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ABSTRACT

This paperdescribesour researchaimedat acquiringa gener-
alizedprobabilitymodelfor alternative phoneticrealizationsin
conversationalspeech.The approachbegins with the applica-
tion of a set of orderedcontext-dependentphonologicalrules,
appliedto thebaseformsin the recognizer’s lexicon. Theprob-
ability model is acquiredby observingspecificrealizationsex-
pressedin a large training corpus. A set of context-free rules
representswordsin termsof a substructurethatcanthengener-
alize context-dependentprobabilitiesto otherwords that share
the samesub-word context. The model is designedto capture
phoneticpredictionsbasedonlocalphonemic,morphologic,and
syllabiccontexts,thuspermittingtrainingoncorporawhoselexi-
conis divergentfrom thatof theintendedapplication.Thetrain-
ing corpusconsistedof a large set of Jupiterweather-domain
speechdata[9] augmentedwith a muchsmallersetof Mercury
flight-domaindata[20]. The baselinesystemutilized the same
setof phonologicalrulesfor lexical expansion,but with noprob-
ability modellingfor alternatepronunciations.We evaluatedon
atestsetof utterancesexclusively from theflight domain.Using
this approach,we achieveda 12.6%reductionin speechunder-
standingerrorrateon thetestset.

1. INTRODUCTION

In the early yearsof speechrecognitionresearch,it was be-
lieved that an importantcontribution to successwould be the
applicationof formal rulesto accountexplicitly for predictable
phonologicalreductionsin certain contexts in conversational
speech[2, 7, 23, 24]. Someexamplesof suchrulesareshown
in Figure1 – ruleswhich predict,for example,thecontexts for
flappinganalveolarstopor for palatalizinganalveolarfricative.

As thehiddenMarkov model(HMM) framework gainedin pop-
ularity, suchformal rules tendedto play a lessprominentrole.
Instead,the assumptionwasmadethat context effectscouldbe
handledby simply definingcontext-dependentacousticmodels,
thusaccountingfor thevariabilitiesin theGaussianmixturesas-
sociatedwith thesetypically triphonemodels.In part, this shift
waspredicatedon an admissionthat perhapswe do not under-
standtherulessufficiently well to formally characterizethem.

With the recenttrend towardsa shift of attentionfrom readto
spontaneousspeech,suchas the switchboardcorpus[10], the
issueof accountingfor phoneticvariability hasresurfacedasa
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significant researchproblem[17]. For example,a “cheating”
experimentconductedby McAllister et al. [16] showed that the
word error ratefor a switchboardtestcorpuscould be reduced
from 40%to 8% by explicitly accountingfor the phoneticpro-
nunciationsin thelexiconaccordingto theiractualrealizationsin
thetestcorpus.However, many researchershave shown thatan
overabundanceof alternative lexical pronunciationswithout any
attemptto modeltheir relative likelihoodscanleadto adegrada-
tion in performance,dueto theincreasedchanceof erroneously
matchingobscurealternatives. Furthermore,the techniqueof
simplyenumeratingindividual variantsfor eachword in thelex-
icon is tediousandshows little generality.

In the recentresurgenceof interestin phonology, data-driven
approacheshave playeda muchstrongerrole thanin the early
days, when knowledge-basedapproachesdominatedthe liter-
ature. One popular technique(as exemplified by the work of
CremelieandMateus[5]) is to allow for ageneroussetof confu-
sions,includingsubstitutions,deletionsandinsertions,andthen
usea forcedrecognitionmodeto searchtheexpandedspacefor
alternative, betterscoring,deviationsfrom thecanonicallexical
forms. A largesetof “rules” canthenbe gleanedfrom the ob-
servation space,andfrequency countscanbe tabulatedto yield
probability estimatesfor thoserules. Thus, one doesnot rely
on a linguist to definethe formal rules,but ratherlets the data
dictatewhich rules aremost productive. Suchan approachis
attractive in that it is ableto generalizefrom observedwordsto
unobservedwordswith similar surroundingphoneticcontext.

Phonologistshave long beenawarethatsyllablestructureplays
animportantrolein predictingphonologicalreductions[15]. For
example,consonantsin syllableonsetpositionarefar lesslikely
to bereducedthanin codaposition. It is thereforeperhapssur-
prising that thespeechrecognitioncommunityhastypically ig-
noredthe syllable in characterizingword lexical entriesandin
modellingphonologicaleffects.

An excellentdescriptionof theroleof thesyllablein theswitch-
boarddatahasbeenpresentedby Greenberg [11]. He showed,
throughstudieson a large corpusof handtranscribedswitch-
board data, that 28% of consonantsin coda position were
deleted.Furthermore,not only syllablestructure,but alsomor-
phologicalinformation, is importantin characterizingphonetic
expression.For example,thewords“no” and“know” have iden-
tical syllablestructurebut significantdifferencesin their phono-
logicalexpressionduein all likelihoodto theirdistinctfunctional
roles in the language.Similarly, the “ing” inflexional suffix is
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Figure 1: Representativephonologicalrulesprovidedfor lexical
expansionin theSUMMIT recognitionframework.

muchmorelikely to bereducedto “in”’ thanotherinstancesof
“ing” (compare“Redding”with “reading”).

In theresearchreportedhere,weaddresstheproblemof account-
ing for phonologicalvariationsin conversationalspeechthrough
an approachthat combinesformal knowledgevia phonological
ruleswith automaticdatadrivenmethods.Ourmethodologybe-
gins with a setof formal phonologicalruleswhich areusedto
expandasetof lexical entriesinto alternativepronunciationvari-
ants.A separateparsingmechanismis appliedto a largecorpus,
to capturethe likelihoodsof thealternative pronunciations.The
probabilitiestake into accounta largenumberof factors,includ-
ing syllableposition,stress,phoneticcontext, andevenmorphol-
ogy, suchasfunctionversuscontentword. Therelevant factors
areobtainedby parsingeachword in the training corpususing
a carefully constructedcontext-free grammar. The probability
modelis superimposedon theparsetree,andis chosensoasto
bestcapturethe relevantconditioningfactorswhile minimizing
sparsedataproblems.It is alsoconfiguredso asto specifically
predictonly the expressedphoneticproductions,without inad-
vertentlylearningundesirablelanguagemodelinformation.This
point is importantbecauseit permitsgeneralizationfrom acom-
mon word to a rareword with the samelocal syllablecontext.
More generally, it permitstrainingon speechdatafrom onedo-
main andtestingon datafrom anotherdomainwhereavailable
trainingmaterialmaybesparseor non-existent.

Our researchis basedon the SUMMIT landmark-basedspeech
recognitionsystem[8]. While SUMMIT’s approachis quitedis-
tinct from the standardHMM formulation, it hasbeenshown
to producestate-of-the-artperformancein phoneticrecognition
tasks[1, 12]. In our research,we areconcernedalmostexclu-
sively with telephone-qualityconversationalspeech,collected
throughinteractionsbetweenusersandvariousdomain-specific
conversationalsystems[20, 9, 21].

In theremainderof thispaper, wefirst describeSUMMIT, includ-
ing its finite statetransducer(FST)formulationandphonological
modellingframework [14]. We thendescribeour phonological
probabilitymodel,which usestheANGIE system[18, 19] to ob-
tain sub-word linguistic hierarchies.We describethe two-step
processof acquiringthetrainedFSTmappingphonesto unique
sub-word contexts, andexplain how the recognizeris reassem-
bled to incorporatethe acquiredprobability model. In Section
4, we reportperformanceon unseentestdatafrom theMercury
flight domain,giving resultsfrom both speechrecognitionand
speechunderstandingexperiments.Finally, we concludewith a
summaryanda look to thefuture.

2. SUMMIT SYSTEM

In a landmark-basedapproach,it is more critical to capture
phonologicalrulesthanin a frame-basedapproach,particularly
rulesthatwould leadto thedeletionor insertionof a landmark.
Theseinclude,for example,epentheticsilenceinsertionat loca-
tionsof voicingchange,gemination(“from Maine”)andpalatal-
ization (“gas shortage”) rules, and rules accountingfor unre-
leasedstopsor even wholly deletedstops,as in “wanna” for
“wantto.” Therearealsodevoicingrulesfor fricativesandstops,
and variousvowel reductionrules. In all, thereareabout250
generalizedrulesaccountingfor thesevariousphenomena,sim-
ilar to thoseshown in Figure1. Hazenet al. [13] provide a de-
taileddescriptionof pronunciationvariationson differentlevels
andhow they aremodelledin theSUMMIT system.

In theSUMMIT system,landmarksareestablishedbasedonspec-
tral change.Eachlandmarkis consideredeitherasa boundary
betweentwo phones,or asa phone-internalevent,andis scored
usingstandardMel-scaleCepstralcoefficientsdescribingthere-
gionsurroundingthelandmark.Wordsareenteredin thelexicon
accordingto their idealizedphonemicpronunciations,and are
expandedaccordingto anorderedsetof phonologicalrulesinto
alternative pronunciations.The expandedlexicon is combined
with languagemodelsandusedin guidinglexical accessduring
thesearchfor words.In typicalapplications,thesearchproduces
anN-bestlist of hypothesesto beconsideredby laterstagesin a
dialoguesystem.

SUMMIT usesfinite statetransducers(FSTs) to representthe
acoustic,phonological,lexical, and grammarconstraints.The
searchspaceis thenorganizedasa compositionof theseFSTs:
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where
�

mapscontext-dependentacousticmodel labelson its
left to context-independentphonelabelson its right,

	
maps

phonesto phonemesby applyinganorderedsetof phonological
rules,

�
is the lexicon mappingidealizedphonemicpronuncia-

tionsto words,and
�

is thelanguagemodel.

Theresultingpronunciationmodel,
	����

, is aheavily sharedbut
unweighted network mappingphonesto words. Its FST-based
implementationwasfirst describedin detail in [14]. Recently,
an EM training algorithmwasdevelopedto learnFST weights
andappliedto theproblemof pronunciationmodelling[22]. In
thispaper, wedescribeanalternativetechniquebasedonparsing
words into a linguistic hierarchythat encodessyllablecontext,
utilizing theANGIE framework to generalizeprobabilitiesamong
similar substructure.

3. SUB-WORD PROBABILITY MODEL

An importantfeatureof our phonologicalmodelis that thepre-
diction of phoneticexpressionsutilizesa hierarchyof sub-word
context, including phonemic,morphologic,and syllabic con-
texts. In this section,we describethe detailsof the probability
model. We startby providing a descriptionof how to acquire
the sub-word context andthe associatedprobabilitiesusingthe
ANGIE system.Wethendescribehow theANGIE modelis trans-
formed into the phonologicalmodel and incorporatedinto the
recognizer.



sentence
word

sroot uroot sroot2
nuc lax+ coda uonset nuc onset lnuc+ lcoda

ih+ n t! r ow d! uw+ s
ih n -n rx -rx dcl d uw s

Figure 2: ANGIE parsetreefor the word “introduce,” showing
phonologicalrules expressedin preterminal-to-terminalmap-
pings.The �
��� column correspondsto thepathfromthe �
��� termi-
nalphoneto therootnodeatthetop. Thenotation“-n” encodesa
left-context dependentdeletionof thephoneme“t!” (Note: The
phoneme layer utilizes diacritics to encode onset (!) and stress
(+).)

3.1. ANGIE Framework

Over the pastseveral years,we have beenexploring the utility
of a parsingframework we call ANGIE [18, 19] for modelling
word substructure.The original intent was to model phonol-
ogy, morphology, andsyllableconstraintsin a sharedprobabil-
ity framework, with the goal of modelling formal structureof
the languagein the absenceof a known lexicon. The ANGIE

utility hasa wide rangeof applicationareas,includingletter-to-
sound/sound-to-lettersystems[6, 19], an explicit accountingof
unknown wordsin speechrecognitiontasks[3], andstronglin-
guistic supportfor a high-performancephoneticrecognizeras
thefirst stagein a multi-stagerecognitionframework [4]. In re-
centexperimentswe have exploredthe possibility of encoding
the ANGIE probability model as a finite statetransducermap-
ping phonesto phonemes.It is this mechanismthatcanbeused
to attachprobabilitiesto arcsin a lexical phonegraph.

In ANGIE, a parsetreeis obtainedfor eachword by expanding
the rulesof a carefully constructedcontext-free grammar. The
grammaris intentionallyarrangedsuchthateveryparsetreelays
out as a regular two-dimensionalgrid, as shown in Figure 2.
Each layer is associatedwith a particular aspectof subword
structure:migratingfrom morphemicsto syllabicsto phonemics
to phoneticsat the deepestlayer. Although the rules arecon-
text free,context dependenciesarecapturedthrougha superim-
posedprobability model. The particularchoicefor the proba-
bility modelwasmotivatedby the needfor a balancebetween
sufficient context constraintandpotentialsparsedataproblems
from a finite observationspace.We werealsomotivatedto con-
figure the probability modelsuchthat it would be causal,with
stronglocality, for practicalreasonshaving to dowith thenearly
universalleft-to-right searchpathin recognitiontasks,with the
ultimategoal of attachingthe learnedprobabilitiesto arcsin a
finite statenetwork.

Giventheseconsiderations,theprobabilityformulationwe have
developedfor ANGIE canbewrittenasfollows:
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where
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is the � ��� columnin theparsetreeand
�2�3� � "#�%$ * .,465798;: � , and

"#��$ * is the label at the
7 ��� row of the � ��� column

in thetwo-dimensionalparsegrid.
:

is thetotal numberof lay-

ers in the parsetree. The column index � begins at the left of
theparsegrid, andtherow index

7
beginsat thebottomof each

column. In words,eachphoneis predictedbasedon the entire
precedingcolumn,andthe columnprobability is built bottom-
up basedon a trigram model, consideringboth the child and
the left sibling in the grid. Theprobabilities,

	���"#�%$ & � ��������� and	���" �%$ * � " �%$ * �-� .1" �����1$ * � , aretrainedby tabulatingcountsin a cor-
pusof parsedsentences,mappingwordsto their corresponding
phoneticrealizations.

3.2. Phonological Probability Model

As wasmentionedearlier, the ANGIE model intentionallycap-
turesboth phonologicalandlinguistic aspectsof the language,
suchasthefrequency of differentsyllableonsetpatterns.How-
ever, for the purposeof modellingthe likelihoodof the phono-
logical variants, the linguistic contribution to the probability
modelneedsto be removed. Our goal is to producethe prob-
ability of the phonesequence,given the word. We aremaking
the simplifying assumptionthat eachword, in a specificpho-
neticrealization,hasauniqueparseinto a sequenceof columns.
Furthermore,to copewith sparsedataproblemsand to assure
generalization,the context conditioningis restrictedto column
pairs. Specifically, our phonologicalmodel (

	=<
) will predict

eachsubsequentphone,using the entire previous column and
thecolumnabove thenew phoneasthecontext:	=<>�!	���"#��$ & � �����-�/. � "#�%$ * . 7@? 4 � � (3)

This can be computedby essentiallyinverting the ANGIE col-
umnprobabilitymodelsuchthatthepredictorfocusestotally on
the predictionof

"#��$ &
, the phonetic realizationassociatedwith

theright column.UsingaBayesianformulation,thisprobability
canbe expressedasthe probabilityof the phoneand the upper
column (i.e., the entire right column), normalizedby the total
probabilityof theuppercolumn,giventheleft column:

	=<>� 	���"#��$ &A. � "#��$ * . 7�? 4 �(� ���������	�� � "#�%$ * . 7�? 4 �#� �����-�B� (4)

Thedenominatorin Equation4 canbecomputedasthemarginal
probability of the joint probability

	���" ��$ & . � " ��$ * . 7C? 4 �#� � ���-� �
summingover all instancesof

"#�%$ &
, i.e.,

	�� � "#��$ * . 7�? 4 �(� ���������D�FEG�H
I J
	���"#�%$ &K. � "#�%$ * . 7@? 4 �#� �����-��� (5)

SubstitutingEquation5 into Equation4 and recognizingthat� "#��$ &A. � "#��$ * . 7L? 4 �A� is simply thecolumn
���

, we canobtain:

	=<M� 	���� � � � �
��� �N G H
I J 	������ � �����-��� (6)

	����2� � �2�
����� is theANGIE columnbigramprobability, whichcan
becomputedaccordingto Equation2.

In practice,Equation6 meansthatwe first sumthe ANGIE col-
umn bigram probability over all observed instancesof

"#�%$ &
to

computea total conditionalprobabilityfor eachparticularsetof� "#��$ * . 7�? 4 � , i.e., eachuniqueuppercolumn. This sumthen
becomesthedenominatorto normalizethecolumnbigramprob-
ability.



3.3. Modelling Word-Boundary Effects

A critical aspectin phonologicalmodellingis theeffective cap-
turingof word-boundaryeffects.ANGIE’sprobabilitymodelre-
tainsonly thelastphone of theprecedingwordascontext for the
first phonein the word, in orderto amelioratepotentialsparse-
dataproblems. But even with this backoff condition, it is still
impossibleto assurethat every phone-columntransitionpossi-
ble at word onsetsis observed in every phonecontext. Further-
more,without theneedto preserve languagemodelinformation,
it seemscounterproductive to condition all phoneme-to-phone
mappingson the left phone,whenmany suchmappingsarenot
particularlysensitive to left context. Only a small subsetof the
word-onsetrealizationsarestronglytied to left context. For ex-
ample,a geminationrule supportingdeletionof theonsetphone
clearlyneedsto know context, whereasarulemapping“l!” to /l/
is verygeneral.

Our solution was to implement the capability to specify in
the ANGIE rulesan explicit setof phoneme-to-phonemappings
which, if appearingword-final,shouldbeliaisonedto thesubse-
quentword’sonsetphone.For example,if “s” is realizedas/sh/,
thenthe following word shouldobligatorily startwith a palatal
(sh, zh, y, etc.) The rule only statesthat “s” realizedas/sh/ is
liaisoned,and the observationscontrol the actualset of word-
boundaryties that aresanctioned.This mechanismeffectively
retainsright context dependency constraints(with probabilities
trainedfrom observations)acrossword boundaries.Exceptin
the liaisonedcondition, all other word-endingphonesmap to
a genericword-startnode,which thenadvancesto completely
context-independentrealizationsof word-startcolumns,aswell
asto a genericpause model.

3.4. Training Procedure

We have discussedthe ANGIE framework for modelling word
structure,and we showed how ANGIE’s probability model can
bereconfiguredto supportpredictionof eachsubsequentphone,
giventheentirepreviouscolumnandthecolumnabove thenew
phone. Now we will describehow a finite statetransduceren-
codingthis probabilitymodelis obtainedthrougha cooperative
interplay betweenthe SUMMIT systemand the ANGIE frame-
work.

The training procedurebegins with a large corpusof ortho-
graphically transcribedutterances. Theseare first processed
throughstandardSUMMIT alignmenttools to producealigned
phonetictranscriptions,honoringthecontext-dependentphono-
logicalrulesspecifiedin SUMMIT. Thealignedtranscriptionsare
thenusedto train theprobabilitiesin anANGIE grammar, which
is designedto supportparsingof all of thevariantsappearingin
thetrainingcorpus.In practice,theANGIE rulesneedonly cover
all possible alternativerealizationsof eachphone,withoutregard
to surroundingcontext conditions.Therestrictionto SUMMIT’s
phonologicalspacewill guaranteethatall observations honorthe
dependencies,andtheprobabilitymodelwill thereforelearnthe
context conditionsfrom thedata.

Once the ANGIE grammarhas been trained, a secondpass
throughthe datacomputesthe column-columntransitionprob-
abilitiesgiventhetrainedgrammar, andnormalizeseachcolumn
prediction,asdescribedpreviously, to remove linguistic depen-

above : ahpreb! ah+v sroot
airlines : ehr+srootl! ay+n sroots pl isuf
either : ( iy+ , ay+) srootdh! er dsuf
in : en in fcn
the : dh! iy thefcn
west : w! eh+st sroot

Figure 3: Representative baseformsfrom ANGIE’s word lexi-
con. Theseincludea small setof alternatepronunciations(“ei-
ther”), as well as someinflection-specificphonemes,(“s pl”),
someword-specificphonemes,suchas “iy the”, and somedi-
phoneunits, suchas “st.” Symbolssuchas “sroot” and “fcn”
identify thesyllablecategory. Seetext for furtherdetails.

dencies. The resultingcolumn-bigrammodel is written out as
a finite statetransducer, with phonesasthe input symbolsand
phonemesin ANGIE’s preterminallayer asthe outputsymbols.
In addition,at eachadvanceto a new syllable,it emitsthe syl-
lable layer symbol(encodingstressedroot, functionword, pre-
fix, etc.),which hasthedesiredeffect of preservingthedistinct
statisticsof thesesyllabletypes.

3.5. Assembling the Speech Recognizer

Wehave describeda procedureto createa finite statetransducer
mappingphonesto ANGIE’s sub-word units, with probabilities
attachedto thearcsreflectingthegeneralizedobservationspace.
Now we will describehow it is incorporatedinto the SUMMIT

recognitionframework, to becombinedwith aword lexiconand
the O -gramlanguagemodel.

As mentionedin Section2, SUMMIT usesa phonemicallybased
lexicon, which is thenexpandedinto unweightedphoneticpro-
nunciationsby utilizing formal phonologicalrules.We replaced
this lexicon with a new set of baseformsthat reflect ANGIE’s
phonemelayersymbolset,which is enhancedto includemark-
ers for stress(+) and onset(!) position, as well as somedi-
phoneunits such as “st.” In all, there are about 140 unique
phonemeunits. In addition, the syllable-identitysymbolsare
insertedat the endof eachsyllable,consistentwith the phone-
phonemeFST. Someexamplesof lexical entriesin ANGIE’s for-
mataregivenin Figure3. Thephone-phonemeFSTis thencom-
posedwith thisnew baseformfile to yield atransducer,

	QPR�S�DP
,

mappingphonesto words with weightson the arcs. The rest
of the recognizerconstraints,

�
and

�
, arekept the same;and

thesearchspaceis constructedin thesameway asdescribedin
Equation1.

Figure4 illustratesa portionof thelexical network representing
the alternative pronunciationsalong with associatedprobabili-
ties for the word sequence“in the.” Notice that, for example,
“in” canberealizedasasyllabicnasal(/en/),andtherulesallow
for a “stop-like” /dh/ via an optional insertionof a closurein-
terval (/dcl/). Thevowels for thesefunctionwordshave several
differentrealizations.
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1
en:in/8.85139

2ax:in/1.87561

3
ix:in/0.697935

4

ih:in/0.67881

5

#:ε/0.34391

6

_:ε/1.13705

7

n:ε/0.040715

n:ε/0.203745
n:ε/0.21607

8dcl:the/1.93766
9dh:the/0.091715#:ε/0.90542

_:ε/0.35921

#:ε/0.59908
_:ε/1.39222

dh:ε
10

ax:ε/1.22052

ix:ε/1.42315
ih:ε/1.70136
ah:ε/1.25231

11/0.495975

iy:ε/1.57275 y:ε/0.693855

Figure 4: Exampleof apronunciationgraphcreatedby thesystemfor thewordsequence“in the.” Eacharcis labelledwith theinput
andoutputsymbols,andthecorrespondingnegative log probability.

Set No. Utts. Baseline + AngiePM

testall 848 17.3 16.3
testclean 759 13.9 13.0
testnoisy 89 41.9 39.6

Table 1: Speechrecognitionperformance(in word error rate)
for a systemwhich utilized an ANGIE pronunciationmodel,as
contrastedwith a baselinesystemthat utilized the samesetof
phonologicalrulesbut lackedprobabilitieson the arcs. Results
aregivenontheoverallset,aswell asonthe“clean” and“noisy”
sub-sets.

4. EVALUATION EXPERIMENTS

4.1. Speech Recognition

To demonstratetheviability of thisapproach,wetrainedthesys-
tem on a corpusconsistingof a mixedsetof over 80,700utter-
ancesfrom theJupiterweatherdomain[9] and13,800utterances
from theMercuryflight reservationdomain[20], andtestedit on
anindependentsetof 848utterancesin theMercurydomain.

TheMercuryrecognizerhasa vocabularyof 1636uniquewords
(withoutunderbars);however, multiplewordunitsaredefinedto
build classO -grammodels.Thebaselinesystemandthe ANGIE

systemdiffer only in the pronunciationmodels: they use the
samesetof vocabulary, classbigramandtrigramlanguagemod-
els, as well as the diphone-to-phonemappingFST. The base-
line systemusesunweightedpronunciationnetworks,while the
ANGIE systemhas probabilitiesfor alternative pronunciations
trainedusingthemethoddescribedin theprevioussections.Var-
iousparametersfor thesetwo systems,suchasword andphone
transitionweights,and the weight of the ANGIE pronunciation
probabilities,are tunedon developmentdata,and the final re-
sultsarereportedon unseentestdata.

Table4.1 summarizesthe recognitionperformanceof the base-
line andtheANGIE systemsonthetestset.Wewereableto real-
ize a 5.8%relative reductionin word error ratewith the ANGIE

pronunciationmodel, and the improvementsare consistenton
bothcleanandnoisyutterances.

4.2. Speech Understanding

For spoken dialogue systems,speechunderstandingperfor-
manceis a moresignificantmetric thanspeechrecognitionper-
formance. In this regard,we alsoevaluatedthe concept error
rate whentherecognizeris usedwith a naturallanguageunder-
standingsystemto producea meaningrepresentation,encoded
asa setof T key: valueU pairs.The T key: valueU pairsobtainedby
parsingthe

:
-bestlist arecomparedagainstthoseobtainedby

Set No. ParsedUtts. Baseline Angie PM

testall 729 11.9 10.4

Table 2: Speechunderstandingperformance(in concepterror
rate)usinga recognizerwhich utilized an ANGIE pronunciation
model,ascontrastedwith a systemusinga baselinerecognizer
without probabilitieson thepronunciationarcs.

parsingtheorthographictranscription,andtheconcepterrorrate
wascomputedin asimilarwayastheworderrorrate.Outof the
entiretestset,we areableto parseabout86%of theutterances
(full parseor robustparse).Therestof theutterancesfailedbe-
causethey areout-of-domainor incomplete,or becauseof gaps
in the parsecoverage. They areexcludedfrom this evaluation
due to the lack of referenceT key: valueU pairs. Table 2 sum-
marizestheconcepterror rateson theparsedsubsetfor thetwo
recognizers.Theconcepterrorratewasreducedby 12.6%when
the ANGIE pronunciationmodelis usedin recognition,which is
asubstantiallygreaterrelativegainthanwasobtainedfor speech
recognition.

We have two possibleexplanationsfor the differencein perfor-
mancegainsfor speechrecognitionas opposedto speechun-
derstanding. The first one is that, without probability train-
ing, wordswith many alternative pronunciationsobtainan un-
intendedboostbecauseof themultiplewaysthatthey canmatch
againstthe lexical entries. We have observed that short func-
tion wordsoftenhave muchbushierphoneticexpansionsdueto
theirstronginfluencefrom externalwordcontext, aswell astheir
tendency to bereduced(see,for example,Figure4). By supply-
ing probabilitiesto their alternative arcs,we effectively reduce
their relative total word score,leadingto a reductionin recogni-
tion performanceon thesefunctionwordsascontrastedwith the
contentwords. However, wordslike “a” and“the” aretypically
ignoredat the level of conceptunderstanding,and hencetheir
poorerperformanceis of no consequenceto understanding.

Anotherexplanationis thattheutteranceswhich fail to parse,on
average,performlesswell whenprobabilitytrainingis included.
This could be correlatedwith their tendency to include words
thatarerarelyused,andhencethatmightsuffer from inadequate
observationtraining.

5. SUMMARY AND FUTURE WORK

Thispaperdescribesourexperimentsin parsingwordsinto their
linguistic substructure,in order to obtain a probability model
to accountfor alternative phoneticrealizationsof words. We
wereableto leverageexisting SUMMIT speechrecognitiontools,
including the standardset of phonologicalrules and the stan-



dard class O -gram languagemodels. An FST mappingsub-
word structureto phoneticrealizationswith associatedproba-
bilities wasderived by parsinga large corpusof observed pho-
neticsequences,andreinsertedinto therecognizer’sfull FST, re-
placingtheoriginalcomponentFST, whichhadnoprobabilities.
In speechunderstandingexperiments,we wereableto obtaina
12.6%relative reductionin concepterrorrate.

An obvious extensionof this work is to integrate it with the
researchdescribedin a companionpaper[13]. In their work,
Hazenet al. have determinedthat, in theabsenceof probability
trainingon thephonologicalvariants,a systemwith a parsimo-
nioussetof phonologicalrulesis superiorto asystemwhichhas
thefull setof standardSUMMIT rules,in termsof bothmemory
requirementsandrecognitionaccuracy. The parsimonioussys-
tem wasobtainedby only retainingrulesthat involve deletions
and/orinsertions,thuseliminatingschwa reduction,palataliza-
tion rules,etc. A retrainingof the modelsis a necessarycon-
currentstep.It would beinterestingto seewhethera framework
utilizing the parsimoniousrule setcanbenefitfrom our proba-
bility trainingmethodsto thesameextentaswasrealizedin our
experiments.

We also plan to apply our approach,which incorporatessub-
word linguistic hierarchyin modeling phoneticvariations, to
switchboarddata. As mentionedin Section1, a study[16] has
demonstratedgreatpotentialfor recognitionimprovementswith
effective pronunciationmodeling. In addition, an analysisof
phoneticallytranscribeddata[11] showeda needto accountfor
syllablestructureandmorphologyin predictingphoneticvaria-
tions. It will be interestingto testtheeffectivenessof our mod-
eling approachin this challengingdomain.
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