of our
PDA, we set aside two speakers (f1 and m1) as our devel-
opment data, and tested on the remaining eight speakers.
After optimization, the same parameters are used for all
experiments including Mandarin tone classification.

We used only the “clearly voiced” frames in the Keele
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xwaves:V xwaves:UV
Configuration GER(%) Mean(Hz) Std.(Hz) V→UV(%) GER(%) Overall(%)

Studio xwaves 1.74 3.81 15.52 6.63 - 8.37
DLFT 3.24 4.61 15.58 - 1.01 4.25

Telephone xwaves 2.56 6.12 25.10 20.84 - 23.41
DLFT 2.10 4.49 14.35 - 2.24 4.34

Table 1: Summary of performance on “clearly voiced” reference frames. Under each signal condition, the voiced reference data
are divided into two subsets according to whether xwaves determines them to be voiced, i.e., xwaves:V and xwaves:UV.
All percentages are with reference to the total number of “clearly voiced” frames.

database for evaluation. Since xwaves makes both gross
errors and voicing errors, we divide the data into two sub-
sets based on the outcome of xwaves’ V/UV decision, and
summarize the performance for each subset in Table 1. The
table gives both 20% GER and mean and standard devia-
tion on absolute errors. The overall performance counts a
voicing error as equivalent to a 20% GER. While xwaves
performs well on studio speech, the performance degrades
severely for telephone speech, particularly with regard to
voicing decisions. As expected, our PDA is less accurate
for the “xwaves:V” subset under studio quality, because
it ignores spectral information below 150Hz, and favors a
smooth contour. However, it performs substantially better
than xwaves on both subsets for telephone speech. Even if
we adjust the parameters of xwaves to bias for voiced de-
cisions, such that it mislabels frames as unvoiced less than
1% of the time, the 20% GER on the “xwaves:UV” subset
is still three times as high as that obtained by our PDA.

4.2. Tone Classification Accuracy

We compared the tone classification performance using F0

derived by our system and xwaves on a telephone-quality,
Mandarin digit corpus [7]. The F0 contour for each utter-
ance was normalized by its average and adjusted for a sen-
tence level downshift. The same tone features as described
in [7] were used. We conducted two sets of experiments with
and without an additional probability of voicing feature.

As summarized in Table 2, the result using the DLFT
system (d) is significantly better than that using xwaves (a).
We tried two approaches to dealing with the unvoiced frames
when using xwaves: (b) interpolate F0 from the surround-
ing voiced frames, and (c) bias the V/UV decision threshold
to greatly favor “voiced”, followed by interpolation. As seen
in the table, neither method was particularly successful.

5. SUMMARY AND DISCUSSION

In this paper, we have demonstrated that the DLFT based
PDA is robust to signal degradation inherent in telephone
speech. In fact, the overall GER for studio and telephone
speech is nearly the same (4.25% vs. 4.34%). The benefit
of using a logarithmically sampled spectrum is that signals
with different F0 can be aligned by simple linear shifting.
By correlating the DLFT spectrum with a template, we can
obtain a robust estimation of the pitch, even when the fun-
damental is missing. By correlating two adjacent frames of
the DLFT spectra, we can obtain a very reliable estimation
of F0 change instead of an arbitrary smoothing function.

Error Rate Error Rate
Configuration w/o Pv (%) w/ Pv (%)
(a) xwaves 25.4 25.6
(b) xwaves (intp’d) 24.1 23.6
(c) xwaves (biased) 24.9 25.4
(d) DLFT 19.2 18.2

Table 2: Summary of tone classification performance.

We have observed that the DLFT based PDA gener-
ally performs better for female speech than for male speech.
When F0 is low, the template-frame correlation suffers from
missing low harmonics, and the cross-frame correlation suf-
fers from compact spacing of higher order harmonics. This
can potentially be improved by using gender-dependent pa-
rameters, or by adaptive signal processing, such as a vari-
able frequency range for the DLFT.
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