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Abstract

This paper describes our research aimed at acquiring a generalized proba-

bility model for alternative phonetic realizations in conversational speech. For

all of our experiments, we utilize the summit landmark-based speech recogni-

tion framework. The approach begins with a set of formal context-dependent

phonological rules, applied to the baseforms in the recognizer’s lexicon. A large

speech corpus is phonetically aligned using a forced recognition procedure. The

probability model is acquired by observing specific realizations expressed in

these alignments. A set of context-free rules is used to parse words into sub-

structure, in order to generalize context-dependent probabilities to other words

that share the same sub-word context. The model maps phones to sub-word

units probabilistically in a finite state transducer framework, capturing pho-

netic predictions based on local phonemic, morphologic, and syllabic contexts.

We experimented within two domains: the mercury flight reservation domain

and the jupiter weather domain. The baseline system used the same set of

phonological rules for lexical expansion, but with no probabilities for the alter-

nates. We achieved 14.4% relative reduction in concept error rate for jupiter

and 16.5% for mercury.
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1 Introduction

In the early years of speech recognition research, it was believed that an impor-

tant contribution to success would be the application of formal rules to account ex-

plicitly for predictable phonological reductions in certain contexts in conversational

speech (Cohen 1989; Gauvain et al. 1993; Weintraub et al. 1989; Zue 1983). Some

examples of such rules are shown in Figure 11 – rules which predict, for example, the

contexts for flapping an alveolar stop or for palatalizing an alveolar fricative.

(insert Figure 1 here)

As the hidden Markov model (HMM) framework gained in popularity, formal rules

tended to play a less prominent role. Instead, the assumption was made that context

effects could be handled via context-dependent acoustic models, thus accounting for

the variabilities in the Gaussian mixtures associated with these typically triphone

models. In part, this shift was predicated on an admission that perhaps we do not

understand the rules sufficiently well to formally characterize them.

With the recent trend towards a shift of attention from read to spontaneous speech,

such as the Switchboard corpus (Godfrey et al. 1992), the issue of accounting for pho-

netic variability has resurfaced as a significant research problem (Strik and Cucchiarini

1We will use the ARPABET convention for all phone representations in this paper. See

http://www.isip.msstate.edu/projects/switchboard/doc/education/phone comparisons/
for a detailed description of the symbol set.
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1999). For example, a “cheating” experiment reported in (McAllaster et al. 1998)

showed that the word error rate for a Switchboard test corpus could be reduced from

40% to 8% by explicitly accounting for the phonetic pronunciations in the lexicon

according to their actual realizations in the test corpus. However, many researchers

have shown that an overabundance of alternative lexical pronunciations without any

attempt to model their relative likelihoods can lead to a degradation in performance,

due to the increased chance of erroneously matching obscure alternatives. Further-

more, the technique of simply enumerating individual variants for each word in the

lexicon is tedious and shows little generality.

In the recent resurgence of interest in phonology, data-driven approaches have

played a much stronger role than in the early days, when knowledge-based ap-

proaches dominated the literature. One popular technique, as exemplified by the

work of (Cremelie and Martens 1999), is to allow for a generous set of confusions,

including substitutions, deletions and insertions, and then use a forced recognition

mode to search the expanded space for alternative, better scoring, deviations from the

canonical lexical forms. A large set of “rules” with associated probabilities can then

be gleaned from the observation space. Such an approach is attractive in that it is

able to generalize from observed words to unobserved words with similar surrounding

phonetic context, a technique that is related to the strategy we adopt here.
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An interesting approach towards generalizing observed phonological expression

from seen to unseen words is presented in (Tajchman, Fosler, and Jurafsky 1995). For

a set of ten phonological rules accounting for vowel reduction, syllabification of nasals

and liquids, alveolar stop flapping rules, and /h/ devoicing rules, they developed

an iterative algorithm that could determine the probability that each rule applies.

Basically, rule firings were tabulated and pooled among pronunciations of all words,

subsequently normalizing scores such that each word’s total probability is 1.0. They

demonstrated dramatic improvements in recognition error rate on the Wall Street

Journal task, if the additional critical step was taken to prune away realizations where

probability was below a threshold proportional to the best scoring pronunciation of

that word.

Phonologists have long been aware that syllable structure plays an important

role in predicting phonological reductions (Kahn 1980). For example, consonants in

syllable onset position are far less likely to be reduced than in coda position. An

excellent description of the role of the syllable in the Switchboard data has been

presented by (Greenberg 1999). He showed, through studies on a large corpus of

hand transcribed Switchboard data, that 28% of consonants in coda position were

deleted. Furthermore, not only syllable structure, but also morphological information,

is important in characterizing phonetic expression.
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In the research reported here, we address the problem of accounting for phono-

logical variations in conversational speech through an approach that combines formal

knowledge via phonological rules with automatic data driven methods. Our method-

ology begins with a set of formal phonological rules which are used to expand a set of

lexical entries into alternative pronunciation variants. A large speech corpus is pho-

netically aligned, and a parsing mechanism is applied to these alignments to capture

the likelihoods of the alternative pronunciations. The probabilities take into account

a large number of factors, including syllable position, stress, phonetic context, and

even morphology, such as function versus content word. The relevant factors are

obtained by parsing each word in the training corpus using a carefully constructed

context-free grammar. The probability model is superimposed on the parse tree, and

is chosen so as to best capture the relevant conditioning factors while minimizing

sparse data problems. It is also configured so as to specifically predict only the ex-

pressed phonetic productions, without inadvertently learning undesirable phonotactic

information. This point is important because it permits generalization from a com-

mon word to a rare word with the same local sub-word context. More generally, it

permits training on speech data from one domain and testing on data from another

domain where available training material may be sparse or non-existent.

Our research is based on the summit landmark-based speech recognition sys-

tem (Glass 2003). While summit’s approach is quite distinct from the standard
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HMM formulation, it has produced state-of-the-art performance in phonetic recog-

nition tasks (Chang and Glass 1997; Halberstadt and Glass 1998). Our research is

concerned almost exclusively with telephone-quality conversational speech, collected

through interactions between users and various domain-specific conversational sys-

tems (Seneff and Polifroni 2000; Glass and Hazen 1998; Seneff et al. 2000).

This paper is an extension of the work described in (Seneff and Wang 2002). We

report here on evaluations in the jupiter weather domain in addition to the mer-

cury flight domain, and based on two different phonological rule sets: a full set and a

reduced set, restricted to rules that would lead to insertions or deletions in the phonetic

realizations. These extensions are directly motivated by the experiments described

in (Hazen et al. 2002) which showed that a reduced phonological rule set, along with

an appropriate replacement of the acoustic models, can lead to an improvement in

recognition performance. It therefore becomes important to assess whether the per-

formance of the system with the reduced rule set can be further improved through

the use of statistics learned from an observation space, or, alternatively, whether the

addition of probabilities to the full rule expansions can close the gap between the two

strategies.

In the remainder of this paper, we first describe summit, including its finite state

transducer (FST) formulation and phonological modeling framework (Hetherington
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2001). Section 3 describes our phonological probability model, which uses the angie

system (Seneff et al. 1996; Seneff 1998) to obtain sub-word linguistic hierarchies. Sec-

tion 4 describes the two-step process of acquiring the trained FST mapping phones to

unique sub-word contexts, and explains how the recognizer is reassembled to incorpo-

rate the acquired probability model. Section 5 provides the details of our experiments

in both the mercury and jupiter domains and reports on our results for both do-

mains, for both speech recognition and understanding. Section 6 concludes with a

summary and a discussion of future plans.

2 Summit System

In a landmark-based approach, it is more critical to capture phonological rules than

in a frame-based approach, particularly rules that would lead to the deletion or in-

sertion of a landmark. Typical rules include, for example, epenthetic silence insertion

at locations of voicing change, gemination (“from Maine”) and palatalization (“gas

shortage”) rules, and rules accounting for unreleased stops or even wholly deleted

stops, as in “wanna” for “want to.” There are also devoicing rules for fricatives and

stops, and various vowel reduction rules. (Hazen et al. 2002) provide a detailed

description of pronunciation variations and how they are modeled in the summit

system. Example rules are shown in Figure 1.
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In the summit system, landmarks are established based on spectral change. Each

landmark is considered either as a boundary between two phones, or as a phone-

internal event, and is scored using standard Mel-scale Cepstral coefficients describing

the region surrounding the landmark. Words are entered in the lexicon according to

their idealized phonemic pronunciations, and are expanded into alternative pronun-

ciations according to an ordered set of phonological rules, accounting for phenomena

such as flapping, gemination, and palatalization. The expanded lexicon is combined

with language models and used in guiding lexical access during the search for words.

In typical applications, the search produces an N-best list of hypotheses to be con-

sidered by later stages in a dialogue system.

Summit uses finite state transducers (FSTs) to represent the acoustic, phonolog-

ical, lexical, and grammar constraints. The search space is organized as a cascade of

FSTs:

C ◦ P ◦ L ◦ R ◦ G (1)

where C maps context-dependent acoustic model labels on its left to context-independent

phone labels on its right, P maps phones to phonemes by applying the phonological

rules, L is the lexicon mapping idealized phonemic pronunciations to spoken words

(e.g., “I,” “would,” and “I’d”). R is a set of rewrite rules for reductions and contrac-

tions, mapping spoken words to their corresponding canonical forms (e.g., “I’d” →
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“I would | I had”), and G is the language model2.

The phonological component, P ◦ L, is a heavily shared but unweighted net-

work mapping phones to words. Its FST-based implementation is described in detail

in (Hetherington 2001).

3 Sub-word Probability Model

An important feature of our phonological model is that the prediction of phonetic

expressions utilizes a hierarchy of sub-word units, specifying phonemic, morphologic,

and syllabic contexts. In this section, we describe the details of the probability

model. We start by describing how we acquire the sub-word contexts and the asso-

ciated probabilities using the angie system. We then show how the angie model is

transformed into the phonological model. Finally, we discuss issues having to do with

word boundary effects, anticipatory assimilation, and non-speech events.

3.1 Angie Framework

Over the past several years, we have been exploring the utility of a parsing framework

we call angie (Seneff et al. 1996; Seneff 1998) for modeling word substructure.

2Please refer to (Hazen et al. 2002) for a detailed description of P and R.
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The original intent was to model phonology, morphology, and syllable constraints in

a shared probability framework, with the goal of modeling formal structure of the

language in the absence of a known lexicon. The angie utility has a wide range

of application areas, including letter-to-sound/sound-to-letter systems (Chung and

Seneff 2002; Seneff 1998), a high-performance phonetic recognizer as the first stage

in a multi-stage recognition framework (Chung 2000), and automatic enrollment of

new words into dialogue systems (Chung et al. 2003; Seneff et al. 2003). In its usage

here, we are attempting to translate the angie probability model into a finite state

transducer mapping phones to phonemic units, in order to attach probabilities to arcs

in a lexical phone graph.

In angie, a parse tree is obtained for each word by expanding the rules of a

carefully constructed context-free grammar, intentionally designed such that every

parse tree lays out as a regular two-dimensional grid, as shown in Figure 2. Each

layer is associated with a particular aspect of sub-word structure: migrating from

morphemics to syllabics to phonemics to phonetics at the deepest layer.

(insert Figure 2 here)

To aid in the parsing process, angie utilizes a lexical encoding that is represented

in two tiers – words are entered as sequences of “morphs,” essentially syllable-level

units encoding the spelling in their name and marked for positional and stress in-



Seneff and Wang, Speech Communication 13

formation; a separate lexicon defines phonemic pronunciations for the morphs. The

morph specifications in the lexicon are enforced by the parsing process, to assure ac-

curate parsing of a corpus. We currently distinguish for English a small set of unique

morph classes, namely, stressed and unstressed prefix (“spre”, and “pre”), stressed

and unstressed root (“sroot” and “uroot”), function word (“fcn”), and two kinds

of suffix (“dsuf” and “isuf”)3. The context-free rules encode positional constraints

for the morph units: in our current model, a content word must contain at least one

“sroot,” and other morphs must obey the following sequential constraints relative to

the “sroot”:

[spre] [pre] sroot [uroot] [dsuf] [isuf]

Figure 3 illustrates angie’s two-tiered lexicon for selected words. Part (a) shows

the representation of words in terms of morphs, part (b) shows the phonemic repre-

sentation of the morphs, and part (c) provides the baseforms lexicon that is derived

automatically from the word and morph lexicons. Angie’s phoneme inventory is

enhanced to include markers for stress (+) and onset (!) position, as well as some

diphone units such as /st!/ representing an onset “st” cluster. The baseforms lexicon

is used to link the angie derived phonological model back into the lexicon in the

FST formulation of the recognizer search space, as will be more fully described in

3“Dsuf” roughly corresponds to “derivational suffix,” and “isuf” to “inflectional suffix.” But
they do not necessarily follow strict conventions for these terms, for pragmatic reasons.
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Section 4.

(insert Figure 3 here)

Although the rules are context free, context dependencies are captured through a

superimposed probability model. The particular choice for the probability model was

motivated by the need for a balance between sufficient context constraint and poten-

tial sparse data problems from a finite observation space. We were also motivated

to configure the probability model such that it would be causal, with strong locality,

for practical reasons having to do with the nearly universal left-to-right search path

in recognition tasks, with the ultimate goal of attaching the learned probabilities to

arcs in a finite state network.

We were thus motivated to view the parse tree as a series of parse columns, where

each column is encoded as an ordered set of tags, identifying the label of each node

from the terminal phone to the root “sentence” node. At each advance in time,

the goal is to predict the next column given just the previous column, but a strict

column-column formulation would suffer from serious sparse data problems. Hence

we decided to decompose the column into a set of locally conditioned probabilities,

applied to each column entry. We restricted context to include only the left sibling

and child for each entry in the parse matrix, with the exception of the terminal phone,

which is conditioned on the entire preceding column.
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Thus, the probability formulation we have developed for angie can be written as

follows:

p(Ci|Ci−1) = p(ai,0|Ci−1)
N−1∏

j=1

p(ai,j|ai,j−1, ai−1,j) (2)

where Ci is the ith column in the parse tree and Ci = {ai,j, 0 ≤ j < N}, and ai,j is the

label at the jth row of the ith column in the two-dimensional parse grid. N (equal to

6 in our experiments) is the total number of layers in the parse tree. In practice, the

column probability computation ends once the column merges with its left sibling,

i.e., when ai,j−1 has the same name as ai,j. As illustrated in Figure 2, the column

index i begins at the left of the parse grid, and the row index j begins at the bottom

of each column.

Each terminal symbol is predicted based on the entire preceding column, and

the column probability is built bottom-up based on a trigram model, considering

both the child and the left sibling in the grid. The probabilities, p(ai,0|Ci−1) and

p(ai,j|ai,j−1, ai−1,j), are trained by tabulating counts in a corpus of parsed sentences,

mapping words to their corresponding phonetic realizations.
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3.2 Phonological Probability Model

The angie model intentionally captures both phonological and phonotactic aspects

of the language (e.g., how often a word begins with /f/). However, for the purpose of

modeling the likelihood of the phonological variants, the phonotactic contribution to

the probability model should be removed. Our intended goal is to predict the phonetic

realization given the known phoneme sequence of the word. We are making the

simplifying assumption that each word, in a specific phonetic realization, has a unique

parse. While the original angie formulation jointly predicts both the terminal phone

and the column above, for this application we are interested instead in predicting

the phone given both the entire left column and the column above. Our phonological

model (PM) can thus be formulated as follows:

PM = p(ai,0|Ci−1, {ai,j, j > 0}) (3)

Using the Bayesian formulation for conditional probability, ai,0, the phonetic real-

ization associated with the right column, can be expressed as the probability of the

entire right column normalized by the total probability of the upper column, given

the left column:
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PM =
p(ai,0, {ai,j, j > 0}|Ci−1)

p({ai,j, j > 0}|Ci−1)
=

p(Ci|Ci−1)

p({ai,j, j > 0}|Ci−1)
(4)

The denominator in Equation 4 can be computed as the marginal probability

of the joint probability p(ai,0, {ai,j, j > 0}|Ci−1) summing over all instances of the

terminal phone. Let uk denote a phonetic realization of ai,0, then:

p({ai,j, j > 0}|Ci−1) =
∑

k

p(ai,0 = uk, {ai,j, j > 0}|Ci−1) (5)

where k is indexed over all possible realizations of the terminal phone given the upper

column.

Thus the angie column bigram probability is summed over all observed instances

of ai,0 associated with each unique upper column, {ai,j, j > 0}, to determine the upper

column’s total probability conditioned on the left column. This sum then becomes

the denominator to normalize the column bigram probability.

Thus, for instance, a /t/ in “butter” realized as a flap ([dx]) and one realized as

a closure ([tcl]) would both contribute to the denominator, and so would instances of

these realizations in other related words such as “shuttle” and “stutter.”
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3.3 Modeling Word-Boundary Effects

A critical aspect in phonological modeling is the effective capturing of word-boundary

effects. Angie’s probability model retains only the last phone of the preceding word

as the left-context condition for the first phone in the word, in order to amelio-

rate potential sparse-data problems. But even with this backoff condition, it is still

impossible to assure that every phone-column transition possible at word onsets is ob-

served in every phone context4. Furthermore, without the need to preserve language

model information, it seems counterproductive to condition all phoneme-to-phone

mappings on the left phone, when many such mappings are not particularly sensitive

to left context. Only a small subset of the word-onset realizations are strongly tied to

left context. For example, a gemination rule supporting deletion of the onset phone

clearly needs to know context, whereas a rule mapping onset phoneme /l!/ to phone

[l] is very general.

Our solution was to implement the capability to specify in the angie grammar

an explicit set of phoneme-to-phone mappings which, if appearing word-final, should

be liaison’ed to the subsequent word’s onset phone. For example, if /s/ is realized

as [sh], then the following word should obligatorily start with a palatal (/sh/, /zh/,

/y/, etc.) The observations control the actual set of word-boundary ties that are

4In principal, this problem exists word internally as well, but is much less prevalent there.
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sanctioned. This mechanism effectively retains right context dependency constraints

across word boundaries. All non-liaison’ed word-ending phones map to a generic

word-start node, which then advances to completely context-independent realizations

of word-start columns.

3.4 Anticipatory Assimilation

There is a further problem with modeling the anticipatory phonological effects that

are prevalent in fluent speech. While, in the interest of preserving causality, it is cus-

tomary to formulate language models to be forward predictive, humans are planning

the future phonetic stream as they pronounce words, and they tend to anticipate

an articulatory gesture in advance of the phoneme that requires this gesture. In

these cases, a backward predictive model would be more appropriate. Considering the

palatalization rule discussed above, it is evident that the production of /s/ as [sh] in

“this ship” has little to do with the phoneme /ih/ of “this.” The original probability

model adopted in the angie framework is inappropriate for this circumstance.

Fortunately, since we have already incorporated a mechanism to identify word-

ending contexts that are tied to the observed subset of subsequent word-beginnings,

it becomes feasible to model just these explicitly identified situations with a backward

predictive statistic. This can be done by simply tabulating counts on appropriate
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observations. The observation space is defined as exactly those right phoneme con-

ditions that were observed when the liaison’ed left phone occurred. For /s/ realized

as [sh], the set would likely consist of /jh/, /ch/, /y/, /sh/, and /zh/. A tabulation

of all observed phonetic realizations of the /s/ phoneme in the context of this set of

next-word onsets would define the denominator, where the numerator consists of just

those cases where /s/ was realized as [sh]. This will yield a measure of the probability

that /s/ is palatalized when a palatal occurs on the right.

3.5 Modeling Non-Speech Events

In speech recognition for spoken dialogue interaction, it is absolutely essential to

provide some kind of explicit modeling of non-speech events. Effective modeling of

the acoustic characteristics of coughs, laughter, and other kinds of noise can lead

to a huge improvement in recognition accuracy (Hazen et al. 2002). In summit,

five different categories of noise are explicitly identified: <laughter>, <coughing>,

<hang up>, <background>, and a catch-all category, <noise>. Several distinct

acoustic models have been acquired to represent each of these noise classes, and the

pronunciation models support a fully interconnected graph connecting the acoustic

models associated with each class. Thus, for example, there are four different acoustic

models for <cough>, and any particular cough event can be accounted for by any
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number of these models in any sequence.

To model these noise events in the angie framework, we provided a single phone-

mic label as the lexical pronunciation for each noise event (e.g., “cc” for “cough”).

All of the sequential observations are captured by a model mapping this unique

“phoneme” to its corresponding “phones,” which are licensed by the rules to oc-

cur in any order. Observation counts are updated using standard procedures, and, as

a result, the final statistical model accounts for their observed sequential occurrence

patterns.

4 Experimental Methods

The incorporation of our phonological model into speech recognition is straightforward

within the FST framework. In this section, we describe the two-step process of

acquiring a trained FST mapping phones to unique sub-word contexts, and explain

how the recognizer is reassembled to incorporate the acquired probability model.

4.1 Training Procedure

We have discussed the angie framework for modeling word structure, and we have

shown how angie’s probability model can be reconfigured to support prediction of
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each subsequent phone, given the entire previous column and the column above the

new phone. Now we will describe how a finite state transducer encoding this proba-

bility model is obtained through a cooperative interplay between summit and angie.

The training procedure begins with a large corpus of orthographically transcribed

utterances. These are first processed through standard summit alignment tools to

produce aligned phonetic transcriptions, honoring the context-dependent phonological

rules specified in summit. The aligned word and phonetic transcriptions are then used

to train the probabilities in an angie grammar, which is designed to support parsing

of all of the variants appearing in the training corpus. In practice, the angie rules

need only cover all possible alternative realizations of each phone, without regard to

surrounding context conditions. The restriction to summit’s phonological space will

guarantee that all observations honor the dependencies, and the probability model

will therefore learn the context conditions from the data.

Once the angie grammar has been trained, a second pass through the data com-

putes the column-column transition probabilities given the trained grammar, and

normalizes each column prediction, following Equation 5, to remove phonotactic de-

pendencies. The resulting probability model is written out as a finite state transducer,

PA, with phones as the input symbols and phonemes in angie’s preterminal layer as

the output symbols. In addition, at each advance to a new syllable, the syllable layer
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symbol (encoding stressed root, function word, prefix, etc.) is emitted, which has the

desired effect of preserving the distinct statistics of these syllable types.

4.2 Assembling the Speech Recognizer

We have described a procedure to create the finite state transducer, PA, mapping

phones to angie’s phoneme units, with arc probabilities reflecting the generalized

observation space. Now we will describe how it is incorporated into the summit

recognition framework, to be combined with a word lexicon and the n-gram language

model.

As mentioned in Section 2, summit uses a phonemically based lexicon, which is

then expanded into unweighted phonetic pronunciations by utilizing formal phonolog-

ical rules. We replaced this lexicon with a new set of baseforms that reflect angie’s

phoneme layer symbol set. In addition, the syllable-identity symbols are inserted

at the end of each syllable, consistent with PA. In all, there are about 150 unique

phoneme units, as contrasted with 78 in the original summit configuration.

Angie’s baseforms are converted into an FST, LA, which maps sequences of angie

phonemic units to words. PA is then composed with LA, to produce a transducer,

PA◦LA, mapping phones to words with weights on the arcs. The rest of the recognizer
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constraints, C, R, and G, are kept the same5, and the search space is constructed in

the same way as described in Equation 1.

Figure 4 illustrates a portion of the lexical network representing the alternative

pronunciations along with associated probabilities for the word “Atlanta.” The initial

vowel prefers to be realized as [ae], but can be reduced to a schwa; the first /t/ can be

either a flap or a closure with an optional release; the second /ae/ can be realized as

an [aa] but with high cost; and the final /t/ can be deleted altogether. It should be

noted that, although the angie system and the baseline system begin with the same

set of phonological rules, angie generates a richer network due to generalizations of

alternative pronunciations that were hard coded in summit’s lexicon. Thus the two

alternatives for the /ae/ in “Atlanta” can be explained through a generalization from

the alternatives (/aa/ or /ae/) for “aunt” specified in summit’s lexicon.

(insert Figure 4 here)

5 Evaluation Experiments and Results

In (Seneff and Wang 2002), we reported on experiments that were conducted within

the mercury flight reservation domain, where a 12% improvement in concept error

5Note that the acoustic models are identical to those in the baseline system.
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rate was achieved, when benchmarked against a system that utilized the same set of

phonological rules, but without probability support. In those experiments, we used

a set of phonological rules that had become the standard set for summit at that

time, containing about 165 generalized rules. However, in parallel with our research,

others in the Spoken Language Systems group were conducting research comparing

this so-called “full” set of rules with a “reduced” set, containing only 64 rules, mainly

involving insertions and deletions (Hazen et al. 2002). They concluded that substi-

tutions are best accounted for in the acoustic models rather than in the phonological

rules. A baseline system in their experiments used no rules6, and obtained inferior

performance to both systems with the “full” or “reduced” set of phonological rules.

They also attempted to train probabilities on the rules for both the full set and

the reduced set conditions, using an EM algorithm (Shu and Hetherington 2002),

but were only able to obtain significant improvements for the full set, which however

was still inferior to the system with the reduced set but without probability training.

These experiments motivated us to attempt to train probabilities for the “reduced”

rules condition, using the hierarchical modeling techniques. We decided to explore

both the jupiter and the mercury domains, so that our experiments could be better

benchmarked against the experiments described in (Hazen et al. 2002).

In the following, we first give a brief description of the data and the baseline

6except for obligatory expansion of stops to include separate closure and burst segments.
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speech recognizers used in our experiments. We then report both speech recognition

and understanding performances in these two domains under the two conditions, and

discuss some computational issues.

5.1 Evaluation Data

To demonstrate the viability of this approach, we first prepared a lexicon of over 7,000

words that had been developed to cover a training corpus used for prior summit ex-

periments. We represented these words in terms of component morphs, and supplied

phonemic pronunciations for the morphs using angie’s phoneme set. It required a

total of 5,254 morphs to account for all the words.

The next step was to acquire a training corpus of aligned transcriptions, for a set

of over 130,000 utterances obtained through user interactions with various systems

developed in our group, including jupiter and mercury. We developed a context

free grammar that could parse nearly all utterances in the corpus, by adding phoneme-

to-phone mappings to license the observed mappings. We established two sets of

terminal rules, reflecting the “full” and “reduced” phonological rule sets, respectively.

We separately trained the probabilities for each grammar by parsing aligned corpora

obtained by running the standard summit recognizer in forced alignment mode, but

with the two distinct phonological rule sets. The results of this effort were two
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different FST’s representing the full and reduced rule conditions. The mercury and

jupiter domains share the same FST, since any domain-dependent language model

effects have in theory been removed.

During evaluation, about 4500 jupiter utterances were used as held-out data

for tuning various parameters. The final results were reported on 1742 unseen test

utterances in the jupiter domain, and 1669 test utterances in mercury.

5.2 Baseline Recognizers

For both jupiter and mercury, the baseline system and the angie system differ

only in the pronunciation models: they use the same set of vocabulary, class bigram

and trigram language models, the diphone-to-phone mapping FST, diphone acoustic

models, as well as a segment duration model (Livescu and Glass 2001)7. The jupiter

recognizer has about 2150 unique words in its vocabulary, and the mercury recog-

nizer has about 1830. The baseline system uses unweighted pronunciation networks,

while the angie system has probabilities for alternative pronunciations trained us-

ing the method described in the previous sections. Various parameters for these two

systems, such as word and phone transition weights, and the weight of the angie

7It is possible that iterative training of the acoustic models would further improve the angie

system, but by holding them constant it becomes clearer that the phonological probability modeling
is the source of any improvements observed.



Seneff and Wang, Speech Communication 28

pronunciation FST, PA, were tuned on development data, and the final results are

reported on unseen test data.

5.3 Evaluation Results

5.3.1 Speech Recognition

Table 1 summarizes the recognition performance of the baseline and the angie sys-

tems for test sets in the jupiter and mercury domains. First of all, it should be

noted that the jupiter “full” baseline has a substantially higher recognition error

rate than the “reduced” baseline, consistent with the results reported in (Hazen et al.

2002). Interestingly, however, the probability training was able to improve the perfor-

mance on the “full” set by much more than on the reduced set, with the consequence

that the trained system’s “full” performance is slightly better than its performance

on the reduced rule system. For the mercury domain, substantial recognition gains

were achieved for both the full and reduced sets, although the gap in performance

between them was reduced somewhat.

(insert Table 1 here)
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5.3.2 Speech Understanding

For spoken dialogue systems, speech understanding performance is a more significant

metric than speech recognition performance. In this regard, we also evaluated the

concept error rate when the recognizer is used with a natural language understanding

system to produce a meaning representation, encoded as a set of [key:value] pairs.

The [key:value] pairs obtained by parsing the N -best list are compared against those

obtained by parsing the orthographic transcription, and the concept error rate was

computed in a similar way as the word error rate. Out of the entire test set, we are able

to parse 87.2% of the utterances (full parse or robust parse) in the jupiter domain,

and 90.4% in the mercury domain. The rest of the utterances failed because they

are out-of-domain or incomplete, or because of gaps in the parse coverage. They are

excluded from this evaluation due to the lack of reference [key:value] pairs. Table 2

summarizes the concept error rates on the parsed subset for the two domains under

various conditions. For three out of the four test conditions, concept error rate was

reduced by more than 14%. This was a substantially greater improvement than was

realized for speech recognition.

(insert Table 2 here)
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5.3.3 Computational Issues

One issue that arose in the EM training methods explored by (Shu and Hetherington

2002) was the explosive growth in the size of the resulting FST. The FST that resulted

from training word-dependent pronunciation weights led to 50 times more transition

arcs than in the baseline configuration. In contrast, by decomposing words into

substructure and sharing probabilities among the same sub-word context, the angie

system was able to achieve a compact representation of the probability space, resulting

in at worst a 50% increase in the size of the final FST.

5.3.4 Discussion

The angie system consistently outperformed the baseline on both recognition and

understanding. However, for all but one of our test conditions, significantly greater

improvements were achieved in understanding than in recognition. A careful analysis

of the results revealed that this enhanced gain for understanding is due to an improved

quality of the recognizer N -best list. This was verified by evaluating recognition

performance on the basis of the hypothesis selected by the parsing process, which

gave a percentage improvement commensurate with that obtained by the concept

error rate. A factor which weighed heavily in the result was a superior ability for the

angie system to distinguish true words from “noise words.” For short utterances,
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the baseline system often proposed a noise-only hypothesis (such as <laughter>) as a

strong competitor in the N -best list. Such a hypothesis would often win out over the

top candidate as a consequence of the NL scoring strategy. We believe that angie’s

treatment of the noise words is more effective, since the noise models have trained

probabilities associated with their many alternative realizations.

It is curious that the recognition gap between the two baseline jupiter systems

disappeared when they were evaluated for understanding performance. However the

angie probability model was able to improve understanding for the reduced set by a

substantially greater margin than for the full set, such that the case can still be made

that the reduced rules are preferable, especially considering the smaller search space.

6 Summary and Future Work

This paper describes our experiments in parsing words into their linguistic substruc-

ture, in order to obtain a probability model to account for alternative phonetic real-

izations of words. An FST mapping phonetic realizations to sub-word structure with

associated probabilities was derived by parsing a large corpus of observed phonetic

sequences, and was reinserted into the recognizer’s search FST, replacing the original

component FST, which had no probabilities. The technique allows words to share

common structure in a generic model encoding local phonetic context conditions. We
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were able to obtain a significant relative reduction in concept error rate for two dis-

tinct domains: weather information and flight reservations. This improvement was

achieved with only a modest expansion in the size of the resulting FST. We found

that the probability model was also effective in characterizing non-speech events. We

demonstrated performance gains for both the original “full” set of phonological rules

utilized by the summit speech recognizer, and for a “reduced” rule set that only

accounts for deletions and insertions. The reduced-rules experiment was conducted

because this rule set has been shown to yield lower recognition error rates in the

absence of a phonological probability model (Hazen et al. 2002).

We feel that in future work it would be better to eliminate the extra complexity

consequential to the translation from summit’s lexical representation to angie’s. It

has been a tedious exercise in this work to assure exact consistency between angie’s

baseforms and summit’s. It should be relatively straightforward to alter the phono-

logical rule specification to directly apply to angie’s phonemic inventory. The frame-

work may also benefit from iterative retraining of the acoustic models.

We believe that our approach would work well for Switchboard data. It would

be interesting to test the effectiveness of our modeling approach in this challenging

domain.
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Full Rules Reduced Rules
WER(%) RR(%) WER(%) RR(%)

Jupiter Baseline 16.5 - 15.8 -
Angie 15.3 7.5 15.4 2.5

Mercury Baseline 15.2 - 14.8 -
Angie 14.2 6.6 14.0 5.4

Table 1: Comparison of recognition error rates for two domains (weather and flights),
between systems that supported phonological rules but without a probability model
(Baseline) and systems that were trained using the angie grammar (Angie), for two
different sets of phonological rules: Full and Reduced. “WER” stands for word error
rate, and “RR” stands for relative reduction.

Full Rules Reduced Rules
CER(%) RR(%) CER(%) RR(%)

Jupiter Baseline 13.40 - 13.57 -
Angie 12.53 6.5 11.61 14.4

Mercury Baseline 11.12 - 11.45 -
Angie 9.53 14.2 9.56 16.5

Table 2: Comparison of understanding error rates for two domains (weather and
flights), between systems that supported phonological rules but without a probability
model (Baseline) and systems that were trained using the angie grammar (Angie),
for two different sets of phonological rules: Full and Reduced. “CER” stands for
concept error rate, and “RR” stands for relative reduction.
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{left} core {right} → realizations ; comments

{vowel} t {schwa} → tcl t | dx ; flapping
{} s {y sh zh} → s | sh ; palatalization
{en n} n {} → [n] ; gemination

Figure 1: Representative phonological rules provided for lexical expansion in the sum-

mit recognition framework. The left and right conditions specify the input phonemic
contexts in which the target phoneme should be rewritten according to the phone
patterns expressed on the right side of the arrow. “|” encodes alternates, and “[ ]”
means optional.

5 sentence
4 word
3 pre sroot uroot
2 nuc ucoda onset nuc lax+ coda uonset nuc
1 ae t l! ae+ n t u! ax
0 ax tcl t l ae n -n ax

0 1 2 3 4 5 6 7

Figure 2: Angie parse tree for the word “Atlanta,” showing phonological rules ex-
pressed in preterminal-to-terminal mappings. The ith column corresponds to the path
from the ith terminal phone to the root node at the top. The notation “-n” encodes
a left-context dependent deletion of the unstressed onset phoneme “t u!” (Note: The
phoneme layer utilizes diacritics to encode onset (!) and vowel stress (+).) Note:
The row and column indices are illustrated in the figure.
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(a) Lexical Entries
atlanta : at- lan+ ta
either : Ei+ ther
streets : street+ =s
the : the*

(b) Morph Entries
at- : ae t
lan+ : l! ae+ n
ta : t u! ax
Ei+ : ( iy+ | ay+ )
ther : dh! er
street+ : str! iy+ t
=s : s pl
the* : dh! iy the

(c) Angie Baseforms
atlanta : ae t pre l! ae+ n sroot t u! ax uroot

either : ( iy+ | ay+ ) sroot dh! er dsuf
streets : str! iy+ t sroot s pl isuf
the : dh! iy the fcn

Figure 3: Illustrations of the linguistic encodings of words in the angie framework.
(a) Four examples of lexical entries in terms of sub-word “morph” units; (b) corre-
sponding morphs and their phonemic representations; (c) output baseforms that are
generated automatically from (a) and (b), to be used by the summit recognizer, for
these words. Note that alternate pronunciations are only provided in rare cases such
as “either”. In addition, there are some inflection-specific units, such as “s pl”, word-
specific units, such as “iy the”, and some multi-phone units, such as “str!”. Symbols
such as “sroot” and “fcn” identify the syllable category. See text for further details.
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0

1

ae:atlanta/0.29

2

ax:atlanta/1.4

3

dx:ε/0.83

4

tcl:ε/0.57

dx:ε/0.69

tcl:ε/0.69

5

l:ε

l:ε/0.73
6t:ε/0.66 7

aa:ε/3.7

8

ae:ε/0.03
l:ε

9

n:ε
n:ε

10

tcl:ε/0.65 13

ax:ε/1.01

11

t:ε/0.02 ax:ε

Figure 4: Example of a pronunciation graph created by the system for the word “At-
lanta.” Each arc is labelled with the input and output symbols, and the corresponding
negative log probability. Zero or null weight corresponds to probability 1.


