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ABSTRACT

This paperdescribesour researchaimedat acquiringa gener

alized probability modelfor alternatve phoneticrealizationsin

corversationalspeech. The approachbegins with the applica-
tion of a setof orderedcontext-dependenphonologicalrules,
appliedto the baseformsn the recognizers lexicon. The prob-
ability modelis acquiredby observingspecificrealizationsex-

pressedn a large training corpus. A setof context-free rules
representsvordsin termsof a substructuréhatcanthengener

alize context-dependenprobabilitiesto otherwordsthat share
the samesub-word context. The modelis designedo capture
phoneticpredictionshasednlocal phonemicmorphologic.and
syllabiccontexts, thuspermittingtrainingon corporawvhoselexi-

conis divergentfrom thatof theintendedapplication.Thetrain-
ing corpusconsistedof a large setof Jupiterweatherdomain
speechdata[9] augmentedvith a muchsmallersetof Mercury
flight-domaindata[20]. The baselinesystemutilized the same
setof phonologicatulesfor lexical expansionbut with no prob-
ability modellingfor alternatepronunciations We evaluatedon

atestsetof utterancesxclusively from theflight domain.Using
this approachwe achieved a 12.6%reductionin speechunder

standingerrorrateon thetestset.

1. INTRODUCTION

In the early yearsof speechrecognitionresearch,it was be-
lieved that an importantcontritution to successvould be the
applicationof formal rulesto accountexplicitly for predictable
phonologicalreductionsin certain contets in corversational
speecH?2, 7, 23, 24]. Someexamplesof suchrulesare shavn
in Figure 1 — ruleswhich predict,for example,the contexts for
flappinganalveolarstopor for palatalizinganalveolarfricative.

As thehiddenMarkov model(HMM) framework gainedin pop-
ularity, suchformal rulestendedto play a lessprominentrole.
Instead the assumptiorwas madethat context effectscould be
handledby simply definingcontet-dependenacousticmodels,
thusaccountingor thevariabilitiesin the Gaussiammixturesas-
sociatedwith thesetypically triphonemodels.In part, this shift
was predicatedon an admissionthat perhapswve do not under

standtherulessuficiently well to formally characterizeéhem.

With the recenttrend towardsa shift of attentionfrom readto
spontaneouspeech suchas the switchboardcorpus[10], the
issueof accountingfor phoneticvariability hasresurbcedasa
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significantresearchproblem[17]. For example,a “cheating”
experimentconductedcby McAllister etal. [16] shavedthatthe
word error ratefor a switchboardtest corpuscould be reduced
from 40%to 8% by explicitly accountingfor the phoneticpro-
nunciationsn thelexiconaccordingo theiractualrealizationsn
thetestcorpus.However, mary researcherbave shavn thatan
overalundanceof alternatve lexical pronunciationsvithout ary
attemptto modeltheirrelative likelihoodscanleadto a degrada-
tion in performancegueto theincreased¢hanceof erroneously
matchingobscurealternatves. Furthermore the techniqueof
simply enumeratingndividual variantsfor eachwordin thelex-
iconis tediousandshaws little generality

In the recentresugenceof interestin phonology data-drven
approachesave playeda muchstrongerrole thanin the early
days, when knowledge-basedpproacheslominatedthe liter-

ature. One populartechnique(as exemplified by the work of

CremelieandMateug[5]) is to allow for agenerousetof confu-
sions,includingsubstitutionsdeletionsandinsertions,andthen
usea forcedrecognitionmodeto searchthe expandedspacefor

alternatve, betterscoring,deviationsfrom the canonicalexical

forms. A large setof “rules” canthenbe gleanedirom the ob-
senation space andfrequeny countscanbe takulatedto yield

probability estimatesfor thoserules. Thus, one doesnot rely

on a linguist to definethe formal rules, but ratherlets the data
dictatewhich rules are most productive. Suchan approachis

attractve in thatit is ableto generalizérom obsened wordsto

unobseredwordswith similar surroundingphoneticcontext.

Phonologisthave long beenawarethat syllable structureplays
animportantrolein predictingphonologicaleductiong15]. For
example,consonant syllableonsetpositionarefar lesslikely
to bereducedhanin codaposition. It is thereforeperhapssur
prising thatthe speechrecognitioncommunityhastypically ig-
noredthe syllablein characterizingvord lexical entriesandin
modellingphonologicakffects.

An excellentdescriptionof therole of the syllablein the switch-
boarddatahasbeenpresentedy Greenbeg [11]. He shaved,
through studieson a large corpusof handtranscribedswitch-
board data, that 28% of consonantsin coda position were
deleted.Furthermorenot only syllable structure but alsomor

phologicalinformation, is importantin characterizingphonetic
expressionFor example thewords“no” and“know” haveiden-
tical syllablestructurebut significantdifferencesn their phono-
logicalexpressiorduein all likelihoodto theirdistinctfunctional
rolesin the language.Similarly, the “ing” inflexional sufix is
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Figure1: Representaiephonologicatulesprovidedfor lexical
expansionin the SUMMIT recognitionframewvork.

muchmorelikely to bereducedo “in” thanotherinstanceof
“ing” (compare'Redding” with “reading”).

In theresearcheportechere we addressheproblemof account-
ing for phonologicalariationsin corversationakpeecthrough
an approachthat combinesformal knowledgevia phonological
ruleswith automaticdatadrivenmethods Our methodologybe-
gins with a setof formal phonologicalrules which are usedto

expandasetof lexical entriesinto alternatve pronunciationvari-

ants.A separatgarsingmechanisnis appliedto alarge corpus,
to capturethe likelihoodsof the alternatve pronunciationsThe
probabilitiestake into accounta large numberof factors,includ-

ing syllableposition,stressphoneticcontext, andevenmorphol-
ogy, suchasfunctionversuscontentword. Therelevantfactors
are obtainedby parsingeachword in the training corpususing
a carefully constructeccontext-free grammar The probability
modelis superimposedn the parsetree,andis chosersoasto

bestcapturethe relevant conditioningfactorswhile minimizing

sparsedataproblems.lt is alsoconfiguredso asto specifically
predictonly the expressedbhoneticproductions,without inad-
vertentlylearningundesirabléanguagenodelinformation. This
pointis importantbecausét permitsgeneralizatiofrom acom-
mon word to a rareword with the samelocal syllable context.

More generally it permitstraining on speectdatafrom onedo-
main andtestingon datafrom anotherdomainwhereavailable
trainingmaterialmay be sparseor non-«istent.

Our researchs basedon the summIT landmark-basedspeech
recognitionsystem[8]. While suMMIT’s approachs quite dis-

tinct from the standardHMM formulation, it hasbeenshavn

to producestate-of-the-arperformancen phoneticrecognition
tasks[1, 12]. In our researche are concernedalmostexclu-

sively with telephone-qualitycorversationalspeech,collected
throughinteractionsbetweernusersandvariousdomain-specific
corversationakystemg20, 9, 21].

In theremaindeof this paperwe first describesummiT, includ-
ing its finite statetransduce(FST)formulationandphonological
modellingframework [14]. We thendescribeour phonological
probabilitymodel,which usesthe ANGIE system[18, 19] to ob-
tain sub-word linguistic hierarchies. We describethe two-step
procesf acquiringthe trainedFST mappingphoneso unique
sub-word contets, and explain how the recognizelis reassem-
bled to incorporatethe acquiredprobability model. In Section
4, we reportperformanceon unseertestdatafrom the Mercury
flight domain,giving resultsfrom both speechrecognitionand
speechunderstandingxperiments.Finally, we concludewith a
summaryandalook to thefuture.

2. SUMMIT SYSTEM

In a landmark-basedpproach,it is more critical to capture
phonologicalrulesthanin a frame-base@pproachparticularly
rulesthatwould leadto the deletionor insertionof alandmark.
Theseinclude,for example,epentheticilenceinsertionat loca-
tionsof voicing changegemination(“from Maine”) andpalatal-
ization (“gas shortage”) rules, and rules accountingfor unre-
leasedstopsor even wholly deletedstops,asin “wanna” for

“wantto.” Therearealsodevoicingrulesfor fricativesandstops,
and variousvowel reductionrules. In all, thereare about250
generalizedulesaccountingor thesevariousphenomenasim-

ilar to thoseshawvn in Figurel. Hazenetal. [13] provide a de-
tailed descriptionof pronunciationvariationson differentlevels
andhow they aremodelledin the sSuMMIT system.

In thesuMmMIT system)andmarksareestablishedasedn spec-
tral change.Eachlandmarkis considereckitherasa boundary
betweertwo phonespr asa phone-internaévent,andis scored
usingstandardMel-scaleCepstralcoeficientsdescribinghere-

gionsurroundinghelandmark.Wordsareenteredn thelexicon

accordingto their idealizedphonemicpronunciationsand are

expandedaccordingto an orderedsetof phonologicakulesinto

alternatve pronunciations.The expandedexicon is combined
with languagemodelsandusedin guidinglexical accessluring

thesearchor words. In typical applicationsthesearctproduces
anN-bestlist of hypothese$o be consideredy laterstagesn a

dialoguesystem.

SumMMIT usesfinite statetransducer{FSTs)to representthe
acoustic,phonological,lexical, and grammarconstraints. The
searchspaceds thenorganizedasa compositionof theseFSTs:

Co(PoL)oG 1)
where C' mapscontet-dependentacousticmodel labelson its
left to context-independenphonelabelson its right, P maps
phonego phonemedby applyinganorderedsetof phonological
rules, L is the lexicon mappingidealizedphonemicpronuncia-
tionsto words,andG is thelanguagemodel.

Theresultingpronunciatiormodel,P o L, is aheavily sharedout

unweighted network mappingphonesto words. Its FSTbased
implementationwasfirst describedn detailin [14]. Recently
an EM training algorithmwas developedto learn FST weights
andappliedto the problemof pronunciatiormodelling[22]. In

this paperwe describeanalternatve techniquebasedn parsing
wordsinto a linguistic hierarchythat encodessyllable context,

utilizing the ANGIE framework to generalizeprobabilitiesamong
similar substructure.

3. SUB-WORD PROBABILITY MODEL

An importantfeatureof our phonologicaimodelis thatthe pre-
diction of phoneticexpressionsitilizes a hierarchyof sub-word
contet, including phonemic, morphologic, and syllabic con-
texts. In this section,we describethe detailsof the probability
model. We startby providing a descriptionof how to acquire
the sub-word context andthe associategbrobabilitiesusingthe
ANGIE system Wethendescribehow the ANGIE modelis trans-
formed into the phonologicalmodel and incorporatednto the
recognizer



sentence
word
sroot uroot sroot2
nuclax+ | coda| uonset| nuc| onset | Inuc+ | Icoda
ih+ n t! r | ow d! uw+ s
ih n [-n]rx] -x|dcl[d] uw s

Figure 2: ANGIE parsetreefor the word “introduce; shaving
phonologicalrules expressedin preterminal-to-terminamap-
pings.Theit? column correspondso thepathfrom thest? termi-
nalphoneto therootnodeatthetop. Thenotation“-n” encodes
left-context dependentleletionof the phonemét!” (Note: The
phoneme layer utilizes diacritics to encode onset (!) and stress

(+))

3.1. ANGIE Framework

Over the pastseveral years,we have beenexploring the utility

of a parsingframevork we call ANGIE [18, 19] for modelling
word substructure. The original intent was to model phonol-
ogy, morphology andsyllable constraintsn a sharedprobabil-
ity framework, with the goal of modelling formal structureof

the languagein the absenceof a known lexicon. The ANGIE

utility hasa wide rangeof applicationareasjncluding letterto-

sound/sound-to-lettesystemg6, 19], an explicit accountingof

unknowvn wordsin speechrecognitiontasks[3], andstronglin-

guistic supportfor a high-performancehoneticrecognizeras
thefirst stagein a multi-stagerecognitionframework [4]. In re-
centexperimentswe have exploredthe possibility of encoding
the ANGIE probability model as a finite statetransducemap-
ping phoneso phonemesilt is this mechanisnthatcanbe used
to attachprobabilitiesto arcsin alexical phonegraph.

In ANGIE, a parsetreeis obtainedfor eachword by expanding
the rulesof a carefully constructeccontext-free grammar The
grammaiis intentionallyarrangeduchthatevery parsetreelays
out as a regular two-dimensionalgrid, as shavn in Figure 2.
Each layer is associatedvith a particular aspectof subword
structure:migratingfrom morphemicgo syllabicsto phonemics
to phoneticsat the deepestayer. Although the rules are con-
text free, context dependencieare capturedhrougha superim-
posedprobability model. The particularchoicefor the proba-
bility modelwas motivatedby the needfor a balancebetween
sufiicient context constraintand potentialsparsedataproblems
from afinite obsenation space We werealsomotivatedto con-
figure the probability model suchthatit would be causalwith
stronglocality, for practicalreason$aving to dowith thenearly
universalleft-to-right searchpathin recognitiontasks,with the
ultimate goal of attachingthe learnedprobabilitiesto arcsin a
finite statenetwork.

Giventheseconsiderationghe probability formulationwe have
developedfor ANGIE canbewritten asfollows:

N-1

P(Ci|Ci-1) = P(aio|Ci-1) [[ Plaislaij-1,0i-15) (2)

=1

whereC; is thest? columnin theparsetreeandC; = {ai;,0<
j < N}, anda;; is thelabelatthe jt* row of the it* column
in thetwo-dimensionaparsegrid. N is the total numberof lay-

ersin the parsetree. The columnindex ¢ begins at the left of
the parsegrid, andtherow index j beginsat the bottomof each
column. In words, eachphoneis predictedbasedon the entire
precedingcolumn, andthe column probability is built bottom-
up basedon a trigram model, consideringboth the child and
theleft sibling in the grid. The probabilities,P(a;|C;-1) and
P(a;jlas,j—1,ai—1,;), aretrainedby takulating countsin a cor
pusof parsedsentencesnappingwordsto their corresponding
phoneticrealizations.

3.2. Phonological Probability Model

As was mentionedearlier the ANGIE modelintentionally cap-
turesboth phonologicaland linguistic aspectf the language,
suchasthefrequeng of differentsyllableonsetpatterns.How-
ever, for the purposeof modellingthe likelihood of the phono-
logical variants, the linguistic contritution to the probability
modelneedsto be remored. Our goalis to producethe prob-
ability of the phonesequencegiventhe word. We are making
the simplifying assumptiorthat eachword, in a specific pho-
neticrealization hasa uniqueparseinto a sequencef columns.
Furthermoreto copewith sparsedataproblemsandto assure
generalizationthe context conditioningis restrictedto column
pairs. Specifically our phonologicalmodel (PM) will predict
eachsubsequenphone,using the entire previous columnand
the columnabove the new phoneasthe context:
PM = P(aip|Ci-1,{aij,j > 0}) (3)
This can be computedby essentiallyinverting the ANGIE col-
umn probability modelsuchthatthe predictorfocusedotally on
the predictionof a; 9, the phonetic realizationassociatedvith
theright column. Usinga Bayesiarformulation,this probability
canbe expressedasthe probability of the phoneand the upper
column (i.e., the entireright column), normalizedby the total
probability of the uppercolumn,giventheleft column:

P(aip,{aij,j > 0}Ci 1)

PM = /
P({aij,j > 0}|Ci-)

4)

Thedenominatoin Equation4 canbecomputedasthemamginal
probability of the joint probability P(a;,0,{a;j,j > 0}|C;_1)
summingover all instance®f a; o, i.e.,

P({aij,j > 0}|Ci_1) = > P(aip, {aij,j > 0}|Ci—1) (5)

ai,0

SubstitutingEquation5 into Equation4 and recognizingthat
{ai0, {aij,j > 0}} is simply the columnC};, we canobtain:

P(C;|Ci-1)

PM=—""—"——"—""—
Pai, P(Ci|Ciny)

(6)

P(C;|C;_1) istheANGIE columnbigramprobability, which can
be computedaccordingio Equation2.

In practice,Equation6 meansthatwe first sumthe ANGIE col-
umn bigram probability over all obsered instancesof a; o to
computeatotal conditionalprobability for eachparticularsetof
{aij,j > 0}, i.e., eachuniqueuppercolumn. This sumthen
becomeshedenominatoto normalizethe columnbigramprob-
ability.



3.3. Modedlling Word-Boundary Effects

A critical aspecin phonologicaimodellingis the effective cap-
turing of word-boundaneffects. ANGIE’s probabilitymodelre-
tainsonly thelastphone of the precedingvord ascontext for the
first phonein theword, in orderto amelioratepotentialsparse-
dataproblems. But even with this bacloff condition, it is still
impossibleto assurethat every phone-columrtransitionpossi-
ble at word onsetss obsenedin every phonecontect. Further
more,withoutthe needto presere languagemodelinformation,
it seemscounterproductie to conditionall phoneme-to-phone
mappingson the left phone , whenmary suchmappingsarenot
particularlysensitve to left context. Only a small subsetf the
word-onserealizationsarestronglytied to left context. For ex-
ample,ageminatiorrule supportingdeletionof the onsetphone
clearlyneeddo know contet, whereasarule mapping‘l!” to/l/
is very general.

Our solution was to implementthe capability to specify in

the ANGIE rulesan explicit setof phoneme-to-phonmappings
which, if appearingvord-final,shouldbe liaisonedto the subse-
quentword’s onsetphone.For example,if “s” is realizedas/sh/,
thenthe following word shouldobligatorily startwith a palatal
(sh, zh, y, etc.) Therule only statesthat“s” realizedas/sh/is

liaisoned,and the obsenations control the actual set of word-

boundaryties that are sanctioned. This mechanisneffectively

retainsright context dependeng constraintgwith probabilities
trainedfrom obsenations)acrossword boundaries. Exceptin

the liaisonedcondition, all other word-endingphonesmap to

a genericword-startnode, which then advancesto completely
contt-independentealizationsof word-startcolumns,aswell

asto agenericpause model.

3.4. Training Procedure

We have discussedhe ANGIE framewnork for modelling word
structure,and we shaved how ANGIE’s probability model can
bereconfiguredo supportpredictionof eachsubsequerphone,
giventheentireprevious columnandthe columnabove the new
phone. Now we will describehow a finite statetransduceen-
codingthis probability modelis obtainedthrougha cooperatie
interplay betweenthe sumMIT systemand the ANGIE frame-
work.

The training procedurebegins with a large corpusof ortho-
graphically transcribedutterances. Theseare first processed
through standardsummIT alignmenttools to producealigned
phonetictranscriptionshonoringthe context-dependenphono-
logicalrulesspecifiedn sumMmIT. Thealignedtranscriptionsre
thenusedto train the probabilitiesin an ANGIE grammaywhich
is designedo supportparsingof all of the variantsappearingn
thetrainingcorpus.In practice the ANGIE rulesneedonly cover
all possible alternatverealizationsof eachphonewithoutregard
to surroundingcontext conditions. Therestrictionto SUMMIT'S
phonologicakpacewill guarante¢hatall observationshonorthe
dependenciegndthe probability modelwill therefordearnthe
contet conditionsfrom the data.

Once the ANGIE grammarhas beentrained, a secondpass
throughthe datacomputesthe column-columntransitionprob-
abilitiesgiventhetrainedgrammayrandnormalizesachcolumn
prediction,asdescribedpreviously, to remove linguistic depen-

aboe  : ahpreb! ah+v sroot

airlines : ehr+srootl! ay+n sroots_pl isuf
either  : (iy+, ay+) srootdh! erdsuf

in : enin fcn

the : dh!'iy_thefcn

west : w! eh+stsroot

Figure 3: Representate baseformdrom ANGIE’s word lexi-
con. Theseincludea small setof alternatepronunciationg“ei-
ther”), as well as someinflection-specificohonemes(“s_pl"),
someword-specificphonemessuchas‘iy _the”, and somedi-
phoneunits, suchas “st” Symbolssuchas “sroot” and “fcn”
identify the syllablecategory. Seetext for furtherdetails.

dencies. The resultingcolumn-bigrammodelis written out as
a finite statetransducerwith phonesasthe input symbolsand
phonemesn ANGIE’s preterminallayer asthe outputsymbols.
In addition, at eachadvanceto a new syllable,it emitsthe syl-
lable layer symbol (encodingstressedoot, function word, pre-
fix, etc.),which hasthe desiredeffect of preservinghe distinct
statisticsof thesesyllabletypes.

3.5. Assembling the Speech Recognizer

We have describedh procedurdo createafinite statetransducer
mappingphonesto ANGIE’s sub-vord units, with probabilities
attachedo the arcsreflectingthegeneralizedbsenationspace.
Now we will describehow it is incorporatednto the suMMmIT
recognitionframenork, to be combinedwith aword lexiconand
then-gramlanguagemodel.

As mentionedn Section2, SUMMIT usesa phonemicallybased
lexicon, which is thenexpandednto unweightedphoneticpro-

nunciationsby utilizing formal phonologicakules. We replaced
this lexicon with a new set of baseformsghat reflect ANGIE'S
phonemdayer symbolset,which is enhancedo include mark-
ers for stress(+) and onset(!) position, as well as somedi-

phoneunits suchas “st” In all, there are about 140 unique
phonemeunits. In addition, the syllable-identitysymbolsare
insertedat the end of eachsyllable, consistentwith the phone-
phonemeST. Someexamplesof lexical entriesin ANGIE’s for-

mataregivenin Figure3. Thephone-phonemESTis thencom-
posedwith this new basefornfile to yield atransducerPso L 4,

mappingphonesto words with weightson the arcs. The rest
of the recognizerconstraintsC' and G, arekeptthe same;and
the searchspaces constructedn the sameway asdescribedn

Equationl.

Figure4 illustratesa portion of thelexical network representing
the alternatve pronunciationsalong with associategrobabili-
ties for the word sequencéin the” Notice that, for example,
“in” canberealizedasasyllabicnasal(/en/),andtherulesallow
for a “stop-like” /dh/ via an optionalinsertionof a closurein-
tenal (/dcl/). Thevowelsfor thesefunctionwordshave several
differentrealizations.
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| Set | No. Utts. | Baseline| + Angie PM |
testall 848 17.3 16.3
testclean 759 13.9 13.0
testnoisy 89 41.9 39.6

Table 1. Speechrecognitionperformance(in word error rate)
for a systemwhich utilized an ANGIE pronunciationmodel, as
contrastedvith a baselinesystemthat utilized the sameset of
phonologicalruleshbut lacked probabilitieson the arcs. Results
aregivenontheoverallset,aswell asonthe“clean” and“noisy”
sub-sets.

4. EVALUATION EXPERIMENTS
4.1. Speech Recognition

To demonstratéheviability of thisapproachwe trainedthesys-
tem on a corpusconsistingof a mixed setof over 80,700utter
ancedrom the Jupiterweathedomain[9] and13,800utterances
from theMercuryflight resenationdomain[20], andtestedt on
anindependensetof 848 utterancesn the Mercurydomain.

The Mercuryrecognizehasa vocahlulary of 1636uniquewords
(withoutunderbars)however, multiple word unitsaredefinedto
build classn-grammodels.The baselinesystemandthe ANGIE
systemdiffer only in the pronunciationmodels: they usethe
samesetof vocahulary, classhigramandtrigramlanguagemod-
els, aswell asthe diphone-to-phonenappingFST The base-
line systemusesunweightedpronunciatiometworks, while the
ANGIE systemhas probabilitiesfor alternatve pronunciations
trainedusingthemethoddescribedn the previoussections Var-
ious parametersor thesetwo systemssuchasword andphone
transitionweights,and the weight of the ANGIE pronunciation
probabilities,are tuned on developmentdata, and the final re-
sultsarereportedon unseertestdata.

Table4.1 summarizeshe recognitionperformanceof the base-
line andthe ANGIE system®nthetestset.We wereableto real-
ize a 5.8%relative reductionin word error ratewith the ANGIE

pronunciationmodel, and the improvementsare consistenton

bothcleanandnoisyutterances.

4.2. Speech Understanding

For spolen dialogue systems, speechunderstandingperfor
manceis a moresignificantmetric thanspeechrecognitionper
formance. In this regard, we also evaluatedthe concept error
rate whentherecognizeiis usedwith a naturallanguageunder
standingsystemto producea meaningrepresentationencoded
asasetof [key: valud pairs. The [key: valud pairsobtainedby
parsingthe N-bestlist are comparedagainstthoseobtainedby

| Set
| testall |

| No. ParsedUtts. | Baseline| Angie PM ]
729 [ 119 | 104 |

Table 2. Speechunderstandingerformancegin concepterror
rate)usinga recognizemhich utilized an ANGIE pronunciation
model,ascontrastedvith a systemusinga baselinerecognizer
without probabilitieson the pronunciatiorarcs.

parsingtheorthographidranscriptionandtheconcepterrorrate
wascomputedn asimilarway astheword errorrate. Out of the
entiretestset,we areableto parseabout86% of the utterances
(full parseor rohustparse).Therestof the utterancegailed be-
causethey areout-of-domainor incomplete or becausef gaps
in the parsecoverage. They are excludedfrom this evaluation
dueto the lack of referencelkey: valug pairs. Table 2 sum-
marizesthe concepterror rateson the parsedsubsefor the two
recognizersThe conceperrorratewasreducecby 12.6%when
the ANGIE pronunciatiormodelis usedin recognitionwhichis
asubstantiallygreaterelative gainthanwasobtainedor speech
recognition.

We have two possibleexplanationsfor the differencein perfor

mancegainsfor speechrecognitionas opposedto speechun-
derstanding. The first one is that, without probability train-
ing, wordswith mary alternatve pronunciationsbtainan un-
intendedboostbecaus®f the multiple waysthatthey canmatch
againstthe lexical entries. We have obsenred that short func-
tion wordsoften have muchbushierphoneticexpansionglueto

their stronginfluencefrom externalword context, aswell astheir
tendeng to bereducedsee for example,Figure4). By supply-
ing probabilitiesto their alternatie arcs,we effectively reduce
their relative total word score leadingto a reductionin recogni-
tion performancen thesefunctionwordsascontrastedvith the
contentwords. However, wordslike “a” and“the” aretypically
ignoredat the level of conceptunderstandingand hencetheir
poorerperformances of no consequenct® understanding.

Anotherexplanationis thatthe utterancesvhich fail to parsepn
average performlesswell whenprobability trainingis included.
This could be correlatedwith their tendeng to include words
thatarerarelyused.andhencethatmight suffer from inadequate
obsenationtraining.

5. SUMMARY AND FUTURE WORK

This paperdescribeour experimentsn parsingwordsinto their
linguistic substructurejn order to obtain a probability model
to accountfor alternatve phoneticrealizationsof words. We
wereableto leverageexisting SUMMIT speecthrecognitiontools,
including the standardset of phonologicalrules and the stan-



dard classn-gram languagemodels. An FST mapping sub-
word structureto phoneticrealizationswith associategroba-
bilities wasderived by parsinga large corpusof obsened pho-
neticsequencegndreinsertednto therecognizersfull FST, re-
placingtheoriginal componenfST, which hadno probabilities.
In speectunderstandingxperimentswe wereableto obtaina
12.6%relative reductionin concepterrorrate.

An obvious extensionof this work is to integrateit with the
researchdescribedn a companionpaper[13]. In their work,
Hazenet al. have determinedhat,in the absencef probability
training on the phonologicalvariants,a systemwith a parsimo-
nioussetof phonologicakulesis superiorto a systemwhich has
thefull setof standardsumMmIT rules,in termsof bothmemory
requirementsandrecognitionaccurag. The parsimonioussys-
tem was obtainedby only retainingrulesthat involve deletions
and/orinsertions,thus eliminating schwa reduction,palataliza-
tion rules, etc. A retrainingof the modelsis a necessargon-
currentstep. It would beinterestingto seewhethera framewvork
utilizing the parsimoniougule setcanbenefitfrom our proba-
bility trainingmethodso the sameextentaswasrealizedin our
experiments.

We also plan to apply our approachwhich incorporatessub-
word linguistic hierarchyin modeling phoneticvariations, to
switchboarddata. As mentionedn Sectionl, a study[16] has
demonstratedreatpotentialfor recognitionimprovementswith
effective pronunciationmodeling. In addition, an analysisof
phoneticallytranscribeddata[11] shaved a needto accountfor
syllable structureandmorphologyin predictingphoneticvaria-
tions. It will beinterestingto testthe effectivenessof our mod-
eling approachn this challengingdomain.
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