
Scalable and Portable Web-Based Multimodal Dialogue Interaction
with Geographical Databases

Alexander Gruenstein, Stephanie Seneff, and Chao Wang

Spoken Language Systems Group
MIT Computer Science and Artificial Intelligence Laboratory

The Stata Center, 32 Vassar Street, Cambridge, MA 02139, USA
{alexgru,seneff,wangc}@csail.mit.edu

Abstract
We describe work towards developing a scalable and portable
framework for enabling map-based multimodal dialogue interac-
tion over the web. Working in the context of a restaurant-guide
system, we show how large information databases harvested from
the web can be accommodated in our speech recognizer, parser,
and web-based GUI. We compare two dynamic language model-
ing techniques, which calculate context-dependent weights for the
large sets of proper nouns associated with geographical entities
such as restaurants and streets. We show that the more fine-grained
approach results in a 7.8% reduction in concept error rate.
Index Terms: multimodal dialogue system, language modeling,
restaurants, maps, world wide web

1. Introduction
In building multimodal dialogue systems for database access, it
is important to focus on both the portability and the scalabil-
ity of their infrastructure. By portable, we mean that the infras-
tructure should be independent of the type of entities constitut-
ing the underlying database. In practice, this might mean that
the same infrastructure could be used to build dialogue systems
for a particular “class” of databases – in this paper, we focus on
the class which contains geographically situated entities such as
restaurants, hotels, and apartments. By scalable, we mean both
that the same infrastructure should work equally well for small and
large databases, and, in the case of geographical databases, that
the infrastructure should support easily switching among different
geographical regions – such as, for example, among different ma-
jor metropolitan areas. Issues of both portability and scalability
apply to all of the major technology components of dialogue sys-
tems: speech recognition, language understanding, dialogue man-
agement, language generation, speech synthesis, and the graphical
user interface (GUI). In previous research, we have shown progress
with regard to the portability of dialogue management [1], and we
have shown how cross-domain fertilization and simulation can cre-
ate portable language models for speech recognition [2, 3].

In this paper, we show how a restaurant guide dialogue sys-
tem can be scaled to handle a large database of restaurants har-
vested from web sources. While our lab has developed several iter-
ations of a restaurant-guide dialogue system [4], and other groups
have also developed interesting applications backed by geographi-
cal databases (e.g. MATCH [5], AdApt [6]), the system described
in this paper stands out in that it both has comparable coverage
to commercially available web-based databases, and it can seam-

U1: Show me Greek restaurants in Boston.
S2: There are six Greek restaurants in Boston. [shown on map]
U3: What are the hours for Steves?
S4: Here are the hours for Steves Restaurant: From Monday to Satur-

day 7:30am - 11:00pm, Sunday 10:00 am - 10:000pm.
U5: Are there any Italian restaurants along this street. [draws line]
S6: There are 12 Italian restaurants along this street. [shown on map]
U7: Show the web page for this one. [circles a restaurant]
S8: OK. [displays web page from which the data was harvested]
U9: I’d like to add a landmark here. [clicks mouse on location]
S10: OK. [dialogue box displayed for user to type name]
U11: [user types: “Fenway Park”]
S12: OK. I have added a landmark named Fenway Park. [shows it]
U13: Are there any cheap restaurants near Fenway Park?
S14: There are 12 inexpensive restaurants near Fenway Park.[displayed]
U15: [Clicks drop down menu to select “San Francisco”]
U16: Are there any cheap restaurants near 100 Santa Cruz Avenue in

Menlo Park?
S17: There are five inexpensive restaurants near there. [shown on map]

Figure 1: An example interaction, labeled with U for user, S for
system. Gestures and system actions are bracketed. Some system
remarks were shortened for brevity.

lessly switch among different metropolitan areas. A critical fac-
tor in such genericity is the effective contextualization of proper
nouns such as restaurant, city, neighborhood, and street names.
This depends on the recognizer’s ability to rapidly reconfigure it-
self to support a subset of the full vocabulary that is appropri-
ate given the immediately preceding dialogue interaction. Each
metropolitan region – and, in fact, each city and neighborhood
within each metropolitan region – is associated with a specific
set of licensed proper nouns, which can be swapped in and out of
the recognizer dynamically at each dialogue turn. The system can
be configured such that the set of dynamically available nouns is
based only on the metro-region under discussion, or such that the
nouns are swapped with more fine-grained control based on the
current dialogue context. Furthermore, because all proper nouns
are encapsulated in dynamic classes, language model training data
for one metro region are applicable generally to all regions, as
the data consist mostly of the “glue” language encompassing the
proper nouns. Despite the fact that the individual proper nouns do
not appear in the training data, appropriate within-class probabil-
ity distributions can be derived based on frequency counts in the
database. Finally, because the recognizer tags these proper nouns
in its output (e.g., <$city> Menlo Park </$city>), the parser can
be agnostic to the contents of the proper name classes.

While the methods we discuss in the paper are applied to the
restaurant-guide domain, we believe they are portable to other

Figure 2: Screenshot of the restaurant guide user interface.

multimodal database-access applications as well. Of particular
note is that the GUI is quite generic in its ability to provide a mul-
timodal interface to geographically situated entities. It consists of
a dynamic web page which is accessible via any web browser, and
accepts multimodal input in the form of speech, typed input, and
mouse (or pen) gestures such as circles, lines, and clicks on par-
ticular items. It displays the system’s responses as text and plays
back synthesized speech. To the best of our knowledge, this is the
first multimodal dialogue system accessible entirely via the web.
An example interaction with the system is provided in figure 1,
while figure 2 shows a screenshot of the multimodal interface.1

The remainder of this paper is organized as follows: section 2
describes the automatic procedure to harvest a database from web
sources. Section 3 describes the overall system in more detail,
highlighting features that enable the example dialogue in figure 1.
Section 4 provides a system evaluation based on data collection
experiments, comparing two different dynamic language modeling
techniques. Section 5 concludes and looks to the future.

2. Harvesting the Database
The data for the system are gleaned from crawling restaurant
databases available on the web. We currently have data for seven
major metropolitan areas in the United States: Austin, Boston,
Chicago, Los Angeles, San Francisco, Seattle, and Washington
D.C. Acquiring more data is a fully automated process, which
begins with a custom-built web spider scraping restaurant infor-
mation from sources on the web. Depending on the metropolitan
area, this data may include anywhere from around 50 to 250 nearby
cities, containing from 3,000 to 17,000 restaurants.

A sequence of steps then transforms the harvested data into a
structured database suitable for generic filtering, as well as into an
exhaustive proper noun vocabulary relevant for interacting with
that database. An aspect that is often overlooked is the some-
what tedious task of verifying that the harvested proper nouns are
well-formed and adequately cover the expected usage model. The
speech recognizer and synthesizer both rely on a letter-to-sound
system to generate appropriate pronunciations for any uncommon
extracted words. Thus an abbreviation like “pzzr” has to be con-
verted to its full form, “pizzeria,” to be properly processed. The
clean-up phase is governed by a generic set of rules specified in
a configuration file. The rules are contextualized to the database
field and support special instructions for match condition and ap-
propriate action. Aside from certain special cases (such as “st”
in “st lorraine” which should be rewritten as “saint” instead of

1A video demonstration of the system can also be viewed online at this
URL: http://www.mit.edu/∼alexgru/rest-videos/

Original string harvested from the web:
"lunch tue-fri 11:30am-1:30pm;
dinner mon-thu 5:30pm-9:30pm
fri 5:30pm-10pm sat ... "

Structured representation:
{c hours

:meal "lunch" :days "tu we th fr"
:start_time 1130 :end_time 1330
:and {c hours :meal "dinner"

:days "mo tu we th"
:start_time 1730 :end_time 2130
:and REMOVED FOR BREVITY ... }}

Figure 3: Input format of the harvested hours information (top)
and resulting structured representation after parsing and process-
ing, abbreviated (bottom).

“street”), a large percentage of the clean-up operations can be ap-
plied generically to restaurant data for all cities.

The next step is to generalize the restaurant names, since users
will often not refer to a restaurant by its entire name as specified in
the database. Appropriate aliases need to be algorithmically gen-
erated to augment the recognizer’s vocabulary. While it is logical
that words like “restaurant” and “grill” can be omitted, one has
to take care not to generate “bar and” from “bar and grill,” or li-
cense an alias that is dangerously confusable, for example, licens-
ing “Boston” as an alias for “Boston Cafe.” Again, a framework is
developed which enables the developer to characterize the appro-
priate rules succinctly, and exceptions can be noted.

The most sophisticated of the database processing procedures
is the one that handles the hours, which need to be fully parsed
to obtain an appropriate meaning analysis. Figure 3 illustrates the
processing of a restaurant “hours” field into a structured key-value
representation. A context free grammar handles most of the dif-
ferent observed variants on abbreviated hours strings, producing
a structured format which allows the system to filter on questions
like, Are they open for lunch on Sunday? Language generation
rules paraphrase from the structured form into fluent English for
system replies concerning hours information.

3. System Architecture
The overall system architecture is depicted in figure 4. The inter-
face to the system is presented via a client-server model in which
the user navigates to a web page that presents the user interface.
Speech, typed, and gesture inputs are communicated to the server,
where all dialogue processing occurs. The server then sends syn-
thesized speech directly to the client where it is played locally,
and it communicates database query results to the client via an in-
termediary servlet, where they are displayed on the dynamic web

GUI
Bridge
Servlet

Web ServerWeb Browser Galaxy

HubGesture
Recognition

Audio Client
Applet

Javascript
Program

Language
Processing

Language
Generation

Dialogue
Management

Database

Context
Resolution

Speech
Synthesis

Speech
Recog

Google�
Maps

Figure 4: Architecture Diagram

page in the user’s browser. On the server side, the Galaxy archi-
tecture [7] provides for a hub-based interaction among the speech
recognizer, synthesizer, parser, context resolution server, dialogue
manager, and database.

3.1. GUI and Audio Front-End

A screenshot of the GUI appears in figure 2. It consists of a dy-
namic web page centered around a GoogleTMmap, and can be ac-
cessed via any web browser. The application interacts with the
map programatically via a publicly available application program-
ming interface.2 Messages are passed between the GUI web page
and the dialogue infrastructure using AJAX3 techniques, allowing
a high degree of responsiveness not typically found in web ap-
plications. On the web server, a GUI Controller Servlet moderates
traffic between the front-end web page and the Galaxy architecture
used by the other dialogue system components. Audio communi-
cation is controlled via a Java applet embedded in the page which
provides a push-to-talk button and endpointing. Speech and syn-
thesized audio are streamed across the network as needed, as the
dotted lines in the diagram indicate.

The GUI can display any type of geographically situated en-
tity, and as such serves as a generic map-based front-end. In
the restaurant-guide application, such entities include restaurants,
cities, and user-defined landmarks. Currently in-focus entities are
displayed to the right of the map as either a simple list, or sorted
into a tree structure based on attributes.

Finally, the user can draw on the map while speaking, permit-
ting multimodal commands like those in figure 1. Visible entities
may be circled, as in U7. Strokes that form points or lines are rec-
ognized, as illustrated in U5 and U9. Arbitrary regions may also be
circled, allowing commands such as Show cheap restaurants here.
Gesture recognition is performed using the algorithms described
in [8].

3.2. Linguistic Processing

In this section we briefly describe the various system components
that are involved with understanding and interpreting the user’s
questions. The interested reader can consult the provided refer-
ences for further detail.
Speech Recognition: The SUMMIT system, specifically the ver-
sion in [4] which supports dynamic language model manipulation,
is used. The n-gram language model contains several dynamic
classes: $restaurant, $street, $city, $neighborhood, and $land-
mark, whose contents may change over the course of dialogue in-
teraction, reflecting dialogue context. Each class is a finite state
transducer (FST) which can be sewn into the parent recognizer’s
main FST at any time, expanding into the appropriate vocabulary

2See http://www.google.com/apis/maps
3Asynchronous Javascript and XML

whenever that class appears in the upper layer of the FST (see [9]).
Each class is automatically tagged in the output string to support
linguistic analysis.
Language Understanding and Language Modeling: For lan-
guage understanding we utilize a lexicalized stochastic syntax-
based context free grammar, specialized for database query ap-
plications. The recognizer’s class n-gram language model is au-
tomatically derived from the grammar, using techniques described
in [10]. Both static and dynamic classes are specified. While the
words populating dynamic classes are constantly changing during
a dialogue, the NL grammar remains static by utilizing the tags
provided by the recognizer to aid in parsing and assigning proper
roles to the (unknown) proper nouns. The n-gram weights have
been trained using a small corpus of transcribed developer interac-
tions with the system.
Multimodal Context Resolution: All entities introduced into the
discourse either verbally (by the user or by the system) or through
gesture are added to a common discourse entity list. A heuristic
algorithm described in [11] resolves plausible anaphors for deictic,
pronominal, and definite noun phrases.
Response Planning and Generation: A generic dialogue man-
ager [1] filters the database based on user-supplied constraints and
prepares a reply frame encoding the system’s intended response,
which is then converted to a surface-form string using the GENE-
SIS generation system [12] and finally to a synthesized waveform
using a commercial speech synthesizer. A separate multimodal re-
ply frame is converted to XML by GENESIS to update the set of
entities shown on the GUI.

3.3. Dynamic Language Modeling

As mentioned above, the language model contains dynamic
classes, whose contents can be manipulated prior to recognizing
each utterance based on the current context. The $landmark class
provides a straightforward example of how the contents of a dy-
namic class may change. Utterances 9-14 in figure 1 demonstrate
how a user may enroll a new landmark into the system’s vocabu-
lary by adding it to the landmark dynamic class, and refer to it in
subsequent interactions.

The system can be run in two different modes with regard to
how it populates the other four dynamic classes. In the first mode,
which we’ll refer to as per-metro, the contents of the $restaurant,
$street, $city, and $neighborhood classes are changed only when
the user selects a different metropolitan region: all restaurants,
streets, cities, and neighborhoods in the region are loaded into the
classes. In the second mode, which we’ll call context-specific, the
contents of the $restaurant and $street classes are manipulated in a
more fine-grained manner: they are updated at each user turn, de-
pending on the current restaurants, cities, neighborhoods, and mul-
timodally defined regions under discussion. For example, follow-
ing U5 in figure 1, only the names of the six Greek restaurants dis-
played on the map will be loaded into the $restaurant class. Simi-
larly, only the names of streets in the city of Boston will be loaded
into the $street class. In addition, if the system detects that the user
wants to change the context at hand by, for instance, mentioning
a city not currently in focus, then the system will dynamically re-
configure the language model before running a second recognition
pass over the same utterance to choose a new best hypothesis; an
approach previously shown to be effective in [13]. An example of
such a two-pass recognition occurs for U16 in figure 1. The re-
sult from the first pass “Are there any cheap restaurants near 100
$street oov in Menlo Park,” utilizes the out-of-vocabulary (OOV)

WER CER
per-metro 27.1% 30.4%

context-specific 26.1% 28.0%
relative reduction 3.7% 7.8%

Table 1: Word/Concept error rates

model for the street name. Having identified Menlo Park as a new
city, the system loads the streets and restaurants in Menlo Park,
and performs a second recognition pass.

Finally, counts from the database of the number of restaurants
on each street, and in each city or neighborhood are used to weight
the contents of these classes. For example, the weight of a partic-
ular street name is proportional to one plus the number of restau-
rants on that street, normalized such that the weights sum to one.
Pilot experiments showed that such weighting resulted in slightly
lower error rates than did uniform weighting.

4. Evaluation
We performed a preliminary performance evaluation by logging
the interactions of 10 subjects who were asked to find at least four
appealing restaurants where they hadn’t eaten before. Two of the
restaurants were intended to be in the greater Boston area, while
the other two could be elsewhere. We collected 546 user utter-
ances, which were transcribed. A few users had interacted with
the system quite a few times, while the rest had never used the
system. Nine of the subjects (90%) completed the tasks.

We analyzed the user data to compare the performance of the
two different modes of dynamic language modeling described in
section 3.3. A priori, it is difficult to know which mode should
perform better. While the per-metro mode allows the user to say
any restaurant or street name at any time, it is natural to expect that
the context-specific mode would more accurately recognize streets
and restaurants in focus as well as reduce the “misfiring” of non-
relevant restaurant and street names. The vocabulary excluding all
proper nouns is about 1050 words; however, the number of proper
nouns can exceed 30,000 in the per-metro mode.

The data were collected using the context-specific language
model configuration, and then the recorded utterances were rec-
ognized again in an offline process using the per-metro language
model configuration. Table 1 shows the overall word error rates
(WER) and concept error rates (CER) in each condition. The CER
was evaluated on a subset of 457 utterances (83.7% of the test
data), whose transcripts could be parsed to provide a reference.
There are in total 22 types of concepts, and each parsable utter-
ance contains 2.2 concepts on average.

While the difference between the two systems is not pro-
nounced, the context-specific system showed modest relative re-
ductions in word and concept error rates. In analyzing the dif-
ferences between the two language models, we found that users
sometimes did refer to restaurants and streets not currently deemed
by the system to be “in focus,” and which, hence, were not sup-
ported by the context-specific language model. This happened of-
ten when they were interested in a particular major street, or al-
ready knew the name of a restaurant in the metropolitan region.
It also occurred if they asked about a restaurant or street which
was recently discussed, but no longer deemed to be in focus. We
believe further gains could be made by loosening the restrictions
on the context-dependent language model – e.g., all proper nouns
could be active at once; however, the in-focus set could have a
much higher share of the probability mass. The weights of re-

cently discussed entities could also decay over time, rather than
immediately being set to zero.

5. Conclusion
We have discussed how generic techniques can be used to har-
vest a database from the web, and then integrate it into a scal-
able infrastructure for a multimodal dialogue system. We have
demonstrated that scalable language processing components can
be made agnostic to the particulars of each database entry. More-
over, we have compared two generalizable techniques for dynamic
language modeling in applications that access large databases, and
have shown how database contents can be used to assign appropri-
ate within-class weights to proper nouns. Finally, our architecture
is portable to other geographical database database applications,
particularly the map-based multimodal GUI.

6. Acknowledgments
This research is sponsored by the T-Party Project, a joint research
program between MIT and Quanta Computer Inc., Taiwan.

7. References
[1] J. Polifroni, G. Chung, and S. Seneff, “Towards the automatic gen-

eration of mixed-initiative dialogue systems from web content,” in
Proc. of EUROSPEECH, 2003.

[2] G. Chung, S. Seneff, and C. Wang, “Automatic induction of language
model data for a spoken dialogue system,” in Proc. of SIGdial, 2005.

[3] C. Wang, S. Seneff, and G. Chung, “Language model data filtering
via user simulation and dialogue resynthesis,” in Proc. of INTER-
SPEECH, 2005.

[4] G. Chung, S. Seneff, C. Wang, and L. Hetherington, “A dynamic
vocabulary spoken dialogue interface,” in Proceedings of INTER-
SPEECH, 2004, pp. 327–330.

[5] M. Johnston, S. Bangalore, G. Vasireddy, A. Stent, P. Ehlen,
M. Walker, S. Whittaker, and P. Maloor, “MATCH: An architecture
for multimodal dialogue systems,” in Proc. of ACL, 2002.

[6] J. Gustafson, L. Bell, J. Beskow, J. Boye, J. E. Rolf Carlson,
B. Granström, D. House, and M. Wirén, “AdApt a multimodal con-
versational dialogue system in an apartment domain”,” in Proc. of
ICSLP, 2000.

[7] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue, “Galaxy-
II: A reference architecture for conversational system development,”
in Proc. ICSLP, 1998.

[8] S. B. Wang, “A multimodal Galaxy-based geographic system,” M.S.
thesis, MIT Department of Electrical Engineering and Computer Sci-
ence, 2003.

[9] J. Schalkwyk, I. L. Hetherington, and E. Story, “Speech recognition
with dynamic grammars using finite-state transducers,” in Proc. of
EUROSPEECH, 2003.

[10] S. Seneff, C. Wang, and T. J. Hazen, “Automatic induction of n-
gram language models from a natural language grammar,” in Proc.
of EUROSPEECH, 2003.

[11] E. Filisko and S. Seneff, “A context resolution server for the Galaxy
conversational systems,” in Proc. of EUROSPEECH, 2003.

[12] L. Baptist and S. Seneff, “Genesis-II: A versatile system for language
generation in conversational system applications,” in Proc. of ICSLP,
2000.

[13] I. L. Hetherington, “A multi-pass, dynamic-vocabulary approach to
real-time, large-vocabulary speech recognition,” in Proc. of INTER-
SPEECH, 2005.

