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Abstract
JUPITER is a conversational system that allows users to ac-
cess weather information over the telephone using natural
speech [1]. This work examines the use of prosodic informa-
tion to predict speech recognition errors more accurately for im-
proved system robustness. Two approaches were explored here.
The first approach is based on a probabilistic confidence scor-
ing framework, which uses prosodic cues as additional features
to improve both utterance-level and word-level confidence scor-
ing. The second approach aims at scoring part of the prosodic
space, focusing on phrases that bear important communicative
functions. We explored the feasibility of characterizing directly
the F0 contours of some carefully selected English phrase pat-
terns. We envision that these models can be applied to resort
recognizer N -best outputs or to support rejection.

1. Introduction
This paper explores the use of prosodic aspects of speech to
aid in the recognition and understanding of spontaneously spo-
ken utterances. The research is conducted within the framework
of the JUPITER weather-information domain, mainly because
we have available a large corpus of utterances collected from
natural telephone dialogues with a conversational system. The
first half of the paper concerns the use of typical prosodic fea-
tures, mainly fundamental frequency of voicing (F0), energy,
and duration, to improve confidence scoring, both at the word
and at the utterance levels. The second half explores the much
less well-defined area of higher level prosodic contours, and at-
tempts to formulate concrete methods to utilize them in assess-
ing the plausibility of a hypothesized utterance. We formulate
a methodology, and attempt to discover any reliable patterns in
the F0 contour.

2. Confidence Scoring
Prosodic information can potentially assist in confidence scor-
ing for several reasons. Hyperarticulated speech [2], which is
associated with a slower speaking rate and increased F0 and
loudness, is likely to lead to degradation in speech recognition
performance [3]. Furthermore, there are several prosodic cues
to speech artifacts. For example, background speech from ex-
traneous talkers is likely to be much weaker than the conver-
sant’s speech. Finally, incorrect hypotheses can exhibit anoma-
lous prosodic aspects due to such obvious errors as an inap-
propriate stress pattern. We anticipate that “unusual” prosodic
measurements will thus be indicative of speech recognition er-
rors.

We have observed that utterances with a high percentage
of internal silence are more likely to be incorrectly recognized.
The internal pauses are usually associated with hesitation, em-

phasis, or hyperarticulation. Utterances with high mean F0 are
also more likely to be incorrectly recognized. This is consistent
with the recognition results that female and child speech have
considerably higher error rates.

We will first introduce previous work done by Hirschberg
and colleagues on using prosodic cues in utterance-level confi-
dence scoring. We then describe the confidence scoring frame-
work used in our experiments. Finally, we report the utterance-
level and word-level confidence scoring experiments in detail.

2.1. Related Research

The idea of predicting speech recognition performance from
prosodic cues has been explored by Hirschberg et al. [4, 5]
on a couple of recognition systems and application domains.
Eight prosodic features were examined as potential cues to pre-
dict system errors in recognizing or understanding each user
utterance. These features include maximum and mean F0 val-
ues, maximum and mean energy values, total duration, length
of the pause preceding the turn, number of syllables per sec-
ond in the turn (tempo), and percentage of silence within the
turn. Statistically significant differences were found in the mean
values of a subset of these prosodic features between correctly
recognized and misrecognized user turns. A rule-based classi-
fier performed accept/reject decisions on recognition outputs, in
conjunction with other information such as acoustic confidence
score, language model, recognized string, likelihood score, and
system prompt.

The results suggest that the efficacy of prosodic features
depends highly on the quality of the recognition system. In the
system which used “older” recognition technology and “poorer
performing” acoustic and language models, the prosodic fea-
tures achieved a large improvement over using acoustic confi-
dence alone (over 50% reduction in classification errors), and
the best-performing rule set included prosodic features. How-
ever, in the system which was better trained for the recognition
task, prosodic features improved only modestly over acoustic
confidence features alone (less than 7% error reduction).

2.2. Experimental Background

In this section, we provide the basic approach of the confidence
scoring module, the speech data, and the labeling of the data.
For more details, please see [6, 7, 8].

The confidence scoring module, developed by Hazen et al.,
is based on a Bayesian formulation. For each recognition hy-
pothesis, a set of confidence measures are computed to form
a feature vector, which is reduced to a single dimension us-
ing a simple linear discrimination projection. Distributions of
this raw confidence score for correct and incorrect hypotheses
are obtained from the training data. A probabilistic confidence
score is then obtained using maximum a posteriori probabil-



mean F0 mean F0 of all vowels
max F0 maximum F0 of all vowels
mean pv mean probability of voicing of all vowels
mean energy mean RMS energy of all vowels
max energy maximum RMS energy of all vowels
duration duration of the utterance
pause1 duration duration of silence before the utterance
pause2 duration duration of silence after the utterance
% silence percentage of silence (as indicated by

sum of inter-word pause durations)
speaking rate sum of expected vowel durations

over sum of measured vowel durations
num syllables the number of syllables in the utterance
tempo number of syllables / total duration

Table 1: Utterance level prosodic features used in experiments

ity (MAP) classification, with the raw confidence score as the
input. The threshold of the MAP log likelihood ratio can be
varied to set the operating point of the system to a desired lo-
cation on the receiver-operator characteristic (ROC) curve, to
balance between high detection rate and low false alarm rate.

Hazen’s confidence models used 15 features for detecting
utterance-level recognition errors, and 10 features for detect-
ing word-level recognition errors. These features measure how
well the input speech fits the underlying models used by the
system, as well as whether there are many competing hypothe-
ses that have similar scores. For example, the total utterance
score (i.e., the sum of acoustic, language model, and pronuncia-
tion model scores) for the top sentence hypothesis measures the
overall quality of this hypothesis, while the drop in total score
between the top hypothesis and the second hypothesis in the N -
best list measures the “distance” between competing hypothe-
ses. The complete inventory of the 25 utterance and word fea-
tures can be found in [8]. These features, which will henceforth
be referred to as ASR (Automatic Speech Recognition) features,
are used to train baseline utterance and word confidence mod-
els, to be compared with confidence models augmented with
prosodic cues. The comparison will be based on the figure of
merit (FOM), i.e., the area under the ROC curve, and the mini-
mum classification error rate.

In training, an utterance is marked as incorrectly recognized
if there are any errors in the best sentence hypothesis. This fol-
lows the example in Hirschberg’s experiments, thus promoting
direct comparison. Only words in the top sentence hypothesis
are used for training. About 39.4% of the 2334 test utterances
had at least one error, and 16.6% of the words were incorrect.

2.3. Utterance-level Experiments

We have selected twelve utterance-level prosodic features as po-
tential candidates for predicting speech recognition errors, as
described in Table 1. Three features are related to F0, two
are associated with energy, and the remaining seven features
capture various kinds of timing information. F0 is determined
completely automatically for all of our experiments, and is com-
puted using the algorithm described in [9].

There were differences in both the means and variances of
the prosodic measurements between correctly and incorrectly
recognized user turns, with the variances generally larger for
misrecognized utterances. Given that the confidence scoring
module uses a probabilistic framework, we believe that a mu-
tual information measure will be a good indication of the effec-
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Figure 1: ROC curves of utterance-level speech recognition er-
ror detection using only ASR features and using both ASR and
prosodic features.

System FOM MER Significance
Baseline .900 16.9 %
+ Prosodic Features .912 15.6 % .018

Table 2: Figure of merit (FOM) and minimum classification er-
ror rate (MER) for the utterance-level confidence scoring with
only ASR features and with ASR and prosodic features com-
bined. The McNemar significance level between the two classi-
fication results is also listed.

tiveness of each confidence feature.
We computed the mutual information between each utter-

ance feature and the utterance correctness label, for both the
ASR and the prosodic features. The features with the highest
mutual information are from the ASR system. This is not sur-
prising, because the ASR features are directly linked to the per-
formance of a recognition system. Nevertheless, some prosodic
features also provide significant information about the labels.
In particular, the percentage of silence within an utterance, av-
erage and maximum F0 values, utterance duration and tempo
are among the “best” prosodic features.

We compared the performance of utterance-level ac-
cept/reject decisions with only ASR features and with ASR and
prosodic features combined. All fifteen ASR features improved
the performance on the development data when added incre-
mentally to the feature set. If both ASR and prosodic features
are used, 25 out of 27 features improved the performance on the
development data when added incrementally.

Figure 1 plots the ROC curves of the utterance-level classi-
fication experiments on the test data. The addition of prosodic
features pushed the ROC curve towards the upper-left corner
slightly. The figure of merit and the minimum classification
error rate are summarized in Table 2 for the two system con-
figurations. The McNemar significance level between the two
classification results is 0.018. Thus, the improvement is statis-
tically significant given a 0.05 threshold.

2.4. Word-level Experiments

We have examined nine word-level prosodic features as poten-
tial candidates for predicting word-level speech recognition er-
rors, which are directly analogous to the utterance-level fea-
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Figure 2: ROC curves of word-level confidence scoring using
only ASR features and using both ASR and prosodic features.

System FOM MER Significance
Baseline .913 10.9%
+ Prosodic Features .925 10.2% 0.0005

Table 3: Figure of merit (FOM) and minimum classification er-
ror rate (MER) for the word-level confidence scoring with only
ASR features and with ASR and prosodic features combined.

tures. Three features are related to F0, two features are related
to energy, and the remaining four features capture various tim-
ing information of a hypothesized word.

As in the case of the utterance-level features, we com-
puted the mutual information between each word feature and
the word correctness ratio. The word energy features, which
have been normalized by the maximum utterance energy, are
among the “best” prosodic features. This is possibly because
they are good indications of background speech, as discussed
previously. As for utterance-level features, the top word fea-
tures are all ASR features. However, prosodic features compare
favorably to some ASR features; and more importantly, they
provide independent information, and hence, are more likely to
bring additional gain.

We obtained the performance of word hypothesis error de-
tection with only ASR features and with ASR and prosodic fea-
tures combined. All ten ASR features improved the detection
performance on the development data when added to the feature
set. In the experiment which used both ASR and prosodic fea-
tures, only the top 13 features improved detection performance
on the development data. Seven out of the 13 were prosodic
features.

Figure 2 plots the ROC curves of word-level classification
experiments on the test data. As shown in the figure, the ad-
dition of prosodic features also pushed the ROC curve towards
the upper-left corner slightly. Table 3 summarizes the FOM and
MER for the two system configurations. The McNemar sig-
nificance level between the two classification results is 0.0005,
which implies that the difference is statistically significant.

3. Phrase F0 Models
In the previous section, we demonstrated that prosodic features
were able to improve both utterance and word level confidence

scores. However, we have also found that utterance or word
based prosodic measures are usually noisy. In this section, we
develop a different framework, in which we model only part of
the prosodic space of an utterance, concentrating on phrases that
bear important communicative functions. We believe that such
an approach is more robust than trying to characterize the into-
nation of an entire utterance, especially for spontaneous speech.
We want to build acoustic models directly for certain linguistic
aspects in an utterance, without using prosodic labels as an in-
termediate layer. In this way, we can avoid the labor-intensive
prosodic labeling process as well as the necessity of predict-
ing prosodic labels from linguistic analyses. We can use data-
driven methods to derive distinct F0 patterns/categories for the
linguistic components in our modeling framework, which can
be regarded as analogous to prosodic labels. We envision that
the phrase models can potentially be applied to score the in-
tonation patterns of recognizer hypotheses, which can in turn
be used to resort the N -best outputs for improved recognition
accuracy or to support the rejection of erroneous hypotheses.

In this section, we examine the feasibility of such a frame-
work by performing a pilot study on characterizing the pitch
contours of some selected English phrases in the JUPITER do-
main. As a starting point, we select five common types of
phrases, such as “what is”, “tell me”, city names, etc., to carry
out our study. These phrases also carry important information,
so that they are likely to have a significant impact on the system
performance. We seek to answer the following questions in our
experiments:
(1) Can we identify phrase classes based on the F0 contour
alone?
(2) Does a phrase-level F0 pattern generalize across similar but
not identical utterances?
(3) Does each phrase class have some set of canonical patterns?
(4) Are there interdependencies among phrases in an utterance?
(5) Will this information be useful to speech recognition?

3.1. Related Research

Research on using intonation in the linguistic analysis of spo-
ken utterances has been sparse. Among the few inquiries re-
ported in the literature, most methods rely on an intermediate
prosodic transcription to serve as a bridge between the acoustic
realization of the intonation and the syntactic/semantic struc-
ture of the utterance [10, 11]. These methods need to address
several difficult issues. First, prosodic transcription, e.g., using
the ToBI convention for English [12], is a challenging and time-
consuming task, which makes it impractical to transcribe large
speech corpora manually. Secondly, automatic recognition of
intonational events (especially pitch accents, phrase tones, etc.)
from the acoustic signal is difficult and error-prone [13]. Third,
the mapping between prosodic events and the syntax/semantics
of an utterance is still poorly understood, except for a general
correspondence between prosodic phrase boundaries and syn-
tactic boundaries. For this reason, most studies have focused on
using prosodic phrase boundary locations to resolve syntactic
ambiguities [10, 14] or to improve parsing efficiency [11]. Al-
though there have been efforts towards automatically describing
and classifying intonation contours [15, 16, 13, 17], their use
in linguistic analysis or speech recognition has been limited,
largely due to the missing link with linguistic identities.

3.2. Experimental Design

One of the key issues in intonation modeling is to find an in-
ventory of model units. In our framework, we want to explore



<what is>: what is, how is, ...
<tell me>: tell me, give me, show me, ...
<weather>: weather, forecast, dew point, wind speed, ...
<SU>: Boston, Paris, Monday, ...
<US>: Japan, Detroit, tonight, ...

Table 4: Five common phrase classes and examples for each
class in the JUPITER weather domain.

the feasibility of directly modeling certain linguistic structures
in English utterances. Thus, we begin with a number of com-
mon phrases in the JUPITER utterances. In this way, the unit set
covers some “typical” basic linguistic patterns, and there will
be sufficient data for acoustic model training.

We have chosen only two-syllable phrases in our study,
mainly to evaluate the feasibility of our proposed approach.
Five classes of two-syllable words/phrases are selected, in-
cluding “<what is>”, “<tell me>”, “<weather>”, “<SU>”,
and “<US>”. Each “phrase” class consists of a list of
words/phrases with the same stress pattern, which have also
been chosen to have similar semantic properties, so that they are
likely to serve similar syntactic functions. In particular, each
phrase class consists of words that can be substituted into the
following sentence template to produce a well-formed sentence:

<what is> | <tell me> the <weather> in|for|on
<SU> | <US>

For example, the “<weather>” class contains words or com-
pound words like “weather”, “forecast”, “wind speed”, “dew
point”, etc., all of which have “stressed unstressed” stress
pattern and refer to some kind of weather information; the
“<US>” class consists of “unstressed(U) stressed(S)” two-
syllable words for place names or dates; while the “<SU>”
class consists of “stressed(S) unstressed(U)” two-syllable words
for place names or dates. Example words/phrases in each class
are listed in Table 4.

Utterances that match exactly the above sentence template
in the JUPITER corpus are chosen to form a test set. We will con-
duct experiments to classify the intonation contours of the five
phrase classes on this set, and to study the correlation of the in-
tonation contour patterns among the phrases in these utterances.
To ensure similarity between the training and test data for the
five phrases, an instance of a phrase is used for training only if
it occurs at particular positions in an utterance. Specifically, the
“<what is>” and “<tell me>” phrases are constrained to be
from the beginning of an utterance; the “<weather>” phrase is
limited to be from an intermediate position in an utterance; and
the “<SU>” or “<US>” phrases are selected only from the
end of an utterance. Thus, the training set consists of utterances
which contain the five phrases at positions described above, ex-
cluding those that match exactly the test sentence template. In
this way, we can ensure the independence of training and test
data and examine if the phrase F0 patterns can generalize across
similar but not syntactically identical utterances. The data se-
lection criteria are summarized and illustrated by some example
training and test utterances in Table 5.

To limit the scope of our initial investigation, we use only
F0-based measurements to characterize the phrase intonation
pattern. We describe the F0 contour of a phrase using its con-
stituent syllable F0 contours, each of which is characterized by
the F0 average and slope. The F0 contour for each syllable
is measured from the sonorant region only, which is determined

Test
what is|tell me the weather in|for|on SU|US
What is the weather in Detroit?
Give me the wind speed for Friday.

Train
what is|tell me ...
What is the humidity in Honolulu Hawaii?
Give me the weather for Chicago for tomorrow.
... weather ...
Yes, I would like to know the weather in New York.
Can you tell me the sun rise for anchorage?
... SU|US
Tell me the wind speed for concord new Hampshire today.
And what is the time in Frankfurt?

Table 5: Criteria for selecting training and test utterances (“|”
means “or”, and “...” means “any words”). Test utterances are
selected to match the “test” template. Training utterances are
selected to match any of the three “train” templates but not the
“test” template.

from time-aligned phonetic and word transcriptions. Thus, each
token will be represented by a four-dimensional vector, consist-
ing of the F0 averages and slopes of the two syllables.

3.3. Results and Discussions

Phrase classification We first perform classification experi-
ments to examine how well phrases can be identified by their
F0 contours. A principal component analysis is first applied
on the collection of training vectors to “whiten” the observation
space. Mixtures of diagonal Gaussian models are then trained
to characterize the distributions of the rotated feature vectors
for the five phrase classes. Maximum likelihood (ML) classi-
fication is used, because our purpose is to evaluate the ability
to identify phrases based on F0 information alone, without the
assistance/interference of priors. The F0 contour of each utter-
ance has been normalized by its mean value, to reduce variances
due to speaker pitch differences.

To examine how well the phrase models generalize from
training data to test data, we applied the phrase models to
classify the phrases in both the training and the test utterances.
The five-class classification accuracy is 60.4% on the training
data, and 56.4% on the test data. The performance on the
unseen test data is only slightly worse than that on the training
data. We conclude that there exists information in the F0

contours of the five phrases that can be used to distinguish
these phrases. Detailed classification confusions for test data
are summarized in Table 6.

Data clustering We performed K-means clustering on the
training tokens to identify any canonical F0 patterns associated
with each phrase class. As in the classification experiments, a
principle component analysis is applied on the four-dimensional
feature vector prior to the clustering, mainly to normalize the
variance on each dimension. In order to select the dominant
3 to 4 contour patterns for each phrase pattern, we trained a
diagonal Gaussian model for each data cluster, and classified
each token according to its preferred cluster group. Tokens that
score poorly against all of the Gaussian models are discarded,
and clusters with insufficient counts are pruned. Interestingly,



<what is> <tell me> <weather> <SU> <US> # Tokens
<what is> 45.82% 19.22% 25.63% 7.94% 1.39% 718
<tell me> 16.88% 53.25% 15.58% 9.09% 5.20% 77
<weather> 4.91% 0.63% 68.18% 12.45% 13.83% 795

<SU> 4.46% 3.42% 15.33% 52.53% 24.26% 672
<US> 3.25% 1.63% 13.01% 16.26% 65.85% 123

Table 6: Classification results for phrases in the test utterances. The reference labels are shown in the first column, the hypothesized
labels for the phrases are shown in the first row, and the number of tokens for each phrase class is summarized in the last column.
Overall classification accuracy was 56.4%
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Figure 3: Mean F0 contours for the “<US>” and “<SU>” phrase clusters, obtained by unsupervised clustering. Each phrase F0

contour is shown as a sequence of two syllable F0 contours, each represented by 4 connected samples. The number of tokens in each
cluster is given in parentheses after the cluster name.

if we discard from the training set all tokens that score poorly
against all of the dominant clusters, the 5-class classification
performance on the test set improves from 56.4% to 58.8%.

Figure 3 shows the dominant cluster groups for the
“<SU>” and “<US>” patterns, represented as the mean F0

contour of the constituent tokens. The subclasses of the
“<SU>” and “<US>” phrases are particularly “expressive”,
possibly due to the fact that these phrases are likely to be ac-
cented (because they convey important information such as a
place or a date), and they carry a phrase tone as well (because
they are at the end of an utterance). There are three patterns
for the “<US>” phrase: rising (“US-C0”), falling (“US-C2”),
and flat1 (“US-C3”). It is interesting to note that the contours
of the first syllable (unstressed) for the three subclasses are vir-
tually the same, while the large differences among subclasses
are only on the second syllable (stressed). This seems to be
consistent with intonation theory’s view that only stressed syl-
lables are likely to be accented. The first syllable does not carry
any intonational events, while the second syllable is responsible
for signaling both the accents (if any) and the phrase boundary
tone.

The “<SU>” phrase also has the basic rise, fall, and flat
patterns. However, the first syllable in the “<SU>” phrase
also demonstrates variations, possibly due to its role in carry-
ing pitch accents. In particular, the “SU-C1” and “SU-C4” pat-
terns have higher F0 levels for the first syllable. We suspect that
the first syllable in these two subclasses is more accented. The
“SU-C7” pattern is fairly “plain”, and its mean F0 contour is
very similar to that of the “US-C3” pattern.

We listened to some utterances labeled with the “SU-
C2” or “US-C0” patterns, and generally perceived a rising
(question) intonation. These subclasses possibly correspond

1The slightly falling slope of this subclass is likely due to an overall
F0 declination.

to the L∗ H−H% and L∗ L−H% patterns described in the
ToBI labeling convention [12]. However, we are unable to
systematically relate these acoustically derived classes to
categories defined in prosodic labeling conventions. It will
be interesting to perform the data clustering experiment on
prosodically labeled data to facilitate such comparisons.

Correlations of phrase patterns We have identified a set of
canonical F0 patterns for each phrase using a data-driven ap-
proach. We now use these subclasses to examine any correla-
tions among the acoustic realizations of the phrases within an
utterance, e.g., to determine whether certain subclasses of the
“<what is>” phrase are more likely to occur together with cer-
tain subclasses of the “<SU>” phrase. The test set is used to
carry out this study, because the utterances in the test set are
more homogeneous, and each contains exactly three phrases.

We use the mutual information measure to quantify the cor-
relation, which is based on the frequency counts of the phrase
subclasses in the test utterances. We trained a diagonal Gaus-
sian model using the training tokens in each phrase subclass,
and classified the phrases in the test utterances into one of the
subclasses. We then tabulated the number of each individual
subclass and the number of each subclass pair in the test utter-
ances, to compute the mutual information value.

Table 7 shows the results for each pair of “<what is>” and
“<weather>” subclasses, computed using 610 test utterances.
Figure 4 shows the contour for the most compatible subclass
pair, and Figure 5 shows the most incompatible subclass pair.

The “weather-C0” subclass (with a high, falling mean F0

contour) seems to have strong “preferences” with regard to
other phrase subclasses. For example, the mutual information
between “what is-C6” (with a very high, rising mean F0 con-
tour) and “weather-C0” is 0.67. From the mean F0 contours
of “what is-C6” and “weather-C0” shown in Figure 4, it seems



weather-C0 weather-C1 weather-C3

what is-C1 -0.16 0.42 -0.29
what is-C4 -0.58 0.06 0.06
what is-C6 0.67 -0.15 -0.10
what is-C7 0.12 -0.28 0.12

Table 7: Mutual information between “<what is>” and
“<weather>” subclasses calculated for phrases in utterances
matching “<what is> the <weather> in|for|on <SU>.” Mu-
tual information measures larger than 0.5 or smaller than -0.5
are highlighted in boldface. A total number of 610 utterances
were used in the computation.
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Figure 4: Example of a compatible subclass pair ( mutual infor-
mation = 0.67).

that these two F0 patterns may form one intonation phrase. On
the other hand, the mutual information between “what is-C4”
(with the lowest F0 among all subclasses of “<what is>”) and
“weather-C0” is -0.58, which suggests that these two patterns
are highly incompatible. The mean F0 contours of “what is-
C4” and “weather-C0” are shown in Figure 5. We think that it
is difficult (and unnatural) to start a “<weather>” word from
an F0 onset that is higher than the F0 offset of the preceding
syllable.

Although we are unable to derive a formal linguistic ex-
planation for these observations, it is interesting to know that
there exist certain correlations among phrases in an utterance.
We have developed a framework which is able to quantify these
correlations using statistical methods. Such information can po-
tentially be utilized to provide additional constraints in scoring
phrase level F0 patterns.

4. Conclusions
This paper has described two experiments aimed at utilizing
prosodic cues to improve spoken conversational systems. The
first experiment demonstrates that relatively simple prosodic
measures can enhance the performance of a confidence scoring
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Figure 5: Example of an incompatible subclass pair ( mutual
information = -0.58).

algorithm, at both the word and the utterance levels. The second
experiment was a pilot study whose main goal is to establish a
procedure for scoring for phrase-level prosodics without time-
intensive and error-prone manual labelling. For a selected set
of typical phrase patterns in JUPITER, we achieved a 5-class
test-set classification performance of 58.8%, using only F0 in-
formation. It remains to be seen whether this research will yield
direct benefits in recognition accuracy or in confidence scoring.
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