
Type System for Resource Bounds with
Type-Preserving Compilation

by

Peng Wang
B.E., Tsinghua University (2010)
M.S., Tsinghua University (2012)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2019

© Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

October 12, 2018

Certified by .
Adam Chlipala

Associate Professor of Computer Science
Thesis Supervisor

Accepted by .
Leslie A.Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Type System for Resource Bounds with Type-Preserving

Compilation

by

Peng Wang

Submitted to the Department of Electrical Engineering and Computer Science
on October 12, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

This thesis studies the problem of statically bounding the resource usage of com-
puter programs, from programs written in high-level languages to those in assembly
languages. Resource usage is an aspect of programs not covered by conventional
software-verification techniques, which focus mostly on functional correctness; but it
is important because when resource usage exceeds the programmer’s expectation by
a large amount, user experience can be disrupted and large fees (such as cloud-service
fees) can be charged. I designed TiML, a new typed functional programming language
whose types contain resource bounds; when a TiML program passes the typechecking
phase, upper bounds on its resource usage can be guaranteed. TiML uses indexed
types to express sizes of data structures and upper bounds on running time of func-
tions; and refinement kinds to constrain these indices, expressing data-structure in-
variants and pre/post-conditions. TiML’s distinguishing characteristic is supporting
highly automated time-bound verification applicable to data structures with nontriv-
ial invariants. Type and index inference are supported to lower annotation burden,
and, furthermore, big-O complexity can be inferred from recurrences generated during
typechecking by a recurrence solver based on heuristic pattern matching.

I also designed a typed assembly language with resource bounds, and a type-
preserving compiler that compiles well-typed TiML programs into well-typed assem-
bly programs, conforming to the same bounds. Typechecking at the assembly level
reestablishes the soundness of the bounds, and the types can serve as resource-usage
certificates for the assembly programs.

I used Ethereum smart contracts as a real-world application of the techniques
developed in this thesis. The assembly language I designed, TiEVM, is a typed ver-
sion of the Ethereum Virtual Machine (EVM) bytecode language. I will demonstrate
that TiML can be used as a new language to write smart contracts, and the gener-
ated TiEVM code is equipped with types proving that its resource usage – “gas” in
Ethereum terminology – is bounded.

3

Thesis Supervisor: Adam Chlipala
Title: Associate Professor of Computer Science

4

Acknowledgments

Looking back at my six PhD years, I feel lucky to have had Adam as my advisor

at every junction: admitting me as his PhD student, holding my hand through my

first PL publication, letting me pursue a research topic that I was passionate about

but did not necessarily fit into his bigger agenda, and finally guiding me through a

relatively smooth graduation process. His opinions sometimes sound nonsensical to

me, but always thought-provoking, both on research and on life.

Thanks to Di Wang who co-authored the OOPSLA paper [78] with me. Part of

this dissertation’s content is based on the paper. As an undergraduate-student intern

in our group, he pioneered the type-preserving compiler with resource bounds. I was

helped in my design of the compiler by the reference [63] he directed me to and the

idea of universally quantifying the cost of the continuation for functions in CPS.

I made many friends here at MIT who are both exceptional researchers and re-

markable human beings: Zhengdong Zhang, Wenzhen Yuan, Ling Ren, Yu Zhang,

Chiyuan Zhang, and Tianfan Xue. We supported each other in the darkest days of

our PhD years, and all made it to the end.

To my parents (borrowing the words from Chris Okasaki’s PhD dissertation): who

would have thought on that first day of school that I would still be in school 24 years

later?

5

6

Contents

1 Introduction 15

1.1 Motivations for resource-usage analysis 15

1.2 Static approaches . 16

1.2.1 Type-based approach . 17

1.3 An application: the Ethereum platform 18

1.4 Elements of the thesis . 21

1.4.1 TiML: the source language . 21

1.4.2 TiEVM: the target language 22

1.4.3 The type-preserving compiler 25

1.5 Novelties . 26

1.6 Notations . 27

1.7 Source code . 27

2 TiML 29

2.1 TiML examples . 29

2.2 Syntax and semantics . 34

2.2.1 Syntax . 34

2.2.2 Operational semantics . 37

2.3 Type system . 38

2.3.1 Typing rules . 40

2.3.2 Typing examples . 44

2.3.3 Soundness theorem . 46

2.3.4 Decidability . 46

7

2.4 Typechecker implementation and big-O inference 47

2.5 Formal soundness proof . 49

2.6 ETiML: a TiML variant for smart contracts 54

3 TiEVM 59

3.1 An EVM primer . 59

3.2 Design of TiEVM . 61

3.3 Syntax . 62

3.4 Typing rules . 66

3.4.1 Notations and conventions . 66

3.4.2 Sequences and jumps . 68

3.4.3 Basic blocks and whole programs 72

3.4.4 Stack manipulation and simple arithmetic 72

3.4.5 Memory access . 74

3.4.6 Tuple and array initialization 77

3.4.7 Storage access . 79

3.4.8 Miscellaneous . 86

4 The type-preserving compiler 87

4.1 Surface-TiML to µTiML . 88

4.1.1 Surface-TiML . 89

4.1.2 Translating into µTiML . 92

4.2 CPS conversion . 101

4.2.1 Type translation . 101

4.2.2 Term translation . 103

4.3 Closure conversion . 107

4.4 Code generation . 108

4.5 Derived cost models . 119

4.5.1 TiEVM cost model . 119

4.5.2 TiML cost model before code generation 119

4.5.3 TiML cost model before closure conversion 122

8

4.5.4 TiML cost model before CPS conversion 123

4.5.5 Surface-TiML cost model . 125

5 Evaluation 127

5.1 Typechecking classic algorithms . 127

5.2 Compiling smart contracts . 133

6 Related Work 145

6.1 Dependent ML . 145

6.2 AARA and RAML . 146

6.3 Program logics and verification systems 147

6.4 Sized types and refinement types . 148

6.5 Program analysis . 149

6.6 Gas analysis for Ethereum . 150

6.7 Other resource-analysis systems . 150

A Technical details for TiEVM 153

A.1 TiEVM instructions (full list) . 153

A.2 Expansions of TiEVM pseudo-instructions 154

B Technical details for the compiler 157

B.1 Cost definitions . 157

B.2 CPS cost adjustments . 159

9

10

List of Figures

1-1 Notations . 27

2-1 TiML example: definition of list and fold-left 29

2-2 TiML example: merge sort . 32

2-3 TiML example: red-black trees . 33

2-4 TiML syntax . 34

2-5 Operators . 35

2-6 Definitions in operational semantics 38

2-7 Operational semantics . 39

2-8 Typing contexts . 39

2-9 Sorting rules . 40

2-10 Typing rules . 41

2-11 Typing rules (continued) . 42

2-12 Configuration typing . 45

2-13 ETiML example: token . 55

3-1 TiEVM syntax . 63

3-2 TiEVM typing contexts . 66

3-3 TiEVM typing rules (sequences and jumps) 69

3-4 Typing rules for TiEVM programs and basic blocks 71

3-5 TiEVM typing rules (stack manipulations and simple arithmetic) . . 73

3-6 TiEVM typing rules (memory access) 74

3-7 TiEVM typing rules (tuple and array initialization) 77

3-8 TiEVM typing rules (storage access) 80

11

3-9 TiEVM typing rules (miscellaneous) 86

4-1 Syntax of Surface-TiML . 89

4-2 Surface TiML kinding, typing, and declaration-checking rules (selected) 91

4-3 CPS conversion for types . 101

4-4 CPS conversion for terms . 104

4-5 Closure conversion . 108

4-6 Code generation for types . 109

4-7 Code generation for terms . 110

4-8 Code generation for terms (continued) 111

4-9 Code generation for terms (continued) 112

4-10 Code generation for terms (continued) 113

4-11 Code generation for terms (outputing instruction sequence) 115

4-12 Code generation for terms (outputing instruction sequence, continued) 116

4-13 Code generation for terms (outputing instruction sequence, continued) 117

4-14 Code generation for top-level functions and programs 118

5-1 Typechecking time . 129

5-2 Number of lines of code . 130

5-3 Gas-estimation accuracy . 139

5-4 TiML vs. Solidity . 140

5-5 Same as Figure 5-4, except that the two functions with the largest

slow-downs have been removed. 141

5-6 Typechecking and compilation time 144

12

List of Tables

5.1 Benchmarks . 128

5.2 Benchmark contracts and their descriptions 134

5.3 The functions that have been measured and scenarios in which the

functions are invoked . 136

5.4 Evaluation results on the 8 benchmark smart contracts 138

5.5 Typechecking and compilation time 142

13

14

Chapter 1

Introduction

This chapter sets the stage for the thesis. It starts by discussing why we should care

about a program’s resource usage, more so than just doing casual big-O analysis or

profiling the program on several test runs. It zooms in on one particular applica-

tion, the Ethereum blockchain platform, as my main use case throughout the thesis.

I will argue that knowing resource bounds statically (at compile time) has many

benefits over runtime techniques, and I will describe available technical approaches

to establish bounds. Among the available approaches, I will discuss why I choose a

type-based approach, with its strengths and weaknesses. The last part of this chapter

will highlight the novelties and briefly describe the structure of this thesis work.

1.1 Motivations for resource-usage analysis

Software verification has been mostly focused on functional correctness, which typi-

cally means the input and output (sometimes also the side effects) of a program are

in relation according to some high-level specification. These specifications and proofs

usually leave out some quantitative properties of the program such as how many

CPU cycles and how much memory space it uses. Nonetheless, these nonfunctional

aspects of programs are often of equal importance with functional properties in the

everyday use of the program. Take the program’s execution time for example. Mis-

matches between intended and actual execution time, manifested as “performance

15

bugs” [53, 67, 55], can frustrate users and/or cause serious security vulnerabilities

[29]. As an example, [67] reports a performance bug in a mature Java application

(JFreeChart) where a rendering function takes O(n2) time to draw a dataset while

the inner iteration can be easily replaced by a memoization variable, cutting the time

to O(n). Unexpected freezing of a UI or waiting for a response greatly disrupts the

user experience.

Sometimes resource usage directly determines the economic cost of the software.

Two such examples are Amazon Cloud Services (AWS) and the Ethereum platform.

Lambda, a Function-as-a-Service offering among AWS’s services, charges users by the

number of cloud-function invocations their client programs make, and the time and

memory usage of those functions, hence for a client program that uses Lambda, the

number and cost of such invocations are crucial economic metrics to consider. The

Ethereum platform will be discussed in detail in Section 1.3.

1.2 Static approaches

The most commonly used dynamic techniques to control software quality are testing

and profiling. Profiling is a manual debugging tool that is not suited for automatic

quality control. Testing is ill-equipped to check time complexity for several rea-

sons. (1) Wrong asymptotic complexities often manifest themselves only under large

inputs, making test suites time-consuming and costly to run. The small input hy-

pothesis [67, 61] which underlies most software-testing methodologies does not hold

in performance testing. (2) Common testing methods such as assertions are hard

to adopt for performance testing. (3) Unlike functional bugs, performance bugs are

not fail-stop, making it hard even to tell whether a performance bug manifests itself.

A human judgment call is often required to tell when performance goes awry. For

all these reasons, static guarantees of time and more broadly resource usage become

desirable.

In contrast to runtime techniques such as testing and profiling, static techniques

aim to determine program properties at compile time. They achieve this by inspecting

16

the source code of the program, simulating the program behavior symbolically, and/or

relying on programmer-provided annotations such as types. Because they do not focus

on specific runs of the program with specifics set of inputs, they can usually derive

program properties that will hold for all inputs in all circumstances. The guarantees

one obtains from static techniques, therefore, are usually stronger than from testing

and profiling. Additionally, the speed of a static analysis usually does not depend on

the program’s execution time (it will depend on other factors such as the size of the

source code and the complexity of the analysis algorithm), so it avoids the time cost

of testing programs on large inputs.

1.2.1 Type-based approach

There are a number of techniques for delivering static guarantees for programs, includ-

ing symbolic evaluation, type systems, program logics, etc. I choose a type-system

approach for its multiple advantages. (1) Type systems are good at handling higher-

order programs, since functions are treated as first-class citizens just like other values.1

(2) Types can serve as specifications, which make the code a self-contained unit with

both specification and implementation. (3) Some type systems such as dependent

type systems and refinement type systems allow complex predicates in types, which

can be used as preconditions, postconditions, and invariants, crucial for analyzing

complex data structures and algorithms. (4) Annotations give programmers an op-

portunity to help the analysis, and types are a principled way of annotating. (5)

Types of API calls are important documentation to characterize the APIs’ behavior.

To quote [53], “Two thirds of the studied bugs are introduced by developers’ wrong

understanding of workload or API performance features. More than one quarter of

the bugs arise from previously correct code due to workload or API changes. To

avoid performance bugs, developers need performance-oriented annotation systems

and change-impact analysis.” (6) Type systems are enforceable disciplines that force

programmers to think harder and more clearly about their code. From my personal

1Recognizing that a function is just a value of an ordinary type (the “arrow type”) is the largest
contribution the functional-programming paradigm made to the outer world, in my opinion.

17

experience, rewriting some existing Ethereum smart contracts using my new language

with resource bounds in types forced me to think about why these contracts’ resource

costs are bounded, and it led me to uncover some lax thinking in the original code that

causes unbounded resource usage, such as copying arbitrary-length strings between

memory and storage.

Most existing work on static resource-usage analyses falls into one of two camps,

the first of which aims at full automation, while the second aims at expressiveness

(much like the split in the broader software-verification literature). When it comes

to ease of use, nothing beats push-button systems, though at the cost of restricting

domains to e.g. polynomial bounds [46] or first-order imperative programs [40]. Tools

in this category also disallow user-provided hints when automation fails. The second

camp aspires to verify hard programs against rich specifications [25], using techniques

such as program logics and tools such as proof assistants, at the cost of writing proofs

manually. A class of middle-way approaches recently gained popularity in software

verification, pioneered by DML [80] and popularized by liquid types [70] and Dafny

[57], whose central theme is to restrict the power of dependent types or program logics

in exchange for some degree of automation. My work will be in the same spirit, where

I ask the programmer to help by providing annotations, and I then try to make the

typechecking and compiling experience as smooth as possible and, in case of failure,

give useful feedback to help the programmer tweak annotations.

1.3 An application: the Ethereum platform

A large portion of this thesis work focuses on applying type-based techniques to

writing smart contracts on the Ethereum platform. A large amount of technical work

has been devoted to solve Ethereum-specific issues, so I will zoom in on the Ethereum

platform in this section and describe it in detail.

Ethereum belongs to a set of technologies known as “blockchain technologies,”

which have attracted a large amount of public attention in recent years. A “blockchain”

refers to a distributed ledger that book-keeps a history of transactions which are

18

agreed upon among a group of participants (fixed or fluid). These transactions can

be seen as changes of the state of a certain virtual world. In Bitcoin [3], the original

blockchain application, the world state is the balances of all accounts denoted in a

virtual currency called “bitcoin,” and a transaction is a sum-preserving change of bal-

ances (i.e. a transfer of bitcoins). A block is a set of transactions grouped together,

and the history of transactions is represented as “a chain of blocks.” Ethereum [4] ex-

tends Bitcoin by extending the world state to be a general mapping from an account

number and an integer address to an integer value, and extending the transactions

to be any changes of the state. It describes these transactions in a Turing-complete

bytecode language called the Ethereum Virtual Machine (EVM) language.

The ability to express arbitrary computation opens Ethereum to many potential

uses beyond cryptocurrency. For examples, it can be used to form a voting congress,

to record shares of a corporation, to bookkeep the ownership of physical assets, and

to store the supply-chain information of goods.

Because Ethereum transactions will be executed on each participating node, a

transaction that loops forever or takes too much time or memory will slow down all

the nodes, and the total waste of energy caused by unthoughtful EVM bytecode is

considerable. To regulate time and memory consumption, EVM incorporates a “gas”

mechanism. Each EVM instruction costs a certain amount of gas. A transaction’s

total amount of gas consumption will be the fee paid to the transaction processors

(“miners”). Gas price in terms of Ethereum’s virtual currency “ether” is determined

in the market between transaction producers and processors.

Gas is paid upfront. The person that publishes a transaction needs to guess

an upper bound of the transaction’s total gas cost and pay for it at the beginning

of the transaction. Unused gas will be refunded at the end of the transaction. If

the transaction runs out of gas in the middle of execution, the whole transaction is

discarded (state rolled back but gas not refunded).

The benefits of static techniques for controlling resource usage apply here. They

are particularly advantageous over the alternative methods used in the Ethereum

community today. At present, people come up with this upfront gas estimation in

19

two ways. One is to use the maximal figure possible (there is a gas limit imposed

by the Ethereum protocol) and rely on the refunding of unused gas. There are two

problems with this approach. One is that it requires the transaction issuer to have

enough ethers to pay for the large gas amount upfront. Secondly, due to a design flaw

in the current version of the Ethereum protocol (“Homestead”), any exception during

the execution of the transaction will cause all gas to be confiscated. To make matters

worse, smart-contract authors routinely use exceptions to discard transactions with

illegal inputs, since such pass-or-throw checks make the code clean. An unmindful

user who sends a wrong input to such a contract will lose all the gas paid upfront for

this transaction.

Another gas-estimation approach is to dry-run the transaction off-chain to obtain

the gas usage. This is a practical solution albeit with two drawbacks. One is that the

result of the dry-run may be different from the actual on-chain run, if the execution

depends on some on-chain factors such as the block-number/time-stamp of the current

block or the hash of the previous five blocks. The second is that such an approach

only gives gas usage of the smart contract on a particular input, not the gas-usage

characteristic of the smart contract itself. Like a computer program’s time complexity,

such a characteristic should be described as a cost function on input size.

I aim to check and guarantee gas bounds statically and rely on type systems to

do the checks. With type systems that are proven sound, we get formal guarantees

that these bounds are respected under all circumstances. I designed two such type

systems, one for a high-level functional language in which smart-contract authors

write their programs, and one for EVM bytecode at the assembly level. A type-

preserving compiler is developed to connect the two. This two-type-system approach

moves the compiler out of the trusted computing base (TCB). One only needs to trust

the soundness of the EVM type system to believe that a well-typed EVM program

never uses more gas than specified in its types.

20

1.4 Elements of the thesis

This thesis work consists of three parts: a new high-level functional language called

TiML, a new assembly-level language called TiEVM, and a type-preserving compiler

translating well-typed TiML programs into well-typed TiEVM programs. Each of the

three constituents will be introduced briefly in this section.

1.4.1 TiML: the source language

TiML (Timed ML) is an ML-like functional language with a type system that bounds

time and memory. It uses indexed types to represent data sizes and resource bounds,

and it uses dependent sorts to put constraints on these indices. It supports algebraic

datatypes whose indexing schemes (i.e. size metrics) can be chosen freely by the pro-

grammer. Dependent sorts let one write complex pre-/post-conditions and invariants

of algorithms and data structures. TiML also builds upon these facilities to support

specifying complexities in the big-O asymptotic notion.

TiML’s time-complexity support begins by allowing the programmer to put a

number above the “arrow” of each function type (e.g. int 5−→ int), representing an

upper bound on its running time. This number is called an index of the function type.

Since a function’s running time often depends on the size of its input, datatypes can

also contain indices representing their sizes. A function can be parametric on indices

in order to accept inputs of any size (e.g. ∀n. list int n
n2

−→ list int n). Inspired by

DML, TiML does not fix an indexing scheme for datatypes (like length-indexed lists)

but instead lets the user provide indexing schemes in the definitions of datatypes,

doing away with any built-in notion of “size.” This flexibility allows the programmer

to choose size notions like depth of a tree, black-depth of a red-black-tree, largest

element in a list, etc.

Many data structures (e.g. balanced search trees) have invariants involving their

sizes, and many functions require/guarantee constraints on their input/output sizes.

To make these requirements formal, TiML classifies indices with sorts and introduces

a special form of sorts called refinement sorts. Sorts are to indices what types are to

21

terms, and refinement sorts are like refinement types [70] but on the index/sort level.

A refinement sort denotes a subset of indices of the base sort satisfying a predicate

(e.g. {n : Nat | n mod 2 = 0}).

A syntax-directed algorithmic version of typing rules is derived for typecheck-

ing, and the refinement predicates in sorts will cause the typechecker to generate

verification conditions (VCs) which are discharged by an SMT solver. With full

annotations of the running time of recursive functions, the VCs are regular inequal-

ity formulas like 3(n − 1) + 3 ≤ 3n. If the programmer decides that coming up

with a time-complexity annotation like 3n is too burdensome, she can choose to

omit this annotation, and the inference-enabled typechecker will generate VCs like

T (n − 1) + 3 ≤ T (n) with an unknown T (·). In this situation we face the problem

of recurrence solving, which TiML handles in an incomplete way by using heuristic

pattern-matching-based big-O complexity inference that can handle recurrences re-

sulting from many common iteration and divide-and-conquer patterns2. For example,

seeing a pattern T (n− 1) + 3 ≤ T (n), the solver infers that the function’s time com-

plexity is O(n); seeing a pattern 2T (⌊n/2⌋) + 4n + 5 ≤ T (n), the solver infers that

the function’s time complexity is O(n log(n)). Big-O bounds are expressed in TiML

as sorts refined by the big-O predicate, which is a binary relation between two indices

of a function sort (sorts include not only natural and real numbers but also function

sorts classifying functions from indices to indices).

I formalized a core calculus of TiML in Coq and proved its soundness (i.e. well-

typed programs will never go wrong, and types really bound actual running time).

The formalization effort is by itself a sizable project and offered some techniques,

insights, and lessons on formal reasoning about indexed/refinement type systems.

1.4.2 TiEVM: the target language

TiML is a high-level language to be used by programmers directly. The resource

bounds established by its type system will only hold in the actual execution if the

compiler respects the cost model used in TiML’s operational semantics. To make
2Because it is heuristic-based, I do not have a clear characterization of its applicability, though.

22

sure that the resource-bound guarantees established by the TiML typechecker will

be carried down to the assembly level, I designed a typed assembly language with

resource bounds in a similar fashion to TiML’s, so that when the assembly program

passes the assembly-level typechecker, its resource use is guaranteed to be bounded

by the specifications in types. I developed a type-preserving compiler to translate

TiML programs into typed assembly programs.

I designed two typed assembly languages for this thesis. The first one, TiTAL

(Timed TAL), is a minimalist assembly language inspired by the Typed Assembly

Language (TAL) work [63]. It is a register-based language that contains a few in-

structions for arithmetic, heap-allocated arrays, and jumps. I used it to explore the

design space of a typed assembly language with resource bounds and its compiler.

The second language, TiEVM (Timed EVM), is a much larger language that covers

most parts of EVM, serving as a typed version of it. It is designed specifically to fit in

the EVM machine model, with many design choices motivated by constraints imposed

by EVM. Targeting a real-world assembly language incurs much more work than a

minimalist toy language, but it reveals many subtleties that one needs to consider

when trying to realize the benefits of static cost analyses in a real-world setting

where costs depend on many machine details and design choices are constrained by

machine realities, which makes this endeavor worthwhile. I admit that EVM is still

a virtual machine compared to real hardware, and many issues in measuring real

hardware performance, such as caching and speculative branching, do not arise in the

EVM cost model. EVM serves as a “realistic enough” target machine for me, with

the largest advantage being that it has an official cost model. Two versions of the

compiler are implemented, targeting TiTAL and TiEVM respectively. In this thesis

I will focus on TiEVM and the compiler targeting it.

The design principle of TiEVM (and generally of any typed assembly language)

is that all data locations (registers, memory, etc.) and jump destinations must have

types. The types associated with data locations regulate the kinds of operations that

can be performed on that data (e.g. arithmetic calculations cannot be performed

on strings); the types at jump destinations describe what the following code expects

23

of the environment (the “pre-condition”). If the type system is higher-order (i.e.

contains function types), the types at jump destinations can also describe what the

environment will be (the “post-condition”) when the following code finishes (jumps

away), by giving the type of the return pointer. This style of including a specifi-

cation of the return pointer in the specification at a function entry point is called

continuation-passing style (CPS) [15].

To specify how much of different resources a piece of assembly code will use, I

also follow the continuation-passing style. The type at a jump destination describes

how much resource the program will use from now till the very end of the execution;

within this type, the type of the return pointer describes how much of the resources

will be used after jumping to the return address. The delta of the two will be the

resources consumed by the code snippet following the entry point (a basic block).

The merit of this style will be discussed in Chapter 4.

TiEVM’s types are also indexed. Its type system shares the same index and sort

subsystem with TiML. There is also an overlap between TiEVM’s and TiML’s types,

mostly the primitive ones. For compound types such as functions, tuples, and arrays,

TiEVM has its own versions that are more primitive and reveal low-level details.

The counterparts of TiML expressions in TiEVM are bytecode instructions. Most

instructions correspond directly to EVM instructions, but a few of them are “pseudo-

instructions” absent in EVM. These pseudo-instructions are there to provide certain

primitive operations to make TiEVM’s semantics simpler. Each of them can be

expanded into a short sequence of EVM instructions. Pseudo-instructions will be

discussed in more detail in Chapter 3.

The use case of writing smart contracts forces me to extend TiML and TiEVM

from a “pure mode” to a “monadic mode.” More precisely, it forces me to add “strong

updates,” meaning updates that will change the typing context. The reason is that

in a pure functional program, a function’s resource costs only depend on the input

arguments. But for a smart contract, its execution often depends on the current values

of some data in storage. The function type needs to be extended with a precondition

describing the pre-state of the storage data and a postcondition for the post-state.

24

1.4.3 The type-preserving compiler

The design of the compiler is inspired by [63]. Main compilation phases include CPS

conversion, closure conversion, and code generation. All of these phases transform

both programs and types, generating well-typed programs. Resource bounds are kept

identical from the beginning to the end, so bounds specified in the source program

have the same meaning and unit of measure as the actual resource usage of the

generated bytecode.

There is another compilation phase at the beginning of the pipeline, translating

a surface version of TiML to the core version formalized in Chapter 2. The surface

version of TiML provides datatypes, compound patterns, a module system, and sev-

eral other language features that have proved convenient to use in ML-like languages.

A surface-level typechecker has been implemented for it; error messages seen by the

programmer are all on this level.3 Translating the surface version to the core version

involves replacing datatypes and patterns with more primitive language features such

as recursive types, existential types, and sum types, and combining all modules into

a large single program.

An important issue in designing the compiler is its influence on costs. The only

official cost model I have is the one for EVM, at the bottom of the compilation

pipeline. Source programs are transformed by the compiler in complicated ways

before being turned into EVM code, so how do we define and reason about costs at

the source level? One way out is to give up on this problem, not checking costs when

typechecking the source program, only doing the cost check on the assembly code

generated by the compiler. I think this approach is antithetical to a principle of this

thesis, which is that the programmer should be able to reason at the source level

and not need to care about what the compiler does (knowing that the compiler will

preserve the costs of their programs). I believe that once a source program passes

the source typechecker, all compilation phases should generate well-typed programs

without any errors. The rationale is that once the code has been changed by the tool,

3Error messages about transformed code will confuse users, demonstrated by the notoriously
hard-to-read error messages for C++ templates.

25

it is out of the scope of the programmer’s mental model, and the programmer will

not be able to react to feedback in terms of the modified code.

Reasoning about costs should follow this principle. I designed a cost model for

TiML that reflects the official EVM cost model and the transformations by the com-

piler. In other words, I back-propagated the cost model from the target language to

the source language. The calculation of costs on the source level mirrors the com-

pilation strategy but is expressed in a simpler way as mathematical formulas. For

example, the compilation performs CPS conversion and closure conversion, so the

cost of a function call on the source level depends on the number of free variables in

the code after the function call (i.e. the “continuation”). Such a cost model for the

source language is closely coupled with specific compilation strategies, but in order

to have an accurate cost estimation on the source level, such coupling is unavoidable.

The need to keep the source cost model manageable incentivized me to keep the

compiler simple, a desirable property by itself. But I do give up complex optimizations

out of this concern, in order to achieve more accurate cost estimation. I could add

more optimizations and retain the source cost model, as long as these optimizations

are guaranteed not to increase actual cost. In that case the actual performance of the

generated code is improved, while the accuracy of cost estimation is worse.

1.5 Novelties

The novelties of this thesis work include:

• A novel use of refinement sorts for complexity analysis with invariants

that balances expressivity and usability.

• Encoding the big-O notation formally in a type system.

• A rigorous type-soundness proof formalized in Coq.

• The first foundational approach to guarantee gas bounds of EVM

bytecode formally. In achieving this novelty, several components of my sys-

tem also constitute notable contributions, such as the first type system for

26

EVM and the first type-preserving compiler that also preserves the

program’s resource-usage guarantees.

1.6 Notations

Natural number n,m List −→a
List literal [a1, · · · , an] List comprehension {an|P (an)}
List append and concatenation a; l, l; a, l1; l2 List length |l|
Map literal {k1 7→ v1, · · · , kn 7→ vn} Map update m[k 7→ v]
Map comprehension {k 7→ v|P (k, v)} List or map get-at l(n),m(x)
Substitution b[v/x] Map domain dom(m)
Empty list or map · String u
Boolean b

Figure 1-1: Notations

Notations used throughout this thesis are listed in Figure 1-1. List appending

a; l or l; a appends an element a at the front or end of the list l. List (or map)

comprehension constructs a list (or map) from elements satisfying a predicate4. Map

update is used for both adding a new key-value pair and updating the value at an

existing key. I sometimes use m;x : τ to mean m[x 7→ τ]. Substitution b[v/x] stands

for replacing every appearance of variable x with v in b, performing alpha-conversions

when necessary to avoid name capture. In this thesis I will use different letter sets

to distinguish different syntax classes. For example, n,m will be used for natural

numbers while i, j are for “indices” (defined in Chapter 2).5

1.7 Source code

The source code of the whole system and the example programs used in evaluation

can be found at https://github.com/wangpengmit/phd-thesis-supplemental.
4List comprehension preserves the ordering of the original list [a1, · · · , an].
5I agree that this is an unfortunate way to distinguish mathematical objects of different kinds.

In a functional programming language like SML or Coq they are easily distinguished by different
types or datatype constructors, but mathematical notations are an ancient system that has not been
catching up with modern functional-programming practices.

27

https://github.com/wangpengmit/phd-thesis-supplemental

28

Chapter 2

TiML

.

This chapter describes TiML, a typed functional programming language with

resource bounds and the source language of the type-preserving compiler. I will first

demonstrate TiML by showing some code examples and then formally define the

TiML language by describing its grammar, operational semantics, and typing rules.

After that I will discuss the proof of the type system’s soundness formalized in the

Coq proof assistant. In the last section, I will describe a variant of TiML called

ETiML that is designed for writing smart contracts on the Ethereum platform, with

features and modifications purposefully chosen for this setting.

2.1 TiML examples

datatype list α : {ℕ} = Nil of list α {0}
| Cons {n : ℕ} of α * list α {n}⟶list α {n + 1}

fun foldl [α β] {m n : ℕ} (f : α * β – $m → β) acc (l : list α {n})
return β using $(m + 4) * $n =

case l of
[] ⇒ acc

| x :: xs ⇒ foldl f (f (x, acc)) xs

Figure 2-1: TiML example: definition of list and fold-left

29

In this section, I will give a tutorial introduction to TiML programming. The first

TiML example is the fold-left function on lists, through which I introduce the basics

of the language. Figure 2-1 lists the definition of list and fold-left. TiML mimics the

syntax of Standard ML (SML) [2], on top of which I add indices and sorts. Datatype

list is parametrized not only on a type variable α but also on an index of sort ℕ
(natural numbers), expressed by the “: {ℕ}” part in the header. This index argument

varies in different constructors. In the Nil case, it is fixed to 0, while for Cons, it is

n+1, where n is the index of the tail list. Obviously this index represents the length

of a list. Note that the TiML language itself has no built-in knowledge of “sizes”;

they are just a datatype’s index arguments, which may happen to correspond to some

human intuition about how big a chunk of data is1.

The fold-left function foldl takes two type arguments (unlike SML they are ex-

plicit in TiML) α and β, two index arguments m and n, an operation f to be performed

on the list, an accumulator acc, and an input list l, and returns a result of type β. The

two indices stand for the time bound of operation f and the length of the input list.

The sort Time is defined as nonnegative real numbers; the $ sign is used to convert a

natural number to a time. The real number domain is chosen because TiML’s time

expressions allow logarithms. Arrows in function types are extended to “long arrows”

(e.g. – $m →) carrying time specifications on their shoulders. Recursive functions

need to be annotated with return types and time bounds via the return and using

keywords.

Cost model: TiML can work with different cost models by choosing the cost

parameters in its typing rules (as will be shown in Figure 2-10). In this chapter

(except Section 2.6), for illustration and simplification purpose, I use a simple cost

model where all memory costs are ignored (i.e. memory costs are always zero) and

only a function application costs one unit of time. All other operations (including

constructor applications) do not consume time. From Section 2.6 on, I will switch

to a realistic cost model that matches the official EVM specification. Section 4.5

1The meta-theoretic treatment does not talk about “sizes,” and the user does not get formal
guarantees about “sizes” from the soundness theorem in Section 2.5, so “sizes” can be regarded as
a proof intermediary for “time.”

30

discusses cost models in more detail.

Here, foldl’s running time is bounded by $(m + 4) * $n (“4” comes from these

four function applications illustrated by the dots: foldl . f . (f . (x, acc)) .

xs).

Typechecking foldl will generate one verification condition (VC):

∀m n n′ : Nat. n′ + 1 = n → m+ 4 + (m+ 4)n′ ≤ (m+ 4)n.

n′ is introduced by constructor Cons to represent the length of the tail list, and

the premise n′ + 1 = n is introduced by typechecking the pattern-matching, which

connects the inner index n′ to the outer index argument n. The inequalitym+4+(m+

4)n′ ≤ (m+4)n dictates that the actual running time of this branch, m+4+(m+4)n′,

should be bounded by the specified bound (m+ 4)n.

The next example is merge sort (Figure 2-2), in which I show the use of the big-O

notation to reduce annotation burden. Let us first look at the function msort. Instead

of using a concrete time bound such as $(m + 4) * $n, I bound msort’s running time

by “T_msort m n”. T_msort is an index of sort “BigO (λ m n ⇒ $m * $n * log2 $n)”,

which is the sort of time functions (functions from multiple natural numbers to time)

that are in the big-O class O(mn log2 n). Under the hood, “BigO f” is syntax sugar

for { g | g ≦ f }, the sort of time functions refined by the big-O binary relation ≦.

Formally, this multivariate big-O relation is defined axiomatically according to [51],

meaning that any relation that satisfies the five axioms in [51] can be used as the

big-O relation here. [51] also gives an instance that satisfies these axioms. TiML’s

big-O inference engine only relies on these five axioms.

The point of using big-O to specify T_msort is that only the sort of T_msort is

needed, not the definition (written as an underscore). The typechecker generates VC

T ≦ (λm n. mn log2 n)∧∀m n. T (m, ⌈n/2⌉)+T (m, ⌊n/2⌋)+7+Tsplit+Tmerge ≤ T (m,n),

(2.1.0.1)

for which Tsplit ≦ (λn. n) and Tmerge ≦ (λm n. m × n) are available premises in

31

absidx T_split: BigO _ (* (fn n => $n) *) = _
fun split [α] {n: ℕ} (l: list α {n})

return list α {ceil ($n/2)} * list α {floor ($n/2)} using T_split n =
case l of

[] ⇒ ([], [])
| [_] ⇒ (l, [])
| x1 :: x2 :: xs ⇒

let val (xs1, xs2) = split xs in
(x1 :: xs1, x2 :: xs2) end

absidx T_merge: BigO (λ m n ⇒ $m * $n) = _
fun merge [α] {m n1 n2: ℕ} (le: α * α – $m → bool)

(xs: list α {n1}, ys: list α {n2})
return list α {n1 + n2} using T_merge m (n1 + n2) =

case (xs, ys) of
([], _) ⇒ ys

| (_, []) ⇒ xs
| (x :: xs', y :: ys') ⇒

if le (x, y) then x :: merge le (xs', ys)
else y :: merge le (xs, ys')

absidx T_msort: BigO (λ m n ⇒ $m * $n * log2 $n) = _
fun msort [α] {m n: ℕ} (le: α * α – $m → bool) (xs: list α {n})

return list α {n} using T_msort m n =
case xs of

[] ⇒ xs
| [_] ⇒ xs
| _ :: _ :: _ ⇒
let val (xs1, xs2) = split xs in
merge le (msort le xs1, msort le xs2) end

Figure 2-2: TiML example: merge sort

32

the context, and T is an unknown variable. This VC is discharged by the heuristic

pattern-matching-based recurrence solver. The solver will not give a solution for T ;

instead, it sees that this VC matches the pattern of one of the cases in the Master

Theorem [27], therefore concluding that such a T exists and this VC is true. The

absence of a concrete definition of T (i.e. T_msort) is OK because T_msort is declared

as an abstract index by absidx. Outside the current module, its definition is not

visible.

Since the Master Theorem can decide the solution’s big-O class from the recur-

rence, the big-O class in a big-O sort can also be omitted and inferred, as shown by

function split. Notice that its big-O class (λ n ⇒ $n) is commented out.

datatype color : {𝔹} =
Black of color {true}

| Red of color {false}

datatype rbt α : {ℕ} {𝔹} {ℕ} =
Leaf of rbt α {0} {true} {0}

| Node {lcolor color rcolor : 𝔹}
{lsize rsize bh (*black-height*) : ℕ}
{color = false → lcolor = true ∧ rcolor = true}
{ ... (*other invariants*)}

of color {color} * rbt α {lsize} {lcolor} {bh} * (key * α)
* rbt α {rsize} {rcolor} {bh}

⟶rbt α {lsize + 1 + rsize} {color} {bh + b2n color}

Figure 2-3: TiML example: red-black trees

The last example is the definition of red-black trees (Figure 2-3), where I need to

encode the invariants of the data structure. A red-black tree rbt is indexed by three

indices: the size, the root color, and the black-height. I use { P } as syntax sugar for

{ _ : { _ : unit | P } } where the index itself is not interesting. Leaf is black with

zero size and zero black-height. In the case of Node, the children must have the same

black-height, and when the root color is red, the children’s root colors must both be

black. b2n does conversion from Booleans true and false to natural numbers 1 and

0 respectively.

33

2.2 Syntax and semantics

The TiML code above uses the surface syntax understood by the parser. In this

section I define TiML as a formal calculus whose soundness I prove. The translation

from the surface language to the formal calculus will be described in Section 4.1 as a

phase of the compilation pipeline.

2.2.1 Syntax

Base Sort
s ::= Nat | Time | Unit | Bool | State | s ⇒ s

Sort
s ::= s | {a : s | θ}

Index
i ::= a | n | r | () | true | false | oui i | i obi i | i ? i : i | λa : s. i | i i | {−−→u : i}

Proposition
θ ::= b | ¬θ | θ ∧ θ | θ ∨ θ | θ → θ | i obr i | ∀a : s. θ | ∃a : s. θ

Kind
κ ::= ∗ | κ ⇒ κ | s ⇒ κ

Type
τ ::= α | unit | byte | int | bool | nat i | ibool i | arrayn τ i | τ i−→ τ | tuple −→τ | record {−−→u : τ}

| τ + τ | µα : κ. τ | ∀iα:κ. τ | ∀ia:s. τ | ∃α : κ. τ | ∃a : s. τ | λα : κ. τ | τ τ | λa : s. τ | τ i
| state u | map τ | vector τ | cell τ | icell τ | ptr τ

Term
e ::= x | () | n | n | byte n | λx : τ. e | e e | out e | e obt e | e⊕ e | (e, e) | e.1 | e.2 | lτ .e | rτ .e

| case e of x.e or x.e | foldτ e | unfold e | Λα : κ. e | e τ | Λa : s. e | e i | packτ ⟨τ, e⟩
| unpack e as ⟨α, x⟩ in e | packτ ⟨i, e⟩ | unpack e as ⟨a, x⟩ in e | recτ x. e | newn e e
| arrayFromListn {−→e } | readn e e | writen e e e | len e | ℓ | let x = e in e

| b | b | if e then e else e | ifi e then x.e else x.e

Figure 2-4: TiML syntax

The syntax of TiML is given in Figure 2-4. I split the core language into four

syntactic classes: terms, types, indices, and sorts. Terms are classified by types; types

can be indexed by indices, which are classified by sorts2. In this dissertation I will

use the words “term” and “expression” interchangeably.
2Alternatively one can treat both types and indices as type-level constructors and sorts as kinds.

We keep types and indices separate because they are treated differently in our metatheoretical
development (e.g. indices are given a denotational semantics while types are not).

34

Unary Index Operator Binary Index Relation
oui ::= ceil | floor | neg | divn | logn obr ::= = | ≤ | < | ≥ | > | ≦

| expn | nat2time | bool2nat
Binary Index Operator Binary Term Operator
obi ::= + | − | × | max | min | and obt ::= + | − | × | / | ∪ | · · ·

| or | =? | ≤? | <? | ≥? | >?

Figure 2-5: Operators

TiML’s base sorts include natural numbers, time (nonnegative real numbers), unit,

Booleans, states, and functions from base sorts to base sorts. A sort is either a base

sort or a base sort refined by a proposition. In refinement sort {a : s | θ}, the variable

a stands for the index being refined and can be mentioned by the proposition θ. An

index, ranged over by i or j, can be an index variable a, a constant natural number

n, a constant nonnegative real number r, the unit value (), or a Boolean constant.

It can also be formed by unary index operation oui i, binary index operation i obi i,

if-then-else, lambda abstraction, application, or state specification. The last index

form, of sort State, is used to express state specifications that will be described in

Section 2.6. We use different letter sets to denote different kinds of variables: a and

b for index variables, α and β for type variables, and x and y for term variables. All

operators are summarized in Figure 2-5. Propositions include usual logical constructs

and binary relations i obr i between two indices. There is a special binary relation

“f ≦ g” between two time functions meaning f ∈ O(g).

TiML has a higher-order kind system with the κ ⇒ κ kind-former, besides which

there is also the kind-former s ⇒ κ, allowing type-level functions from base sorts to

types, which is needed for kind-indexed datatypes like list in Figure 2-1. TiML’s base

types include unit, bytes, integers (512-bit)3, Booleans, indexed natural numbers, and

indexed Booleans. Integers are just an example of ordinary primitive types. It has

length-indexed arrays, which are a generalization of mutable references. The length

index is useful in complexity analysis of array-based algorithms, and it also brings

the benefit of static array-bound checking. Arrays are parametrized by a subscript n

which is the width of its elements (in units of bytes). This parameter cannot always
3See Chapter 3 for why the word width is 512 bit.

35

be implied by the element type because the type may be a type variable4. Arrays

with different element widths are considered different types.

Indexed natural numbers serve as a bridge between runtime values and static

indices. For example, the only value of type nat 3 is the term 3. Without indexed

natural numbers, all integers would just have type int, and at compile time it would

be impossible to know their runtime values from their types, despite the fact that

e.g. array-bound checking is done entirely based on types5. Indexed natural numbers

give one the opportunity to know a variable’s runtime value from its type. Indexed

Booleans play a similar role.

The function type (arrow type) is indexed by an upper bound on the function’s

running time, which is the most crucial new feature in TiML. Tuple/sum/recursive

types are supported to enable user-defined datatypes. Tuples must have at least

two components. I sometimes write a tuple type as a product type τ1 × · · · × τn,

and sometimes only discuss the τ1 × τ2 when generalizing from pairs to tuples is

straightforward. Records are turned into tuples internally so I will not discuss records

in this thesis.

For polymorphic types, existential types, type-level abstractions, and type-level

applications, I have two versions of each, one for type arguments and one for index

arguments. I use the same notation in this document for the two versions (and the

corresponding introduction and elimination term forms), relying on context to tell

them apart. Polymorphic types (∀ types) are also indexed by a cost bound, akin to

arrow types, because in some cost models an index/type abstraction also needs some

computation to produce a result when applied. In the simple cost model used in this

chapter, this bound is always zero and often omitted. The last few types from state u

are for the state mechanism, which will be described in Section 2.6 and Chapter 3.

Now let us turn to terms (expressions). Some terms are annotated with types

(shown as subscripts) to facilitate syntax-directed typechecking, and many of these

annotations can be inferred or disguised as datatypes. I use n and n as distinct

4TiML’s kind system does not contain width information for a type variable.
5TiML is not dependently typed.

36

syntax classes to represent integer constants and natural-number constants, of types

int and nat i respectively. e obt e stands for all primitive binary operations working

on primitive types such as int. e⊕ e is the plus operation on natural numbers6. I use

addition as an example for other possible natural-number operations. The next few

term formers are the introduction and elimination forms of the corresponding types.

I use the notation x.e to mean a binding where x is locally bound in e. recτ x. e is a

general fixpoint.

The next few terms are for array creation, read, write, and length retrieval7.

new e1 e2 is for creating an array of size e1 with all elements initialized to be e2.

arrayFromListn {−→e } is for creating an array whose elements are e1, · · · , en. Locations

ℓ only arise during reduction, as in standard operational semantics for mutable refer-

ences. ifi e then x.e1 else x.e2 is for indexed Booleans what if-then-else is for Booleans.

The variable x in each branch contains a proof that e evaluates to true (or false) (see
its typing rule in Figure 2-10).

2.2.2 Operational semantics

TiML’s operational semantics (Figure 2-6 and 2-7) is a standard small-step oper-

ational semantics instrumented with a “fuel” parameter. Fuel (a nonnegative real

number) is consumed by certain reductions, and a reduction without enough fuel to

proceed is stuck. A starting fuel amount in an execution that does not get stuck will

thus be an upper bound on the execution’s total time cost (assuming fuel consump-

tion coincides with time consumption). Formally, reductions are defined between

configurations, each a triple of a heap, a program, and a fuel amount. A heap is a

finite partial map (denoted as ⇀) from locations to lists of values (denoted as −→v).

Note that each location points to a list of values instead of a single value because

each location corresponds to an array. The reduction relation σ ⇝ σ′ is defined via
6It is different from e obt e because the result type has to be properly indexed to reflect the

computation. For example, supposing ⊢ e1 : nat 3 and ⊢ e2 : nat 4, then ⊢ e1 ⊕ e2 : nat 7. Notice
that (e1 ⊕ e2)’s type is indexed, and the index is computed from the indices of the operands’ types.
On the contrary, if ⊢ e1 : int and ⊢ e2 : int, then ⊢ e1 obt e2 : int (where obt is e.g. plus), an unindexed
type.

7array creation/read/write are all annotated with the element width n.

37

Value
v ::= () | d | n | λx : τ. e | (v, v) | lτ .v | rτ .v | foldτ v | Λα : κ. e | Λa : s. e | packτ ⟨τ, v⟩

| packτ ⟨i, v⟩ | ℓ
Evaluation Context
E ::= □ | E e | v E | E obt e | v obt E | E ⊕ e | v ⊕ E | (E, e) | (v,E) | E.1 | E.2 | lτ .E | rτ .E

| case E of x.e or x.e | foldτ E | unfold E | E τ | E i | packτ ⟨τ, E⟩ | unpack E as ⟨α, x⟩ in e
| packτ ⟨i, E⟩ | unpack E as ⟨a, x⟩ in e | new E e | new v E | read E e | read v E
| write E e e | write v E e | write v v E | · · ·

Heap
h ∈ loc ⇀ −→v

Configuration
σ = (h, e, r)

Figure 2-6: Definitions in operational semantics

evaluation contexts and the atomic reduction relation σ _ σ′. In the current setting,

only the beta reduction (function application) consumes fuel, by 1.

Fixpoint unrolling does not consume fuel, which appears to make the counting

scheme too lax, as one may suspect that it is counting too few steps, where fixpoint

unrollings can cause unbounded reduction sequences on their own. However, the typ-

ing rules induce a syntactic restriction ruling out two consecutive fixpoint unrollings

without a beta reduction (explained more later).

Array reads and writes check that the offset is within bounds before performing

the operation. I use notation m[k 7→ v] to mean updating a map or a list at k and vn

to mean a list of v repeated n times. JobtK is an interpretation of the primitive binary

operation, which is a partial function that can result in an error when given illegal

arguments. For symmetric pairs like e.1 and e.2, we only show one.

2.3 Type system

TiML’s type system consists of various forms of judgments including sorting, kinding,

typing, type equivalence, wellformedness of various entities, etc. Here I only describe

sorting and typing rules (in Figure 2-9 and 2-10), since they are most relevant to

complexity analysis. The rules use several kinds of contexts, which are summarized

38

σ _ σ′

r ≥ 1

(h, (λx : τ. e) v, r) _ (h, e[v/x], r − 1) (h, recτ x. e, r) _ (h, e[recτ x. e/x], r)

(h, unpack (packτ ′ ⟨τ, v⟩) as ⟨α, x⟩ in e, r) _ (h, e[τ/α][v/x], r)

(h, unpack (packτ ⟨i, v⟩) as ⟨a, x⟩ in e, r) _ (h, e[i/a][v/x], r)

(h, (Λα : κ. e) τ, r) _ (h, e[τ/α], r) (h, (Λa : s. e) i, r) _ (h, e[i/a], r) (h, (v1, v2).1, r) _ (h, v1, r)

(h, case lτ .v of x.e1 or x.e2, r) _ (h, e1[v/x], r)

h(ℓ) = −→v n < |−→v |
(h, ℓ[n], r) _ (h, vn, r)

h(ℓ) = −→v n < |−→v |
(h, ℓ[n] := v′, r) _ (h[ℓ 7→ −→v [n 7→ v′]], (), r)

ℓ ̸∈ h

(h, new n v, r) _ (h[ℓ 7→ vn], ℓ, r)

JobtK(v1, v2) = v

(h, v1 obt v2, r) _ (h, v, r) (h, n1 ⊕ n2, r) _ (h, n1 + n2, r) (h, unfold (foldτ v), r) _ (h, v, r)

σ ⇝ σ′

(h, e, r) _ (h′, e′, r′)

(h,E[e], r)⇝ (h′, E[e′], r′)

Figure 2-7: Operational semantics

Sorting Context Kinding Context Typing Context
Ω : {−−−→a 7→ s} Λ : {−−−−→α 7→ κ} Γ : {−−−−→x 7→ τ}

Heap Type Full Context
Σ : {

−−−−−−→
l 7→ (τ, i)} ∆ = (Ω,Λ,Γ,Σ)

Figure 2-8: Typing contexts

39

Ω ⊢ i : s

Ω(a) = s

Ω ⊢ a : s
Var

Ω ⊢ n : Nat Nat
Ω ⊢ r : Time Time

Ω ⊢ () : Unit ()
Ω ⊢ true : Bool True

Ω ⊢ false : Bool False Ω ⊢ i : oui.s1
Ω ⊢ oui i : oui.sres

UO Ω ⊢ im : obi.sm (m = 1, 2)

Ω ⊢ i1 obi i2 : obi.sres
BO

Ω; a : s1 ⊢ i : s2
Ω ⊢ λa : s1. i : s1 ⇒ s2

⇒I Ω ⊢ i1 : s1 ⇒ s2 Ω ⊢ i2 : s1
Ω ⊢ i1 i2 : s2

⇒E Ω ⊢ i : s Ω ⊢ θ[i/a]

Ω ⊢ i : {a : s | θ}
{}I

Ω ⊢ i : {a : s | θ} Ω; a : s ⊢ wf θ
Ω ⊢ i : s

{}E Ω ⊢ i : Bool Ω ⊢ im : s (m = 1, 2)

Ω ⊢ i ? i1 : i2 : s
Ite

Figure 2-9: Sorting rules

in Figure 2-8. A sorting/kinding/typing context maps index/type/term variables to

sorts/kinds/types respectively. A heap typing context maps locations to type-index

pairs specifying the types and lengths of arrays. A full context (used in typing rules)

consists of all the above contexts. Some judgments (e.g. sorting) do not need the full

context. To reduce notational noise, I still pass a full context to those judgments and

elide the selection of needed parts. Similarly I will write ∆;x : τ and ∆(x) when it

is clear which component of ∆ is operated on. When I want to be specific, I use e.g.

∆.1 to mean the first component of ∆.

2.3.1 Typing rules

In Figure 2-9, the most important rules are the introduction and elimination rules for

refinement sorts: rules {}I and {}E. An inhabitant of a base sort can be admitted by

a refinement sort if it satisfies the refinement predicate. I use the validity judgment

Ω ⊢ θ to mean that proposition θ is true under the context Ω, which may contain

refinements to be used as premises. Its definition is sketched in Section 2.5. A

member of a refinement sort can automatically be used as a member of the base sort.

A subsorting rule can be derived where subsorting is defined by implication between

refinement predicates. Operators can have associated information like the type of the

40

∆ ⊢ e : τ ▷ i

∆(x) = τ

∆ ⊢ x : τ ▷ 0
Var ∆ ⊢ e1 : τ1 ▷ i1 ∆;x : τ1 ⊢ e2 : τ2 ▷ i2

∆ ⊢ let x = e1 in e2 : τ2 ▷ i1 + i2
Let

∆ ⊢ e1 : τ1
i−→ τ2 ▷ i1 ∆ ⊢ e2 : τ1 ▷ i2

∆ ⊢ e1 e2 : τ2 ▷ i1 + i2 + i+ CApp(nk, bk)
→E

∆ ⊢ τ1 :: ∗ ∆;x : τ1 ⊢ e : τ2 ▷ i

∆ ⊢ λx : τ1. e : τ1
i+CAbsInner(e)−−−−−−−−→ τ2 ▷ CAbs(e)

→I

e = Λ−−→a : s. λy : τ1. e1 ∆ ⊢ τ :: ∗ ∆;x : τ ⊢ e : τ ▷ i

∆ ⊢ recτ x. e : τ ▷ i
Rec

∆ ⊢ () : unit ▷ CConst
Unit

∆ ⊢ d : int ▷ CConst
Int

∆ ⊢ n : nat n ▷ CConst
Nat

∆ ⊢ em : τm ▷ im (m = 1, · · · , n)
∆ ⊢ (e1, · · · , en) : τ1 × · · · × τn ▷ i1 + · · ·+ in + CTuple(n)

×I ∆ ⊢ e : τ1 × · · · × τn ▷ i m ≤ n

∆ ⊢ e.m : τm ▷ i+ CProj
×E1

∆ ⊢ e : τ1 ▷ i ∆ ⊢ τ2 :: ∗
∆ ⊢ lτ2 .e : τ1 + τ2 ▷ i+ CInj

+I1

∆ ⊢ e : τ1 + τ2 ▷ i ∆;x : τm ⊢ em : τ ▷ im (m = 1, 2)

∆ ⊢ case e of x.e1 or x.e2 : τ ▷ i+ CCase(i1, i2, e1, e2, nk, bk)
+E

∆ ⊢ e : bool ▷ i ∆ ⊢ em : τ ▷ im (m = 1, 2)

∆ ⊢ if e then e1 else e2 : τ ▷ i+ CIf(i1, i2, e1, e2, nk, bk)
If

∆ ⊢ e : ibool j ▷ i
∆;x : ∃{j = true}. unit ⊢ e1 : τ ▷ i1 ∆;x : ∃{j = false}. unit ⊢ e2 : τ ▷ i2

∆ ⊢ ifi e then x.e1 else x.e2 : τ ▷ i+ CIfi(i1, i2, e1, e2, nk, bk)
Ifi

∆ ⊢ τ −→c :: ∗ τ = µα :: κ. τ1 ∆ ⊢ e : τ1[τ/α]
−→c ▷ i

∆ ⊢ foldτ −→c e : τ −→c ▷ i+ CFold
µI τ = µα :: κ. τ1 ∆ ⊢ e : τ −→c ▷ i

∆ ⊢ unfold e : τ1[τ/α]
−→c ▷ i+ CUnfold

µE

∆ ⊢ e : ∀iα:κ. τ ▷ i1 ∆ ⊢ τ1 :: κ

∆ ⊢ e τ1 : τ [τ1/α] ▷ i1 + i+ CAppT(nk, bk)
∀E

e is value ∆;α :: κ ⊢ e : τ ▷ i

∆ ⊢ Λα : κ. e : ∀CAbsTInner(e)
α:κ . τ ▷ CAbsT(i, e)

∀I

∆ ⊢ e : ∀ja:s. τ ▷ j1 ∆ ⊢ i : s

∆ ⊢ e i : τ [i/a] ▷ j1 + j + CAppT(nk, bk)
∀iE

∆ ⊢ wf s e is value ∆; a : s ⊢ e : τ ▷ i

∆ ⊢ Λa : s. e : ∀CAbsTInner(e)
a:s . τ ▷ CAbsT(i, e)

∀iI

∆ ⊢ (∃α :: κ. τ) :: ∗ ∆ ⊢ τ1 :: κ ∆ ⊢ e : τ [τ1/α] ▷ i

∆ ⊢ pack∃α::κ. τ ⟨τ1, e⟩ : ∃α :: κ. τ ▷ i+ CPack
∃I

∆ ⊢ e1 : ∃α :: κ. τ ▷ i1 ∆;α :: κ;x : τ ⊢ e2 : τ2 ▷ i2 α ̸∈ FTV(τ2)
∆ ⊢ unpack e1 as ⟨α, x⟩ in e2 : τ2 ▷ i1 + i2 + CUnpack

∃E

Figure 2-10: Typing rules

41

∆ ⊢ (∃a : s. τ) :: ∗ ∆ ⊢ i :: s ∆ ⊢ e : τ [i/a] ▷ j

∆ ⊢ pack∃a:s. τ ⟨i, e⟩ : ∃a : s. τ ▷ j + CPack
∃iI

∆ ⊢ e1 : ∃a : s. τ ▷ i1 ∆; a : s;x : τ ⊢ e2 : τ2 ▷ i2 a ̸∈ FIV(τ2, i2)
∆ ⊢ unpack e1 as ⟨a, x⟩ in e2 : τ2 ▷ i1 + i2 + CUnpack

∃iE

∆ ⊢ em : obt.τm ▷ im (m = 1, 2)

∆ ⊢ e1 obt e2 : obt.τres ▷ i1 + i2 + CBinOp(obt)
BinOp ∆ ⊢ em : nat im ▷ jm (m = 1, 2)

∆ ⊢ e1 ⊕ e2 : nat (i1 + i2) ▷ j1 + j2 + CNatPlus
Nat+

∆ ⊢ ek : τ ▷ ik (k = 1, · · · , n) goodWidth(m, τ)

∆ ⊢ arrayFromListm {e1, · · · , en} : arraym τ n ▷ i1 + · · ·+ in + CArrayFromList(m,n)
New1

∆ ⊢ e1 : nat i ▷ j1 ∆ ⊢ e2 : τ ▷ j2 goodWidth(n, τ)
∆ ⊢ newn e1 e2 : arrayn τ i ▷ j1 + j2 + CNew(n, i)

New2

∆ ⊢ e1 : arrayn τ i1 ▷ j1 ∆ ⊢ e2 : nat i2 ▷ j2 ∆ ⊢ i2 < i1

∆ ⊢ readn e1 e2 : τ ▷ j1 + j2 + CRead(n)
Rd

∆ ⊢ e1 : arrayn τ i1 ▷ j1 ∆ ⊢ e2 : nat i2 ▷ j2 ∆ ⊢ i2 < i1 ∆ ⊢ e3 : τ ▷ j3

∆ ⊢ writen e1 e2 e3 : unit ▷ j1 + j2 + j3 + CWrite(n)
Wr

∆ ⊢ e : array τ i ▷ j

∆ ⊢ len e : nat i ▷ j + CLen
Len ∆(ℓ) = (τ, i)

∆ ⊢ ℓ : array τ i ▷ 0
Loc

∆ ⊢ e : τ ▷ i1 ∆ ⊢ i2 : Time ∆ ⊢ i1 ≤ i2

∆ ⊢ e : τ ▷ i2
Relax ∆ ⊢ e : τ1 ▷ i ∆ ⊢ τ2 :: ∗ ∆ ⊢ τ1 ≡ τ2 :: ∗

∆ ⊢ e : τ2 ▷ i
TyEq

Figure 2-11: Typing rules (continued)

42

first argument or the result, written as o.τ1 and o.τres.

Typing judgments have the form ∆ ⊢ e : τ ▷ i where i represents an upper bound

of time needed to reduce e to a value8. i is an open index that may refer to index

variables in ∆. Typing rules are defined preserving an invariant that if ∆ ⊢ e : τ ▷ i

then τ is of kind ∗ and i is of sort Time.

The introduction and elimination rules →I and →E for function types reflect the

intuition of how to count beta reductions. According to rule →E, the running time

of a function is the running time of the function body, and the time to evaluate a

function application e1 e2 is the sum of that needed for e1, e2, the function body, plus

some extra cost for the beta reduction. Most rules in Figure 2-10 involve some cost

parameters which will be defined in Section 4.5. In the simple cost model used in this

chapter, CApp(_,_) = 1 and all other cost parameters are zero.

The rule Rec for fixpoints requires that the body be a function abstraction, pos-

sibly wrapped by some index polymorphism, which ensures that any two consecutive

fixpoint unrollings will trigger at least one beta reduction. Note that TiML supports

index-polymorphic recursion where the index argument can change in a recursive call.

Being able to make a recursive call with a different index is necessary to reflect the

change of argument size.

In rules µI and µE, c denotes either a type or an index, so −→c denotes a list of

mixed types and indices. FTV(·) and FIV(·) stand for free type and index variables re-

spectively. Rules Rd and Wr for array read and write perform static bound checking

by requiring ∆ ⊢ i2 < i1. Structural (non-syntax-directed) rules Relax and TyEq

are for relaxing the time bound and using an equivalent type.

Note that the form restriction in rule Rec means that fixpoints always define

functions, and terms such as recursive lists are ruled out. The constraint is also

present in SML, since in SML one can only define a fixpoint by the “fun” keyword,

which defines a function that must take at least one argument.

In rule Ifi, note that variable x is given the type ∃{j = true}. unit when type-

8Let us ignore the memory costs for now. When memory costs are considered, i is a pair of
indices, of sorts Time and Nat.

43

checking the first branch e1
9. e1 can add the premise j = true into the typechecking

(and VC-checking) context by unpacking x. Rules New1 and New2 use a function

goodWidth, defined below, to check that the element type and the element width are

compatible10.
goodWidth(1, byte) = true
goodWidth(32,_) = true
goodWidth(_,_) = false

2.3.2 Typing examples

To help the reader build the right intuition about the syntax and typing rules, I write

the fold-left example in the formal syntax:

list def
= µγ : ∗ ⇒ Nat ⇒ ∗. λα : ∗. λa : Nat.(∃_ : {_|a = 0}. unit)+

(∃b : Nat, _ : {_|a = b+ 1}. α× γ α b)

foldl def
= Λα β : ∗. rec g. e

e
def
= Λm n : Nat. λf : α× β

m−→ β. λy : β. λl : list α n.

case unfold l of
z.unpack z as ⟨_,_⟩ in y

or z.unpack z as ⟨n′, w⟩ in unpack w as ⟨_, u⟩ in g m n′ f (f(u.1, y)) u.2

e : ∀m n : Nat. (α× β
m−→ β)

0−→ β
0−→ list α n

T m n−−−→ β

T
def
= λm n. (m+ 4)× n.

Comparing with the source code in Listing 2-1, we can see that datatypes are trans-

lated into recursive types where the restriction on the index argument is translated

into a refinement in each constructor. The unnamed index of the refinement sort

as well as any extra index arguments in each constructor are existentially quantified.

Pattern matching is translated into unfolding, case-analysis, and series of unpackings,

the last of which makes the refinements in each constructor available in that branch.
9∃{j = true}.unit is a simplified syntax for ∃a : {a : Unit|j = true}.unit, meaning the index packed

in this type, a, is of sort {a : Unit|j = true}.
10Currently only the byte type has a width of 1; all other types (including type variables) have

width 32. In other words, in order to create a 1-byte array, the element type must be known to be
byte. Note that a 32-byte array of bytes is also allowed.

44

Σ ⊢ h

∀ℓ τ i. Σ(ℓ) = (τ, i) → ∃−→v . h(l) = −→v ∧ |−→v | = JiK ∧ ∀v ∈ −→v . (·, ·, ·,Σ) ⊢ v : τ ▷ 0

Σ ⊢ h
Heap

Σ ⊢ σ : τ ▷ i

(·, ·, ·,Σ) ⊢ e : τ ▷ i ⊢ wf Σ Σ ⊢ h JiK ≤ r

Σ ⊢ (h, e, r) : τ ▷ i
Config

Figure 2-12: Configuration typing

The running time of each branch should be bounded by the overall bound of the

function. The first branch requires us to prove the trivial VC: 0 ≤ T m n; the second

branch requires us to prove: n = n′ + 1 → m+ 4 + T m n′ ≤ T m n.

Another illustrative example is a diverging recursive function, which is not typable

in TiML:

rec f. Λa : Nat. λx : unit. f (a− 1) x

Its untypability is implied by the soundness theorem, which guarantees that every

well-typed TiML program terminates. A more intuitive explanation is that one of

the VCs it generates is

∀a : Nat. a− 1 + 1 ≤ a

which is not true without the premise a ≥ 1 (our subtraction for Nat and Time is

bounded below by zero). A proper structural recursion like foldl typechecks because
the Cons branch gives us the premise n = n′ + 1 (hence n ≥ 1), which we do not

have here (refining a to {a | a ≥ 1} will not work because the call f (a − 1) will be

rejected).

45

2.3.3 Soundness theorem

The soundness theorem of TiML states the usual “nonstuckness” property that “well-

typed terms cannot get stuck.” It uses configuration typing defined by rule Config

in Figure 2-12, which means the term and heap are well-typed, and the available fuel

is no lower than what is statically estimated by the type system.

Definition 1 (Unstuck). A configuration σ is unstuck iff σ.2 is a value or there exists

σ′ such that σ ⇝ σ′.

Theorem 1 (Soundness). For all Σ, τ , i, σ, and σ′, if Σ ⊢ σ : τ ▷ i and σ ⇝∗ σ′,

then σ′ is unstuck.

Section 2.5 sketches the proof (mechanized in Coq).

Note that in rule Config, I only require that if a location is well-typed then it

contains a value of the expected type. I do not need to require the other way around

(i.e. if a location contains a value then it should be well-typed). The intuition is

that a heap type Σ is just an underspecification of the actual heap h. Well-typed

programs will only access locations in h that are specified by Σ. h can have ill-typed

junk values outside Σ’s domain, and they will not affect programs’ behavior.

2.3.4 Decidability

I aim for relative decidability, meaning that TiML typechecking always produces VCs

that are true iff the original program should typecheck, even though the VCs do not

obviously fall in a decidable theory. The relative decidability can be witnessed by

a syntax-directed algorithmic version of the typing rules in Figure 2-10 by inlining

rules Relax and TyEq. In practice, I use SMT solvers to decide the VCs, which

are in theory not SMT-decidable because of nonlinear formulas like m× n from e.g.

time bounds or array-bound checking, though Z3 seems to be pretty good at handling

them on all the benchmarks.

46

2.4 Typechecker implementation and big-O infer-

ence

I have implemented TiML’s typechecker in SML. The typechecker is implemented

from scratch, not using existing parser or typechecker implementations for similar

languages, for maximal flexibility. The typechecking algorithm is based on a syntax-

directed version of Figure 2-10, which is already almost syntax-directed except for

rules Relax and TyEq that can be inlined into other rules.

The typechecker supports Hindley-Milner type inference and some index infer-

ence, particularly inferring big-O classes from recurrences. Types and indices can be

omitted with underscores, and the typechecker generates unification variables (abbre-

viated as uvars from here on) in place of these underscores. Type uvars are unified or

generalized during typechecking per the Hindley-Milner algorithm; after typechecking

there should not be any type uvars left. Index uvars are unified as much as possible

during typechecking, though after typechecking there could remain some index uvars

in the program and in VCs. Index uvars in VCs are converted into existentially quan-

tified variables, and these VCs with existential quantifiers are sent to our heuristic

pattern-matching-based recurrence solver.

With full annotations of the running time of recursive functions, the VCs are regu-

lar inequality formulas like 3(n−1)+3 ≤ 3n. If the programmer decides that coming

up with a time-complexity annotation like 3n is too burdensome, she can choose to

omit this annotation, and the inference-enabled typechecker will generate VCs like

T (n − 1) + 3 ≤ T (n) with an unknown T (·). In this situation we face the problem

of recurrence solving, which TiML handles in an incomplete way by using heuristic

pattern-matching-based big-O complexity inference that can handle recurrences re-

sulting from many common iteration and divide-and-conquer patterns (because it is

heuristics-based, I do not have a clear characterization of its applicability, though).

For example, seeing a pattern T (n−1)+3 ≤ T (n), the solver infers that the function’s

time complexity is O(n); seeing a pattern 2T (⌊n/2⌋)+4n+5 ≤ T (n), the solver infers

that the function’s time complexity is O(n log(n)).

47

The task of the recurrence solver is to massage the VCs in order to find patterns

such as T (n−1)+3 ≤ T (n) (the searching of patterns is a shallow syntactical match-

ing and there is no notion of canonical forms)11. The solver first lifts all irrelevant

conjuncts out of existential quantifiers, so that under each existential quantifier are

only conjuncts that are relevant in finding a value for the existential variable. Then

it looks for VCs of the forms

∃T. T ≦ g ∧ ∀m,n. A ≤ T (m,n) or ∃g, T. T ≦ g ∧ ∀m,n. A ≤ T (m,n).

The first form corresponds to the case where the programmer has provided a big-O

specification (e.g. msort), while the second case corresponds to where the programmer

has omitted the big-O class (e.g. split). The programmer-provided g will be ignored

first in the first form, and the solver will come up with its own inference of g, which

will be compared to the programmer-supplied specification.

The bulk of the solver’s work is analyzing the A part. It treats A as a sum of terms

and tries to find among these terms those of the form T (m, ⌈qi/b⌉) or T (m, ⌊qi/b⌋)

with a common divisor b but possibly different qi’s where qi ≤ n. It uses an SMT

solver to do equality and inequality tests to be more robust. After collecting these

“sub-problem” terms, it tries to find the big-O classes of the remaining terms. A big-

O class has the form mnc logd n. Some terms have their big-O classes in the premise

context, such as Tsplit and Tmerge in (2.1.0.1). Big-O classes are easy to combine for

addition, multiplication, logarithm, and max. Finally, these collected terms are used

to match the cases of the Master Theorem, which is shown below as a reminder.

Theorem 2 (Master Theorem). For recurrence T (n) = aT (n/b) + f(n) where a ≥ 1

and b > 1:

(1) if f(n) ∈ O(nc) where c < logb a, then T (n) ∈ Θ(nlogb a);

(2) if f(n) ∈ Θ(nc logk n) where c = logb a and k ≥ 0, then T (n) ∈ Θ(nc logk+1 n);

(3) if f(n) ∈ Ω(nc) where c > logb a, and af(n/b) ≤ kf(n) for some k < 1 and

sufficiently large n, then T (n) ∈ Θ(f).
11A pattern-matching-based solver has the strength of being flexible and versatile, despite the

weakness of being fragile in the face of superficial syntactical irregularities.

48

To apply it to inequality recurrences, I changed Θ to O in the conclusion to get a

sound (but sometimes not tight) bound. The Master Theorem gives a solution for g

(an asymptotic bound), but no solution for T (a concrete bound), so subsequent use of

T cannot rely on its properties other than being of O(g). Aside from using the Master

Theorem for divide-and-conquer-like VCs, the solver also looks for VCs of the form

T (n− 1)+O(f(n)) ≤ T (n) and infers big-O class T (n) ∈ O(nf(n)). This heuristic is

useful for simple “remove one” recursion schemes common in list processing. As can

be seen from the above procedure, only a limited form of multivariate complexities

is supported, namely these where n is the main variable and m is just a passive

factor. Such passive factors are mainly used in cases where an algorithm takes in

a primitive operation as parameter (like the le comparator taken in by function

msort). Another limitation is that bounds such as n logn are only supported through

this big-O mechanism. The programmer cannot specify a precise n logn-like bound

(not a big-O class) and tell the SMT solver to discharge the VCs, since I have not

been able to teach the SMT solver to discharge VCs involving n logn.

The pattern-matching-based recurrence solver is versatile albeit fragile. If the

syntactic form of the VC is not something I anticipate, the solver tends to fail to rec-

ognize the recurrence pattern. One such failure is given in Section 5.1 on benchmark

array-kmed.

2.5 Formal soundness proof

I formalized TiML and its soundness proof in Coq, constituting the first mechanized

soundness proof for a resource-aware type system. The Coq proof can be found in

file proof/Soundness.v in the source-code tarball associated with this thesis as sup-

plemental material. The Soundness Theorem (Theorem 1 in Section 2.3.3, Theorem

soundness in the Coq proof) is proved by the usual “preservation + progress” ap-

proach, with the preservation and progress lemmas shown below. JiK stands for the

denotational semantics (i.e. interpretation) of index i, explained later in this section.

Lemma 1 (Progress). For all Σ, τ , i, and σ, if Σ ⊢ σ : τ ▷ i, then unstuck(σ).

49

Proof. Induction on the typing derivation. See Coq proof of lemma progress for

details.

Lemma 2 (Preservation). For all Σ, τ , i, σ, and σ′, if Σ ⊢ σ : τ ▷ i and σ ⇝ σ′,

then there exist Σ′ and i′ such that Σ′ ⊢ σ′ : τ ▷ i′.

Proof. Appeal to Lemmas 3 and 4.

Lemma 3 (Atomic Preservation). For all Σ, τ , i, σ, and σ′, letting ∆r be σ.3−σ′.3, if

Σ ⊢ σ : τ▷i and σ _ σ′, then JiK ≥ ∆r and there exists Σ′ such that Σ′ ⊢ σ′ : τ▷(i−∆r)

and Σ ⊆ Σ′.

Proof. Induction on the atomic stepping derivation (the second premise). See Coq

proof of lemma preservation_atomic for details.

Lemma 4 (Ectx Typing). Let e be E[e1] (the plugging of term e1 into evaluation

context E). For all Σ, τ , and i, letting ∆ be (·, ·, ·,Σ), if ∆ ⊢ e : τ ▷ i and ⊢ wf ∆,

then there exist τ1 and i1 such that ∆ ⊢ e1 : τ1 ▷ i1, Ji1K ≤ JiK, and for all e′1, Σ′, and

i′1, letting ∆′ be (·, ·, ·,Σ′) and e′ be E[e′1], if ∆′ ⊢ e′1 : τ
′
1 ▷ i

′
1, ⊢ wf ∆′, Ji′1K ≤ Ji1K, and

Σ ⊆ Σ′, then ∆′ ⊢ e′ : τ ▷ i− i1 + i′1.

Proof. Induction on the definition of the context-plugging operation. See Coq proof

of lemma ectx_typing for details.

Lemma 3 is the version of the preservation lemma for atomic steps, also strength-

ened with the time bound on the post-configuration explicitly specified as i − ∆r.

Lemma 4 is a characterization of the typing property of evaluation contexts. It says

that if a compound term is well-typed, then the inner term is well-typed, and if

one replaces the inner term with another term of the same type, the type of the

compound term will not change. It also reflects the intuition that the running time

of a compound term is the running time of the inner term plus that of the evalu-

ation context. The proofs of the above lemmas make use of various versions (for

sorting/kinding/typing) of substitution lemmas, canonical-value-form lemmas, and

weakening lemmas, for each of which I show one example below. Another important

50

lemma is the invariant that the typing judgments guarantee the result type and time

are of proper kind/sort.

Lemma 5 (Substitution). For all ∆, e1, τ1, i1, e2, x, and τ , if ∆, x : τ ⊢ e1 : τ1 ▷ i1,

∆ ⊢ e2 : τ ▷ 0 and ⊢ wf ∆, then ∆ ⊢ e1[e2/x] : τ1 ▷ i1.

Proof. Induction on the typing derivation for e1. See Coq proof of lemma typing_subst_e_e

for details.

Note that in the above lemma I require time 0 in e2. The reason is that variable

x may have multiple appearances in e1. If e2 has nonzero running time, then after

the substitution there may be multiple copies of e2, and the resulting time will not

be simply i1 + i2. I got away with fixing i2 to 0 because in all the proofs, term

substitution only happens when the substitute is a value.

Lemma 6 (Canonical Value Form). For all Σ, v, τ1, τ2, i, and i′, letting ∆ be

(·, ·, ·,Σ), if ∆ ⊢ v : τ1
i−→ τ2 ▷ i

′ and ⊢ wf ∆, then there exists e such that v = λx. e.

Proof. Induction on the typing derivation. See Coq proof of lemma canon_TArrow

for details.

Lemma 7 (Weakening). For all ∆, e, τ , i, x, and τ ′, if ∆ ⊢ e : τ ▷ i, then ∆, x : τ ′ ⊢

e : τ ▷ i.

Proof. Induction on the typing derivation. See Coq proof of lemma typing_shift_e_e

for details.

Lemma 8 (Typing-Kinding). For all ∆, e, τ , and i, if ∆ ⊢ e : τ ▷ i and ⊢ wf ∆, then

∆ ⊢ τ :: ∗ and ∆ ⊢ i : Time.

Proof. Induction on the typing derivation. See Coq proof of lemma typing_kinding

for details.

One complication during the proof is the treatment of type equivalence. The

definition of type equivalence should admit both equivalence rules (particularly tran-

sitivity) and good inversion lemmas such as Lemma 9. I follow the method in Chapter

51

30 of [68], defining type equivalence with congruence, reduction, and equivalence rules

(see the Coq definition of tyeq), and then I prove inversion lemmas via a “parallel

reduction” version of type equivalence that enjoys a “diamond” property. My solu-

tion is more involved because even for comparing normalized types I cannot use a

syntactic equality test, for I allow two semantically equivalent indices to be treated

as equal. In the Coq code I use the relation cong to compare normalized types, which

uses a semantic-equivalence test to compares indices. Because all properties about

the denotational semantics (see below) of indices require well-sortedness, I need to

put kinding constraints in type equivalence rules. Particularly, the transitivity rule

needs a kinding constraint on the intermediate type. All judgments involving types

should be morphisms on tyeq equivalence, expressed as lemmas such as Lemma 10.

Lemma 9 (Invert TyEq TArrow). For all ∆, τ1, i, τ2, τ ′1, i′, τ ′2, and κ, if ∆ ⊢

τ1
i−→ τ2 ≡ τ ′1

i′−→ τ ′2 :: κ, ∆ ⊢ τ1
i−→ τ2 :: κ, ∆ ⊢ τ ′1

i′−→ τ ′2 :: κ, and ⊢ wf ∆, then

∆ ⊢ τ1 ≡ τ ′1 :: κ, ∆ ⊢ i = i′, and ∆ ⊢ τ2 ≡ τ ′2 :: κ.

Proof. See Coq proof of lemma invert_tyeq_TArrow for details.

The judgment ∆ ⊢ i = i′ used above is just an instance of the validity judgment

Ω ⊢ θ. Notice the dissertation’s convention that I may write ∆ when only its Ω part

is needed.

Lemma 10 (TCtx TyEq). For all Ω, Λ, Σ, Γ, Γ′, e, τ , and i, if (Ω,Λ,Σ,Γ) ⊢ e : τ ▷i,

(Ω,Λ) ⊢ wf Γ′, Γ and Γ′ have the same domain and have equivalent types at each

variable, then (Ω,Λ,Σ,Γ′) ⊢ e : τ ▷ i.

Proof. See Coq proof of lemma tctx_tyeq for details.

I had two unsuccessful attempts to formalize properties of type equivalence before

I embarked on the current approach. The intuition of the two failed approaches was

the same as the current one: bake reduction and equivalence rules into the definition

and prove that the definition coincides with another relation that admits good inver-

sion lemmas. I first tried to prove that type equivalence coincides with a set of logical

relations. Logical relations are a technique for proving contextual equivalence of two

52

open terms, by first defining logical equivalence on closed terms and then extending

it to open terms via equivalent substitutions. I ran into trouble with this approach

because my types are indexed with open indices, and the index/sort system is a de-

pendent type system. In my second attempt, I tried a fully denotational approach

by interpreting open types as functions that return closed type normal forms, prov-

ing that type equivalence coincides with equivalence of those functions (assuming

functional extensionality). This approach disallows impredicative polymorphic types,

whose presence makes type normal forms undefinable, because the cardinality of one

of the normal form’s constructors (the polymorphic type case) is larger than that of

the normal form itself.

The final type-equivalence definition includes three categories of rules: (1) con-

gruence rules, for example, τ1×τ2 ≡ τ ′1×τ ′2 if τ1 ≡ τ ′1 and τ2 ≡ τ ′2; (2) reduction rules,

for example, (λα. τ1) τ2 ≡ τ1[τ2/α]; (3) equivalence rules, i.e., reflexivity, transitivity,

and symmetry. For a compound example, (λα. τ1 × α) τ2 × τ3 ≡ τ1 × τ2 × τ3.

In the Coq formalization, I use de Bruijn indices throughout, and since I have

the three-tier index, type, and term sublanguages, I have to define multiple forms of

substitution and shifting corresponding to each pair of sublanguages. A major part of

the proof is establishing harmonious interactions between various forms of judgments

and various forms of substitution and shifting.

Another technical hurdle is formalizing the denotational semantics of indices. The

denotational semantics (i.e. the interpretation function) should have good reduction

behavior to be used as an evaluator, and it needs to admit substitution lemmas

such as Lemmas 11 and 12. In my Coq formalization, the interpretation function J·K
takes in a base-sorting context, a result base sort, and an index, and interprets the

index according to the context and the result sort. For example: Ja+ b+ 1KNat
[a:Nat,b:Nat]

= (fun a b : nat => a+b+1), where (fun a b : nat => a+b+1) is a Coq term.

The intuition is straightforward: closed indices, when interpreted in an empty context,

denote just numbers (e.g. J3KNat
[] =3); open indices with variables, when interpreted in

a proper context, denote functions (e.g. the a+ b+ 1 example) that can also be seen

as numbers that are parameterized on the values of the free variables. The result base

53

sort is needed to make the Coq type of J·K simpler; otherwise J·K’s type is complexly

dependent on the index. I omit the subscript when the context is empty and the

superscript when it can be inferred. The denotational semantics is fixed once and for

all. Please see the Coq definition of function interp_idx for details.

Lemma 11 (Interp Subst Index). For all ∆, a, i1, s1, i2, and s2, if ∆, a :: s2 ⊢ i1 : s1

and ∆ ⊢ i2 : s2, then Ji1[i2/a]K = Ji1K(Ji2K).
Proof. See Coq proof of lemma interp_subst_i_i for details.

Lemma 12 (Interp Subst Prop). For all ∆, a, θ, i, and s, if ∆, a :: s ⊢ θ, ∆ ⊢ i : s,

∆ ⊢ wf θ and ⊢ wf ∆, then ∆ ⊢ θ[i/a].

Proof. See Coq proof of lemma interp_subst_i_p for details.

The validity judgment Ω ⊢ θ is defined as first collecting refinements in Ω as θ′

and then interpreting the syntactic proposition θ′ → θ in the meta-logic. The latter

is done in a similar way as the interpretation of indices. For example, a : Nat, b :

{Nat|a = b} ⊢ a+ 1 = b+ 1 is defined as ∀a b : nat, a = b → a+ 1 = b+ 1.

2.6 ETiML: a TiML variant for smart contracts

This chapter so far has described TiML as a general functional language with a

simple cost model where each function application costs one unit of time and none

of the other operations cost either time or memory. In this section I will describe

ETiML (Ethereum TiML), a variant of TiML particularly designed to write Ethereum

smart contracts. It has a slightly different surface syntax and a cost model that

faithfully reflects the actual gas cost of smart contracts. It also adds one feature that

is important in the smart-contract setting: states.

An example smart contract written in ETiML is shown in Figure 2-13, which

implements a token. Each contract provides a set of public functions that can be

invoked from outside. The public functions provided by contract Token are transfer

for transferring tokens between accounts (each account is identified by its address)

54

contract Token = struct

state balanceOf : map address uint256
state outflows : vector address

fun constructor (initialSupply : uint256) =
set balanceOf[msg.sender] initialSupply

public fun transfer {n : ℕ} (_to : address, _value : uint256)
pre {outflows : n} post {outflows : n+1} =

require(balanceOf[msg.sender] ≥ _value);
require(balanceOf[_to] + _value ≥ balanceOf[_to]); (* Check for overflows *)
modify balanceOf[msg.sender] -= _value;
modify balanceOf[_to] += _value;
push_back (outflows, msg.sender)

public fun numOutflows {n : ℕ} () pre {outflows : n}
(* using $(4438*n+12384), 1984*n+5568 *) =

for (#0, vector_len outflows, 0, λ {i | 0 ≤ i ∧ i < n} (i : nat {i}, acc) ⇒
if outflows[i] = msg.sender then acc+1 else acc end

)

end

Figure 2-13: ETiML example: token

55

and numOutflows for getting the number of outgoing transfers for the calling account.

Contracts use EVM’s storage to store data that persist across multiple transactions

(each invocation of a public function from the outside is a transaction). In ETiML,

data in storage are declared using the keyword state. Each identifier declared by a

state keyword is called a “state name.” Contract Token declares two state names:

balanceOf for recording the token balance of each account and outflows for recording

the source address of each transfer. Each state name is associated with a type, two

of which are used in this contract: map and vector. A map maps word-sized (512-

bit) keys to values (see Section 3.4.7 for allowed map-value types). A vector is an

in-storage array of word-sized elements.

Unlike previous TiML examples where a function’s cost only depends on its ar-

guments, in a smart contract, a function’s cost can depend on the value or size of

some in-storage data. For example, the cost of function numOutflows depends on

the length of vector outflows, since the former does an iteration over the latter. To

allow costs to depend on the lengths of vectors, I introduced the keywords pre and

post in function signatures to specify the lengths of vectors before and after the func-

tion. A length is an index that can contain index variables; in this way a function

can work with vectors of arbitrary lengths. For example, the signature of function

transfer says that the function expects the length of the vector outflows to be n at

its entrance, while n is a universally quantified natural number. When the function

finishes, the length of outflows is guaranteed to be n+1.

The content in the pre or post clause is called a “state specification” (“state” for

short). It is a map from state names to indices. It does not need to cover all vectors,

only the ones that will be accessed by the function. Accessing a vector not present

in the function’s pre clause is a type error. When the post clause is omitted, it is

assumed to be the same as the pre clause. When both are omitted, they are assumed

to be empty. The formal syntax of arrow types and lambda abstractions in Figure

2-4, when written in their full form that includes pre/postconditions, are

⟨ϕ1, τ1⟩
i−→ ⟨ϕ2, τ2⟩ and λϕx : τ. e.

56

ϕ stands for an index of sort State, constructed via {−−→u : i} or ϕ1 ∪ ϕ2. A lambda ab-

straction is only annotated with a precondition because the postcondition can usually

be derived.

The time cost of numOutflows is 4438*n+12384, where n is the length of vector

outflows. There is a second cost metric in ETiML: the amount of heap allocations

(in units of bytes). “Heap” is my own derived concept implemented on top of the

“memory” concept built into EVM12. All objects that are larger than words (e.g.

tuples, arrays, etc.) are allocated on the heap. More heap allocations will lead to

larger memory footprint and finally to higher gas consumption13. numOutflows’s

heap-allocation amount is 1984*n+5568.

Function numOutflows’s cost specifications can be inferred automatically because

it is implemented with a combinator for instead of as a recursive function14. for

here iterates from zero (inclusive) to the length of outflows (exclusive), calling an

anonymous function (the loop body) with the loop variable i to calculate a result

(initially 0). #0 is the notation for indexed natural number 0. Vector access is

boundary-checked statically, so the information 0 ≤ i ∧ i < n is necessary here.

constructor is a special function that is automatically called when a contract is

deployed on the blockchain. Token’s constructor initializes the balanceOf map by

giving all the initialSupply tokens to the contract creator15. Some minor language

features are worth mentioning here. msg.sender is an environment variable giving

the caller of the current public-function invocation16. require is a function that at

runtime checks that its Boolean argument is true, throwing an exception otherwise.

modify is syntax sugar for modifying the value of a map or vector slot by applying a

unary function to it. -= _value is just a partial application of the binary function

12It is implemented using a free pointer and is never garbage-collected.
13See Section 3.2 for an explanation of why I choose to have time and heap allocations as two

separate cost metrics instead of a single “gas” metric.
14for itself is a recursive function. for is a recursor (or eliminator) for indexed natural numbers,

akin to foldl for lists.
15All state slots are initialized to be zero.
16More precisely, it is the caller responsible for this contract’s current execution (or equivalently

the sender of the current message). It is different from msg.origin, the original initiator of the
current transaction. See Chapter 3 and the EVM specification for details.

57

-=17. push_back is the builtin operation to append an element at the end of a vector.

17a-=b is defined as b-a. The notations here are chosen to mimic C’s compute-and-assign operators.

58

Chapter 3

TiEVM

This chapter describes TiEVM (Timed EVM), a typed assembly language with re-

source bounds for writing Ethereum smart contracts. TiEVM serves as the tar-

get language to compile from the TiML language described in Chapter 2. TiEVM

is a typed version of the Ethereum Virtual Machine (EVM) language used by the

Ethereum platform to express arbitrary computations and changes of the Ethereum

world state. I will start this chapter with a brief introduction of EVM and then dive

into the details of TiEVM’s design choices and technical definitions.

3.1 An EVM primer

EVM is a stack-based (similar to JVM) bytecode language used by Ethereum to

represent transactions (changes of world state), stack-based in the sense that all

instructions operate on operands on top of the stack. EVM is Turing complete. The

world state of Ethereum is a mapping from an account address (an 160-bit integer)

and a word (a 256-bit integer) key to a word value. Equivalently, the world state is the

collection of all accounts’ storages, where each “storage” is a map from words to words

(i.e. a word-addressable word array). Storage is persistent (“nonvolatile”) across

transactions. To make programming easier, EVM also has ephemeral (“volatile”)

data-storage facilities: stack and memory. The stack is a word array with a maximal

length of 1024, which can only be accessed at the top 17 positions. The memory is

59

a map from words to bytes (i.e. a word-addressable byte array). Each transaction

starts with an empty stack and an empty memory; after the transaction finishes, its

stack and memory are discarded1. Only changes to the storage will live on.

Each account (identified by its 160-bit account address, which is usually the public

key of the account owner) is associated with a piece of EVM bytecode (a “smart

contract”) and an ether balance. A transaction is initiated by an end user (usually

a person) by sending a message with associated data to an account, which upon

receiving the message runs its associated EVM code. During execution, the EVM code

can send messages to other accounts (in a synchronous/blocking manner), triggering

smart contracts associated with these accounts. The callee contract will run in a

new stack and memory, not sharing the caller’s. All those cascading executions of

smart contracts are considered to be in the same transaction. A transaction ends

when the computation finishes successfully, or when there is an exception thrown

during the executions of the contracts, which will cause all storage changes during

this transaction to be rolled back. Each message-passing can also transfer ethers from

the sending account to the receiving account.2

As described in Section 1.3, to regulate resource (CPU and memory) usage in

transaction processing, EVM has a gas mechanism. Gas consumption comes from

three sources: (1) evaluating instructions, which costs CPU time; (2) touching higher

memory addresses, which requires the computing node to have more memory; and

(3) setting a storage cell from zero to a nonzero value, which increases the disk

space needed to store the storage, because storage is sparsely encoded, and adding

a nonzero value will increase the size of the encoding. To further incentivize storage

saving, EVM gives gas rewards when one resets a storage cell from nonzero to zero

or deletes (setting all bits to zero) an account’s associated contract.

1More precisely, stack/memory set-up and tear-down happen at the start and end of each contract;
see next paragraph.

2An account’s ether balance can be seen as a special cell in its storage.

60

3.2 Design of TiEVM

The design goal of TiEVM is to have a type system for EVM that rules out tradi-

tional type-safety errors (dereferencing invalid pointers, jumping to invalid addresses,

out-of-bounds array accesses, operations on wrong data types, etc.) and generates

accurate and sound estimations of gas upper bounds. According to the sources of

gas consumption described above, to get accurate bounds, we need to estimate (1)

instruction-evaluation costs, (2) the highest memory address that will be accessed

(“memory high-water mark”), and (3) the zeroness of every storage cell at each mo-

ment. The design of TiEVM centers around the first two aspects; we will discuss the

third aspect later in this chapter.

TiEVM estimates instruction costs and memory high-water mark by having bounds

for time and heap allocations in types (“time” here means gas cost for evaluating

instructions). The total amount of heap allocations corresponds to the memory high-

water mark because (1) heap-allocated objects are never freed or garbage-collected,

hence new objects are allocated at ever-higher addresses; (2) non-heap memory usage

is concentrated at the lower part of memory whose size will be determined at compile

time. We use this lower part of memory to implement a scratch space and a register

file. The maximal number of registers needed by a contract can be determined at

compile time because I do whole-program (or “whole-contract”) compilation.

As a result, a resource bound in TiEVM always appears as a pair of numbers,

one for time and one for heap allocation. The reason why I do not combine them

into a single metric is that the gas cost of memory usage is quadratic in the memory

high-water mark, according to the EVM specification. Estimating the two metrics

separately and only combining them at the very end (to form a total gas estimation)

makes all the accounting easier.

I only use the stack for providing operands to instructions and for storing inter-

mediate results when evaluating compound expressions; particularly, I do not use it

to implement local variables or function calls. The reason is that the stack’s length

is limited to 1024 by the Ethereum protocol, so using it for function calls will limit

61

the call depth to 10243.

TiEVM contains some pseudo-instructions (or “macros”) not present in the official

EVM specification [5]. They will be expanded into pre-defined sequences of EVM

instructions, listed in Appendix A.2. These pseudo-instructions allow us to define

the semantics of TiEVM at a slightly higher abstraction level than EVM, talking

about notions such as registers, heap allocations, branching on sum types, etc. The

expansion rules are straightforward, short, and easy to scrutinize, so we feel this

compromise of fidelity in order to simplify semantics is justified. If one so desires,

these pseudo-instructions can be done away with by tagging the expanded instructions

with markers to guide the typechecker to treat specific sequences of instructions as

wholes, or to have a more involved semantics with some degree of pointer-aliasing

analysis.

Which pseudo-instructions should be added is a subjective judgment. Pseudo-

instructions at a higher abstraction level provide more user-friendly operations such as

initializing a tuple or copying a tuple between memory and storage, but the expansion

of such instructions is longer; pseudo-instructions at a lower level have shorter and

simpler expansions. We draw the line where we do not support multiword instructions

(such as whole-tuple or whole-array copying), so that the costs of pseudo-instructions

are constant and do not depend on the types of the operands.

Instructions for calling external contracts and for emitting logging information are

currently not covered by TiEVM. These instructions, when appearing in a TiEVM

program, are assumed to have zero costs.

3.3 Syntax

The grammar of TiEVM is shown in Figure 3-1. TiEVM reuses indices, sorts, and

the sorting rules from TiML. It reuses some of TiML’s types, extending with new

ones. The TiEVM-specific types are mostly level-low versions of TiML counterparts,

containing some technical details that only show up at the assembly level.
3which means non-tail-recursive functions cannot operate on datatypes larger than 1024.

62

Program
P ::= prog ({l1 7→ block {τ1 : J1}, l2 7→ block {τ2 : J2}, · · · }, J)

Instruction Sequence
J ::= I; J | Jump | Halt

Instruction
I ::= Pushn w | Add | JumpI | · · · | BrSum | TupleMalloc | MapPtr | · · ·

| AscTime | AppT | · · ·
Word Value
w ::= () | d | n | b | b | c | l | state n | neverτ

Type
τ ::= <same as TiML> | (ϕ,R, S)

i1,i2−−→ ■ | tuplePtr −→τ n b | arrayPtrn τ j i | vectorPtr u i
| preTuple −→τ n m | preArrayn τ j i b1 b2

Figure 3-1: TiEVM syntax

TiEVM code is organized as basic blocks. A TiEVM program (or a TiEVM

“contract”) consists of a standalone instruction sequence (the “main” code) and a

map from code labels to basic blocks. Each basic block consists of a block signature

followed by an instruction sequence. A block signature is a type describing the pre-

condition of the block entry point (it will always be a code-pointer type, as described

in Section 3.4.3). The main code is the entry point of the program, whose precon-

dition is always an empty environment. A instruction sequence always ends with an

unconditional jump or a halting instruction. Instructions include real instructions

that correspond directly to EVM instructions (e.g. Push) and pseudo-instructions

(e.g. BrSum). The type system does not distinguish them. A special type of pseudo-

instructions are called “noop instructions” (e.g. AscTime). Their expansions and

costs are empty and zero, and their existence is only for providing some information

to the typechecker. Some real instructions are also annotated with extra information,

similar to annotations on expressions in a syntax-directed type system. The whole

list of TiEVM instructions appears in Appendix A.1.

The Push instruction, for pushing a value onto the stack, has two parameters. w

is the value to be pushed, and n is the width of the value (in number of bytes). n

does not affect typechecking (it only affects the assembling of this instruction) and

will mostly be omitted in this thesis. w belongs to the syntax class of “word values,”

63

values that can be stored in single machine words (256-bit). They include unit value

(), integers d, natural numbers n, Booleans b, indexed Booleans b, bytes c, code labels

l, and state names state n. Booleans b and indexed Booleans b both consist of true

and false; the difference is that Booleans are of type bool and indexed Booleans b

are of type ibool b (true is of type ibool true and false is of type ibool false). Similarly

integers d are of type int while a natural number n is of type nat n, the type of indexed
natural numbers.4

Labels l are only used for code labels.5 A state name state n is encoded as an

integer, which in the current implementation is the place-in-order of its declaration

among other state names in the source code. neverτ is a word that can be any value;

its typing rule (see Section 3.4.4) makes sure that it is never used (the execution never

reaches it), so it can be of any type, akin to the return type of exception throwing.

As an aside, I want to mention here that the values of existential types, re-

cursive types, and index-/type-argument instantiations are also word-sized, because

these types do not change the runtime representation of the value6. TiEVM has a

type-erasing semantics, in the sense that type information does not have runtime

consequences, so the behavior of a TiEVM program is the same as the version with

all types stripped. In other words, types are only for helping the typechecker establish

a proof of the well-behavedness of programs; they do not affect runtime behavior.7

The first TiEVM-specific type is the code-pointer type (i, R, S)
(j1,j2)−−−→ ■. As the

TiEVM version of function types (arrow types) in TiML, it is the type of a code

pointer that specifies the precondition of the target code. It has four components.

The first component, i, is an index representing the precondition on the state. The

second component, R, is a register typing context, which is a map from register

4The n in type nat n can be any natural number, but the runtime currently can only handle
word-sized natural numbers. This discrepancy will be fixed in the future by using infinite-precision
integers to implement natural numbers.

5Heap labels do not show up in program syntax and do not concern the typechecker.
6Values of datatypes that have only one constructor may also be word-sized. Values of datatypes

that have more than one constructors will be larger than words, because those datatypes are imple-
mented with sum types.

7An opposite semantics approach would be “intensional type analysis” [44], where types have
runtime data presenting them, and the execution can branch on such data.

64

numbers to types. It specifies the type of each register upon entering the code,

akin to argument types for functions. Registers not present in R are considered to

have junk values at the moment and should not be used without being initialized

first. The third component, S, is a stack typing context, assigning types to stack

cells. It is a list of types corresponding to the top portion of the stack. Stack cells

deeper than that should not be used without initialization. The last part is a pair of

indices representing the time and heap-allocation bounds for the code. As described

in Section 3.2, resource bounds in TiEVM always appear as pairs, one for time and

one for heap allocations. The bounds here specify the resource usage from entering

the code to the very end of the program’s execution; how much of that is used by

this code will be determined by the type of the return pointer (a code pointer that

this code jumps to when it finishes). In TiEVM, resource bounds always talk about

resource usage from this point to “the very end,” following a continuation-passing

style.

The other TiEVM-specific types are all pointers to data containers (tuples, arrays,

and vectors). In TiEVM, accessing data in a data container is done by (1) obtaining a

pointer to the container, (2) doing pointer arithmetic, and then (3) reading or writing

at the position pointed to by the pointer. As a result, every pointer type is in the

form of an “offset” plus some information about the whole container. The offset is

manipulated by pointer arithmetic; reading/writing will be regulated by container-

wise information (e.g. a bounds check). tuplePtr −→τ n b is the type of pointers pointing

into tuples. −→τ gives the types of the tuple’s components. n is the offset. b is a Boolean

flag telling whether this tuple is on storage. On-storage and on-memory tuples have

different sets of operations and are considered different types. arrayPtrn j i is the

type of pointers into arrays. n is the width of each array element, in bytes. The first

index j is the length of the array while the second index i is the offset. Unlike tuple

pointers where an offset n is a concrete natural number, an array pointer’s offset is

an index whose value may be symbolic and unknown at compile time. vectorPtr u i

is the type of vector pointers, consisting only of the vector name u and the offset i.

Vectors and other storage facilities will be described in detail in Section 3.4.7.

65

Sorting Context Kinding Context Register Context
Ω : {−−−→a 7→ s} Λ : {−−−−→α 7→ κ} R : {−−−−→n 7→ τ}

Stack Type State Spec. Full Context
S : −→τ ϕ = i ∆ = (Ω,Λ, R, S, ϕ)

Code Labels State-Name Decipher State Types
H : {

−−−→
l 7→ τ} L : {−−−−→n 7→ u} T : {−−−−→u 7→ τ}

Global Information
G = (H,L, T)

Figure 3-2: TiEVM typing contexts

The types preTuple −→τ n m and preArrayn τ j i b1 b2 are used for initializing tuples

and arrays, which will be explained when I describe their typing rules in Section 3.4.6.

3.4 Typing rules

Selected typing rules of TiEVM are listed in several figures from Figure 3-3 to 3-9.

The rules use notations and conventions described in Section 3.4.1. I organized the

rules into several groups, each centering on one aspect of the language or one type

of operations. The typing system of TiEVM is relatively complex, with many kinds

of rules and typing contexts needed to describe all the details of a low-level system8.

I tried to hide as many irrelevant details as possible to flatten the learning curve.

It should be noted that although the type system is complicated by the low-level

details, all of them will be derived by the compiler from the source program fully

automatically.

3.4.1 Notations and conventions

There are many forms of rules. The central one is the rules for typing individual

instructions, with the form G|∆ ⊢ I : ∆′ ▷ (i1, i2), defined in Figure 3-3. G is the

global information that will not change during typechecking, while∆ stands for typing

contexts that could be changed after typechecking each instruction (∆′ is the result

contexts). This is an important difference from type systems for high-level languages,
8This is a common trait of real-world low-level systems.

66

where typechecking expressions does not usually change typing contexts. (i1, i2) is

the resource-bound pair corresponding to this instruction. In this thesis, I often use

a single letter such as i to refer to the pair, and I write calculations such as i+ j and

max(i, j) to mean the addition and max of pairs, meaning performing the calculation

on each component. From context it should be clear whether I mean a single index

or a pair of indices. I will also write 0 for (0, 0).

The changeable typing context ∆ consists of five components, Ω,Λ, R, S, and ϕ.

They are index context, which gives the sort of each index variable; type context,

which gives the kind of each type variable; register typing context, which gives the

type of each register; stack typing context, which gives the type of each stack cell;

and state specification (“state” for short), which is an index9. Because there are so

many contexts, I will omit contexts that are not used and not changed in a rule. For

example, rule AddTuple omits all contexts except for the stack context S. I will

use · when the context is required to be empty. The definitions of these contexts are

collected in Figure 3-2. I use commas to separate difference contexts and semicolon

to mean the addition of a new element into the context (variable names added to a

context are always assumed to be fresh; internally they are encoded using de Bruijn

indices that build in freshness). I use m[k 7→ v] to mean updating a map m with a

new key-value pair (k, v), where k can be a new key not present in m.

The unchangeable global context G consist of three components, H,L, and T .

They are code-label typing context (a.k.a. a “code-heap” typing context), mapping

code labels to types representing the signatures of the code; state name decipher,

which maps integers to state names (needed because state names in TiEVM code are

encoded as integers); and state typing context, mapping state names to types. I use

a bar to separate unchangeable contexts from changeable contexts. As mentioned

before, unused contexts will be omitted, and when none of the unchangeable contexts

are used, the bar is also omitted (such as in rule AddTuple).

The instruction typing rules rely on many other forms of rules, such as the word-

9Remember from Figure 2-4 that an index can take the form of {−−−→u 7→ i}, a map mapping state
names to indices representing the sizes or values of the corresponding state names.

67

value typing rules L, T |Ω,Λ ⊢ w : τ , the type-equivalence rules Ω,Λ ⊢ τ1 ≡ τ2 and the

proposition-validity rules Ω ⊢ p. The word-value typing rules are discussed in Section

3.4.4. Proposition-validity rules are the same as in TiML. Type-equivalence rules also

overlap significantly with TiML’s type-equivalence rules. There is a register-subtyping

judgment Ω,Λ ⊢ R1 <: R2, which holds when the domain of R1 includes the domain

of R2 and their types on each shared register are equivalent. The stack-equivalence

judgment Ω,Λ ⊢ S1 ≡ S2 just means that the two lists have the same length and the

types at each position are equivalent.

Typing rules for instruction sequences are in the form G|∆ ⊢ J ▷ (i1, i2). The

resource bounds here mean the total consumption till the very end of the program,

as in code-pointer types. There is no result context, since the postcondition of this

sequence is specified by the precondition of its jump target (the return pointer).

3.4.2 Sequences and jumps

Typing rules for sequences and jumps are listed in Figure 3-3. Rule Cons is the base

rule for typing instruction sequences, using typing rules for individual instructions.

It is mostly self-explanatory. This is the default rule for instruction sequences, which

only applies when no other rules (such as rule BrSum) apply. Rule Halt is for

halting the current contract, returning the value on top of the stack. The entire stack

at this point is required to contain only one value, of the type τ specified by the Halt

instruction.10

Rule Jump is for unconditional jump. The jump target is at the top of the stack,

whose type is τ (as indicated by the stack context τ ;S), which must be a code-pointer

type (ϕ′, R′, S ′)
i−→ ■. In order to make a valid jump, the typechecker checks that

the current register context is a subtype of the target’s register-context specification,

meaning that the current context is equivalent to the spec but can contain more

registers; that the current stack context is equivalent to the target’s specification;

10Halt is a pseudo-instruction which is almost equivalent to the real Return instruction. The
difference is that Return accepts a piece of data on memory as the return value. Halt is imple-
mented using Return.

68

H,L, T |Ω,Λ, R, S, ϕ ⊢ I : Ω′,Λ′, R′, S′, ϕ′ ▷ (i1, i2) and H,L, T |Ω,Λ, R, S, ϕ ⊢ J ▷ (i1, i2)

∆ ⊢ I : ∆′ ▷ i1 ∆′ ⊢ J ▷ i2

∆ ⊢ I; J ▷ i1 + i2
Cons Ω,Λ ⊢ τ :: ∗ Ω,Λ ⊢ S ≡ [τ]

Ω,Λ, S ⊢ Haltτ ▷ CHalt
Halt

τ = (ϕ′, R′, S′)
i−→ ■ Ω,Λ ⊢ R <: R′ Ω,Λ ⊢ S ≡ S′ Ω ⊢ ϕ ≡ ϕ′

Ω,Λ, R, τ ;S, ϕ ⊢ Jump ▷ CJump + i
Jump

τ = (ϕ′, R′, S′)
i2−→ ■

Ω,Λ ⊢ R <: R′ Ω,Λ ⊢ S ≡ S′ Ω ⊢ ϕ ≡ ϕ′ Ω,Λ, R, S, ϕ ⊢ J ▷ i1

Ω,Λ, R, τ ; bool;S, ϕ ⊢ JumpI; J ▷ CJumpI + max(i1, i2)
JumpI

τ = (ϕ′, R′, S′)
i2−→ ■ Ω,Λ ⊢ R <: R′

Ω,Λ ⊢ (∃{i = true}.unit);S ≡ S′ Ω ⊢ ϕ ≡ ϕ′ Ω,Λ, R, (∃{i = false}.unit);S, ϕ ⊢ J ▷ i1

Ω,Λ, R, τ ; ibool i; unit;S, ϕ ⊢ JumpI; J ▷ CJumpI + max(i1, i2)
JumpIEx

τ = (ϕ′, R′, S′)
i2−→ ■ Ω,Λ ⊢ R <: R′

Ω,Λ ⊢ (ibool true × τ2);S ≡ S′ Ω ⊢ ϕ ≡ ϕ′ Ω,Λ, R, (ibool false × τ1);S, ϕ ⊢ J ▷ i1

Ω,Λ, R, τ ; τ1 + τ2;S, ϕ ⊢ BrSum; J ▷ CBrSum + max(i1, i2)
BrSum

Ω,Λ ⊢ τ ′ :: ∗
Ω,Λ, ibool false; τ ;S ⊢ Injτ ′ : Ω,Λ, τ + τ ′;S ▷ CInj

InjL

Figure 3-3: TiEVM typing rules (sequences and jumps)

69

and that the current state and the target’s state precondition are equivalent. Total

resource cost is the target’s resource bounds plus the jump overhead.

There are three rules for conditional jumps: JumpI, JumpIEx, and BrSum.

The first two are for the real instruction JumpI, and the third one is for pseudo-

instruction BrSum. According to the EVM specification, JumpI uses the operand

on the top of the stack as the jump target and the second operand as a condition. If

the condition is true (i.e., nonzero), the execution jumps to the target; otherwise it

continues forward. In TiEVM, depending on the type of the condition operand, there

are two static semantics. If the condition is of type bool, the plain primitive Boolean

type, the typing rule JumpI applies. It is almost the same as rule Jump, except that

the code following the JumpI instruction, J , should also be typechecked, and the

total resource costs of JumpI; J should be the max of the costs of the two branches

(plus some overhead), since both could be executed. Note that both the branches

will be run in the stack context S (or the equivalent S ′), without information about

the result of the condition test. This will be different from the next rule, JumpIEx.

Rule JumpIEx applies when the condition operand is of type ibool i, a Boolean

type indexed by the index i of sort Bool. The difference from rule JumpI is that in

the two branches, the result of the condition test is available on the stack. This is

manifested by the ∃{i = true}.unit (∃{i = false}.unit for the other branch) type on

the top of the stack for the true branch. The branches need to do unpacking of the

existential package to expose the information in their VC-checking contexts. This

version of JumpI static semantics needs the stack to contain a value of type unit as

the third operand; this is a technical requirement, resulting from the fact that runtime

behavior of JumpI is the same regardless of its static semantics, so the space to hold

the existential package must already be there on the stack (JumpI cannot do extra

stack manipulation). This unit is turned into an existential package by JumpI, which

does not involve extra runtime behavior since existential packages do not change the

runtime representation of the value, as described in Section 3.3.

The other conditional jump instruction, BrSum, is a pseudo-instruction for branch-

ing on sum types (i.e. tagged unions). The reason such a branching cannot be imple-

70

·, · ⊢ τ :: ∗
τ = ∀

−−−→
a : sk. (ϕ,R, S)

i−→ ■ split(−−−→a : sk) = (Ω,Λ) G|Ω,Λ, R, S, ϕ ⊢ J ▷ i′ Ω ⊢ i′ ≤ i

G ⊢ block {τ : J}
Block

H = {ln 7→ τn|n < N} G = (H,L, T) ϕ0 = {u 7→ 0|T (u) = vector _ or icell}
G ⊢ block {τn : Jn} for every n G ⊢ block {(ϕ0, ·, ·)

i−→ ■ : JM}
L, T ⊢ prog ({ln 7→ block {τn : Jn}|n < N}, JM)

Prog

Figure 3-4: Typing rules for TiEVM programs and basic blocks

mented by a single JumpI instruction is that branching on sum types involves reading

the tag and the data payload of the sum-type operand from the memory heap to the

stack and then branching on the tag. Sum-type values are larger than a word and

can only be stored on the heap, because the data payload can use up an entire word

and there needs to be an extra bit for the tag11. And when the tag and data payload

are on the stack, the type of the payload depends on the value of the tag. Such a

dependency between two stack slots cannot be expressed in the current type system,

at least not without intricate typing tricks. Rule BrSum is similar to rule JumpIEx.

Within the branches, a value of type τ1 (τ2 respectively) is available on the stack. It

is paired with an ibool, which is a residual artifact from the implementation of the

pseudo-instruction.

To complete the picture of sum types, I also show here an introduction rule for

sum types, rule InjL. Instruction Inj is also a pseudo-instruction, whose effect is

that given a value of type ibool false and a value of type τ on top of the stack, it

will package them into a value of type τ + τ ′ (for any choice of τ ′). A symmetrical

rule also exists for constructing τ ′ + τ given a value of type ibool true. Notice that

constructing a sum-type value involves allocating two slots on the heap to store the

tag and the data payload. That is why there is a heap-allocation cost of 2. The result

is a pointer to the 2-word memory buffer.

71

3.4.3 Basic blocks and whole programs

A TiEVM program consists of an entry instruction sequence and a list of basic blocks

each associated with a code label. Their typing rules are listed in Figure 3-4. A basic

block (τ, J) is well-typed, according to rule Block, if the instruction sequence J is

well-typed in a context derived from the block specification τ . To be a valid block

specification, the type τ is required to be a code-pointer type wrapped by any amount

of index or type polymorphism. I use a : sk to mean either an index-sort binding or a

type-kind binding. All contexts can be read off from such a type (I use split(−−−→a : sk) to

mean splitting a mixed index/type context into an index context and a type context).

A TiEVM program (JM , {ln 7→ (τn, Jn)|n < N}) is well-typed, according to rule

Prog, if each of the basic blocks (τn, Jn) is well-typed,12 and the entry sequence

JM (the “main code”) is well-typed under an empty context. The code-label typing

context H used for checking the basic blocks and the main code is constructed by

mapping each code label to its corresponding block’s specification type. The main

code is checked with an empty state u which maps every state name whose type

is vector or indexed cell (“icell” for short) to zero (see Section 3.4.7 for states and

storage operations). There is no specification for the costs of the main code (which

are also the costs of the whole program13), so it is well-typed as long as its costs

can be bounded by some bounds i (they still need to be bounded). We can use the

AscTime and AscSpace instructions described in Section 3.4.8 as specifications for

the program’s costs.

3.4.4 Stack manipulation and simple arithmetic

Stack manipulation is done via four instructions: Push, Pop, Swap, and Dup, for

pushing to the stack, popping from the stack, swapping two stack positions, and dupli-

cating a stack cell (and putting the duplicate on the top). The semantics and typing

rules for the last three are straightforward, and I will not discuss them here. The rule
11In the future I may choose to reserve one bit in primitive types to use for tagging.
12There could be zero basic blocks, when N = 0.
13Because cost specifications always refer to costs from now to the very end of the execution

72

H,L, T |Ω,Λ ⊢ w : τ

H,L, T |Ω,Λ, S ⊢ Pushn w : Ω,Λ, τ ;S ▷ CPush
Push

⊢ n : nat n Nat H(l) = τ

H| ⊢ l : τ
Label Ω,Λ ⊢ τ :: ∗ Ω ⊢ ⊥

Ω,Λ ⊢ neverτ : τ
Never

τ1 = nat n1 τ2 = nat n2 τ = nat (n1 + n2)

τ1; τ2;S ⊢ Add : τ ;S ▷ CAdd
AddNat

τ1 = tuplePtr −→τT n1 b τ2 = nat n2 τ = tuplePtr −→τT (n1 + n2) b

τ1; τ2;S ⊢ Add : τ ;S ▷ CAdd
AddTuple

τ1 = arrayPtr τ ′ j i1 τ2 = nat i2 τ = arrayPtr τ ′ j (i1 + i2)

τ1; τ2;S ⊢ Add : τ ;S ▷ CAdd
AddArray

τ1 = nat n1 τ2 = nat n2 τ = ibool (n1 <? n2)

τ1; τ2;S ⊢ Lt : τ ;S ▷ CLt
LtNat

Figure 3-5: TiEVM typing rules (stack manipulations and simple arithmetic)

for Push, in Figure 3-5, relies on the word-value typing judgmentH,L, T |Ω,Λ ⊢ w : τ ,

for which I only show rules Nat, Label, and Never as examples. The word-value

typing rule for state names is also of interest; I will discuss it together with storage

operations in Section 3.4.7. never is only well-typed when False can be proved in the

current index context, meaning that information gathered when typechecking pre-

vious code has proved that this part of the program will never be reached. This is

similar to TiML’s typing rule for never.

I use instruction Add as an example for arithmetic operations. Add is quite

versatile in TiEVM; many things can be added, such as integers, indexed natural

numbers, and all sorts of pointers. I show rules AddNat, AddTuple, and AddAr-

ray as examples. Which rule will apply depends on the types of the operands on

the stack (i.e. instruction Add is overloaded for different types). A pointer can be

added to a number (usually of type nat i), resulting in another pointer with the offset

field adjusted. Symmetric Add rules exist to allow for swapping the left and right

addends. Similar rules exist for the subtraction instruction Sub (a number can be

subtracted from a pointer, but not the other way around).

73

τ = tuplePtr −→τT n false n mod 32 = 0 n/32 < |−→τT | −→τT (n/32) = τ ′

τ ;S ⊢ MLoad : τ ′;S ▷ CMLoad
MLoadTuple

τ = arrayPtr32 τ ′ j i Ω ⊢ i mod 32 = 0 ∧ 1 ≤ i/32 ≤ j

Ω, τ ;S ⊢ MLoad : Ω, τ ′;S ▷ CMLoad
MLoadArray32

τ = arrayPtr1 τ ′ j i Ω ⊢ i ≤ j

Ω, τ ;S ⊢ MLoad : Ω, int;S ▷ CMLoad
MLoadArray1

τ1 = arrayPtr32 τ j i Ω ⊢ i mod 32 = 0 ∧ 1 ≤ i/32 ≤ j Ω,Λ ⊢ τ2 ≡ τ

Ω,Λ, τ1; τ2;S ⊢ MStore : Ω,Λ, S ▷ CMStore
MStoreArray32

τ1 = arrayPtr1 τ j i Ω ⊢ 32 ≤ i < j + 32 Ω,Λ ⊢ τ2 ≡ τ

Ω,Λ, τ1; τ2;S ⊢ MStore8 : Ω,Λ, S ▷ CMStore8
MStore8

τ = arrayPtrn τ ′ j 0

τ ;S ⊢ MLoad : nat j;S ▷ CMLoad
MLoadArrayLen

τ = nat m isRegAddr(m) = n R(n) = τ ′

R, τ ;S ⊢ MLoad : R, τ ′;S ▷ CMLoad
MLoadReg

τ1 = nat m isRegAddr(m) = n

R, τ1; τ2;S ⊢ MStore : R[n 7→ τ2], S ▷ CMStore
MStoreReg

Figure 3-6: TiEVM typing rules (memory access)

Other arithmetic operations such as Mul, Div, Mod, and Exp only apply to

numbers (not pointers) and hence are simpler. The same is true for comparisons.

Comparisons can be made between indexed natural numbers; the result is of type

ibool ϕ(i1, i2), where ϕ(i1, i2) is the index operation that corresponds to this com-

parison. An example, rule LtNat, is shown (<? is the less-than-test operator that

returns true or false based on the comparison result).

3.4.5 Memory access

Values of types that are larger than a word are stored on memory (the “heap”).

These include tuples, arrays, and sum types that have been discussed in Section 3.4.2.

Access to tuples and arrays can only be done element-wisely, at word level; there are

no operations for whole-tuple or whole-array moving or copying. Access to a tuple

74

component or array element usually consists of two steps: doing pointer arithmetic to

move the pointer to the desired position, and then doing read/write using instruction

MLoad/MStore.14 Pointer arithmetic has been described in Section 3.4.4, so this

section will focus on typing rules for MLoad and MStore, shown in Figure 3-6.

Each tuple must have at least two components, and each component occupies a

word. Components are stored in memory continuously, so an n-tuple is stored in n

consecutive words. These components can be pointers to other in-memory structures,

enabling tuples of tuples or tuples of arrays. Tuples are read-only after initialization

(so they can be treated as values in the functional-programming sense). Tuple and

array initialization need special treatment and will be discussed in Section 3.4.6.

The rule for using MLoad to read a tuple component is MLoadTuple. Note

that MLoad is also overloaded for different types of operands, similar to Add. A

tuple pointer type, tuplePtr −→τ n b, as described in Section 3.3, contains the types

of its components, the offset, and a Boolean flag indicating whether this is an on-

storage tuple. The offset is a concrete natural number (as opposed to an index),

so the typechecker can use it to retrieve the component type −→τT (n/32) (components

are word-sized i.e. 32-byte wide15). The offset is expressed in units of bytes because

MLoad can read out a word at any byte position, according to the EVM specification.

The on-storage flag is required to be false in this rule.

As in TiML, arrays in TiEVM are indexed by lengths so any access to an element

will generate a VC checking that the target position is in-bounds. The array-pointer

type, arrayPtrn τ j i, contains the element width n (in bytes), the element type τ , the

length j, and the offset i (remember that TiML’s array type is arrayn τ j, without the

offset). The offset of element m (the (m+1)-th element) is 32+n×m, because offsets

0 to 31 are used to store the length (in order to support the “get length” operation at

runtime, as described below). That is why the VC is Ω ⊢ i mod 32 = 0∧1 ≤ i/32 ≤ j

in rule MLoadArray32, the rule for reading a 32-byte array. For reading a 1-byte

array, because EVM does not provide an instruction for reading just 1 byte, we need

14The M- prefix stands for “memory,” as opposed to the “storage” operations discussed in Section
3.4.7.

15Note that in EVM words are unusually large, 512-bit (or 32-byte) wide.

75

to read a 32-byte chunk by MLoad and then use Int2Byte or Int2Bool (whose

typing rules are omitted) to get the rightmost byte. The VC i ≤ j is enough to

guarantee the safety of accessing addresses a+ i, · · · , a+ i+ 31 (assuming the array

starts at address a), because the array spans from address a to a+ 32 + j (including

the length field). The type system currently only allows reading/writing 1-byte and

32-byte arrays.

Rule MStoreArray32, for writing to 32-byte arrays, is similar to rule MLoad-

Array32. The operand on top of the stack is the array pointer and the second is the

value to write. Array reading with the offset 0 is treated as the “get length” operation,

indicated by rule MLoadArrayLen. In this case the result type is nat j, j being

the length. Writing to 1-byte arrays is done by MStore8, the EVM instruction for

just overwriting one byte.

Registers

MLoad and MStore are also used to implement registers. The purpose of registers

is to implement local variables for higher-level languages16. Any memory access at

an explicit address (as a compile-time-known natural number) that is lower than

32 × NumRegs and a multiple of 32 is treated as accessing a register (multiple of

32 because registers are word-sized). The parameter NumRegs can be determined at

compile time in a whole-program compilation. Therefore, the (n + 1)-th register, rn
(read as “register n”), is accessed by doing MLoad and MStore at address 32× n.

Registers lower than FirstGeneralReg (currently 3) are reserved as scratch space for

some pseudo-instructions and are forbidden to be accessed in the type system.

Register reading and writing are governed by rules MLoadReg and MStor-

eReg. These rules apply when the operand on stack is of type nat m instead of a

tuple or array pointer. I write m to mean that the index must be a concrete natural

number known at the time of typechecking (containing no symbolic part). A test

function isRegAddr(m) is used to see whether address m is a valid register address
16Local variables are never put on the stack. When they need to be moved out of registers to

make room for the callee function, they are put into the closure of the continuation. See Chapter 4
for details.

76

Ω,Λ ⊢ τ :: ∗ for every τ in −→τ n = |−→τ |
Ω,Λ, S ⊢ TupleMalloc−→τ : Ω,Λ, preTuple −→τ 0 n;S ▷ CTupleMalloc(n)

TupleMalloc

τ2 = preTuple −→τ n m n mod 32 = 0 n/32 + 1 = m Ω,Λ ⊢ τ1 ≡ −→τ (m− 1)

Ω,Λ, τ1; τ2;S ⊢ TupleInit : Ω,Λ, preTuple −→τ n (m− 1);S ▷ CTupleInit
TupleInit

preTuple −→τ n 0;S ⊢ TupleDone : tuplePtr −→τ n;S ▷ 0
TupleDone

Ω,Λ ⊢ τ :: ∗ τ1 = nat i j = b ? 0 : i

Ω,Λ, τ1;S ⊢ ArrayMallocn,b
τ : Ω,Λ, preArrayn τ i j false b;S ▷ CArrayMalloc(i, n)

ArrayMalloc

τ1 = nat i τ2 = preArrayn τ ilen j b false Ω,Λ ⊢ τ3 ≡ τ Ω ⊢ i mod n = 0 ∧ i/n+ 1 = j

Ω,Λ, τ1; τ2; τ3;S ⊢ ArrayInitn : Ω,Λ, τ1; preArrayn τ ilen (j − 1) b false;S ▷ CArrayInit
ArrayInitDown

τ1 = nat i τ2 = preArrayn τ ilen j b true Ω,Λ ⊢ τ3 ≡ τ Ω ⊢ i mod n = 0 ∧ i/n = j

Ω,Λ, τ1; τ2; τ3;S ⊢ ArrayInitn : Ω,Λ, τ1; preArrayn τ ilen (j + 1) b true;S ▷ CArrayInit
ArrayInitUp

τ1 = nat i′ τ2 = preArrayn τ i j _ b Ω ⊢ i′ = i

Ω,Λ, τ1; τ2;S ⊢ ArrayInitLen : Ω,Λ, preArrayn τ i′ j true b;S ▷ CArrayInitLen
ArrayInitLen

τ1 = preArrayn τ i j true b Ω ⊢ j = b ? i : 0

Ω, τ1;S ⊢ ArrayDone : Ω, arrayPtrn τ i 32;S ▷ 0
ArrayDone

Figure 3-7: TiEVM typing rules (tuple and array initialization)

and if so what the register number is. It is a partial function defined as m/32 if

m mod 32 = 0 and FirstGeneralReg ≤ m/32 < NumRegs. The type of the current

value stored in a register is retrieved using the register number from the register

typing context R. It is a partial map from register numbers to types. Note in rule

MStoreReg that a register write will usually change the type for that register, hence

register updates are “strong updates” in the sense that the type can be changed.

3.4.6 Tuple and array initialization

In a high-level language such as TiML, a tuple is constructed in a single step, and

an array is allocated with every element set to an initial value also in a single step.

But at the TiEVM level, the initialization of tuples and arrays needs the cooperation

of multiple instructions. A pseudo-instruction could have been added to initialize a

77

tuple in one step, but for an array, because its length may only be known at runtime,

setting all its elements needs a mini for-loop, for which multiple basic blocks need

to be generated. I chose to break up the initialization process for both tuples and

arrays into three stages: (1) allocating the memory space; (2) assigning to each ele-

ment, word by word; and (3) using a noop instruction (zero-cost instruction) to signal

to the typechecker that the initialization process has finished. During the initializa-

tion, special types need to be used to regulate operations on the half-constructed

structure17.

For tuples, these three stages are governed by typing rules TupleMalloc, Tu-

pleInit, and TupleDone in Figure 3-7. In TiEVM, heap allocation is implemented

by using the first word in the scratch space (at address 0) as the free pointer, pointing

to the top of the current heap, which is where the next available free space is. The

pseudo-instruction TupleMalloc increases the free pointer by the size of the new

tuple and returns the old value of the free pointer. The returned pointer is given

the type preTuple −→τ 0 n, which represents a pointer to a tuple in the making. −→τ

and 0 are the component types and the offset, akin to type tuplePtr. The last field,

n, is called the “lowest initialized position.” This is an indicator for recording which

of the tuple’s components have been initialized. In a more general design, an n-bit

flag could be used to allow an arbitrary subset of components to be initialized; but

in this thesis, since the compiler-generated code always sets the tuple components

from last to first, I just need a number to indicate progress. At start, the lowest

initialized position is n, meaning that none of the components have been initialized

(components are numbered 0 to n − 1). When the initialization has finished, this

number needs to be 0, as required by rule TupleDone. Writing to a component can

only be done at position m− 1, where m is the lowest initialized position (in units of

words), as manifested by the premises in rule TupleInit (the offset n is in units of

bytes). After the TupleInit instruction, the lowest initialized position is decreased

17TAL [63] handled the initialization of complex values in a similar way by introducing new types
for half-constructed values. It even dedicated a compilation phase to inserting the initialization
steps. I choose to merge this phase into the code-generation phase. See Chapter 4 for more details.

78

by one.18

Array initialization, starting from rule ArrayMalloc, is regulated by type

preArrayn τ i j b1 b2. Here, n is the element width, i is the length of the new array,

and j is the progress marker akin to the “lowest initialized position” above. There are

two extra Boolean flags in this type: b1 indicates whether the length data has been

initialized, and b2 indicates whether the initialization direction is “upward,” from low

positions to high ones. Arrays could be initialized in both upward and downward di-

rection, both used by the compiler19. The length data, stored at the beginning of the

array’s memory space, is initialized by a separate pseudo-instruction from Array-

Malloc, as specified by rule ArrayInitLen20. In the downward element-assigning

step, governed by rule ArrayInitDown, the progress marker j has the same mean-

ing as the “lowest initialized position” for tuples. Because j is an index instead of a

concrete number, the requirement on its value is expressed as a VC. In the upward

direction governed by rule ArrayInitDown, j means “highest uninitialized posi-

tion,” and the VC is changed accordingly. The direction is chosen at allocation time,

determined by instruction ArrayMalloc’s annotation. Initialization completion is

governed by rule ArrayDone, checking that both the length and all the elements

have been set. The resulting arrayPtr pointer points to the first element of the array;

the offset 32 is for skipping the length data.

3.4.7 Storage access

Storage access is performed via a different set of instructions from those in Section

3.4.5. They are listed in Figure 3-8. I will first describe the organization of the

flat storage space in EVM into different kinds of data containers, and then discuss

operations on each of these containers.

18TupleInit cannot be just MStore, because TupleInit changes the type of the pointer by
modifying the lowest-initialized-position flag.

19One for initializing an array with the same element value and the other for initializing an array
using a list of values

20Pseudo-instruction ArrayInitLen could have been merged into instruction ArrayMalloc. I
chose to keep pseudo-instructions simpler and single-purpose, if that does not complicate the type
system too much.

79

L(n) = u u ∈ dom(T)

L, T ⊢ state n : state u
State L(n) = u T (u) = τ τ = map _

L, T ⊢ state n : tuplePtr [τ] 0 true StateMap

L(n) = u T (u) = cell τ
L, T ⊢ state n : tuplePtr [τ] 0 true StateCell

τ = tuplePtr −→τT n true n < |−→τT | −→τT (n) = τ ′ isWordsizeType(τ ′)
τ ;S ⊢ SLoad : τ ′;S ▷ CSLoad

SLoadTuple

τ1 = tuplePtr −→τT n true n < |−→τT | −→τT (n) = τ isWordsizeType(τ) Ω,Λ ⊢ τ2 ≡ τ

Ω,Λ, τ1; τ2;S ⊢ SStore : Ω,Λ, S ▷ Csset

SStoreTuple

τ = state u T (u) = icell ϕ(u) = i

T |τ ;S, ϕ ⊢ SLoad : nat i;S, ϕ ▷ CSLoad
SLoadICell

τ1 = state u T (u) = icell ϕ(u) = i1 τ2 = nat i2
T |τ1; τ2;S, ϕ ⊢ SStore : S, ϕ[u 7→ i2] ▷ i1 = 0 ∧ i2 ̸= 0 ? Csset : Csreset

SStoreICell

τ = vectorPtr u i T (u) = vector τ ′ ϕ(u) = j Ω ⊢ i < j

T |Ω, τ ;S, ϕ ⊢ SLoad : Ω, τ ′;S, ϕ ▷ CSLoad
SLoadVector

τ1 = vectorPtr u i T (u) = vector τ ϕ(u) = j Ω ⊢ i < j Ω,Λ ⊢ τ2 ≡ τ

T |Ω,Λ, τ1; τ2;S, ϕ ⊢ SStore : Ω,Λ, S, ϕ ▷ Csset

SStoreVector

τ = state u T (u) = vector _ ϕ(u) = i

T |τ ;S, ϕ ⊢ SLoad : nat i;S, ϕ ▷ CSLoad
SLoadVectorLen

τ1 = state u T (u) = vector _ τ2 = nat i Ω ⊢ i = 0

T |Ω, τ1; τ2;S, ϕ ⊢ SStore : Ω, S, ϕ[u 7→ 0] ▷ Csrest

VectorClear

τ2 = state u T (u) = vector τ ϕ(u) = i Ω,Λ ⊢ τ1 ≡ τ

T |Ω,Λ, τ1; τ2;S, ϕ ⊢ VectorPushBack : Ω,Λ, S, ϕ[u 7→ i+ 1] ▷ CVectorPushBack
VectorPushBack

τ = tuplePtr −→τT n true n < |−→τT | −→τT (n) = map (tuple −→τV)
int; τ ;S ⊢ MapPtr : tuplePtr −→τV 0 true;S ▷ CMapPtr

MapPtr

τ1 = state u τ2 = nat i
τ1; τ2;S ⊢ VectorPtr : vectorPtr u i;S ▷ CVectorPtr

VectorPtr

τ1 = tuplePtr −→τ n true n+m ≤ |−→τ | −→τ (n, · · · , n+m− 1) = −→τR
τ1;S ⊢ RestrictViewm : tuplePtr −→τR 0 true;S ▷ 0

RestrictView

Figure 3-8: TiEVM typing rules (storage access)

80

Storage organization

The storage model EVM provides is just a big flat map from words to words (for

each account). In contrast, TiEVM provides four types of storage containers: maps,

vectors, cells, and indexed cells. Maps map words to tuples, whose components can

be words or other maps. Maps of maps are useful in smart contracts to store values

indexed by two keys. Map codomains (the types of map values) must be inhabited

by zero (or a value whose bit representation is all-zero), due to the implementation of

maps on top of EVM’s native storage, as discussed below. Vectors contain elements

of any word-sized type (not required to be inhabited by zero). If a function needs to

access a vector, the vector’s length must be specified in the function’s pre- and post-

condition, and accesses are bounds-checked statically. A cell can be seen as a vector

whose length is always one and thus not needed to be specified in pre/postconditions.

An indexed cell (“icell” for short) contains a natural number whose value is specified

in pre/postconditions. Vectors and icells are used when a function’s cost depends

on the current size or value of some on-storage data; since such information is not

related to the function’s arguments, the function’s cost must be specified in terms of

the figures in its precondition, corresponding to vector lengths and icell values.

The magic of using a single flat map to implement multiple instances of different

kinds of containers is borrowed from Solidity [8], based on hash-function tricks. Tech-

nically, each map is associated with a “base address” on storage. There is nothing

stored on that address; it is only used as a unique identifier for each map. The address

of the value associate with key k (a word) in the map identified by base address m

is calculated by sha3(k ·m), where sha3 is the Keccak-256 hash function mapping an

arbitrary bit sequence to a word, and k ·m is the concatenation of word k and word

m to form a 1024-bit (two-word) sequence. Such details are hidden by the pseudo-

instruction MapPtr and not visible in TiEVM’s type system. The base address of

a map is determined as follows: if the map is a standalone state with a state name,

its base address is the integer encoding of the state name (currently the rank of its

appearance); otherwise, if the map is a value (or a component of a tuple value) of

81

another map, the base address is the address of the value (the address of a map value

can always be calculated, using the sha3(k ·m) formula). Therefore, to read the value

of m[k1].3[k2] for example, which means retrieving with key k1, projecting out the

third component which is another map, and then retrieving with key k2, we can first

calculate the target address using sha3(k2 · (sha3(k1 · m) + 64)), and then read at that

address21. Readers are referred to the online Solidity documentation (under Section

“Solidity in Depth > Miscellaneous”) for a good description of the mechanism. Each

vector is also associated with a base address. The address of the first element of vec-

tor v is calculated by sha(v); elements are stored continuously following that address.

The value stored at the base address itself is the length of the vector. Vectors need

this sha3 hashing because vectors can be enlarged and shrunk at runtime, so different

vectors should be placed at far-away addresses on storage that have little chance of

collision.

Typing rules for storage operations

Storage operations interact closely with TiEVM’s state mechanism, so they are dis-

cussed together in this section. The first three rules in Figure 3-8, State, StateMap,

and StateCell, are word-value typing rules governing how to type the word-value

state n. In the most general case, the type of state n is type state u, where u is the

state name encoded by n. Map L is used to retrieve the state name by its encoding.

The state typing context, T , gives the type of a state name. Rule State only applies

if rules StateMap and StateCell do not. These latter two rules say that if the

state’s type is a map or a cell, the result of the word-value state n is a tuple pointer

pointing to an on-storage tuple. These two rules can as seen as “eager” to determine

types, while rule State is being “lazy” by using a placeholder type state u as a tem-

porary solution and delegating the final resolution of u to other rules. The reason

for using lazy type resolution for vectors and icells is explained when I discuss vector

operations.

2164 because the address of the third component is (3 − 1) × 32 = 64. The address of the first
component is 0. Each word is 32 bytes wide.

82

The types of states belong to the same syntax class, τ , as regular types, but

they should be understood as a special set of types only used to describe the storage

containers. They have their own well-formedness rules, checked when typechecking

state declarations. Briefly, maps always use words as keys, and their values are tuples

of word-sized types or other maps (or mixtures of them). One-component tuples are

allowed (as opposed to in-memory tuples, which must have at least two components).

A vector can only have word-sized elements of the same type. There are no vectors

of maps22 or vectors of vectors. A cell can contain a word-sized value, of a fixed type.

An icell always contains a natural number. Word-sized values in this section mean

word-sized values that are meaningful when stored on storage; they include primitive

types but do not include pointers to in-memory structures.

On-storage tuples are readable and writable at each component, as specified by

rule SLoadTuple and SStoreTuple. The former is similar to rule MLoadTu-

ple for in-memory tuple read, except that the on-storage flag in the tuple pointer

type tuplePtr −→τT n true is required to be true here. SLoad and SStore are real

instructions overloaded for different operand types, similar to MLoad and MStore.

isWordsizeType(τ ′) is checked here to rule out the case when τ ′ is map _ (in which

case rule MapPtr should be used). The cost of a tuple write, says rule SStore-

Tuple, is Csset. I will discuss the subtlety of storage-write cost when I describe rule

SStoreICell below. Note that the type of a cell is tuplePtr [τ] 0 true, according to

rule StateCell, so reading and writing of cells are also governed by SLoadTuple

and SStoreTuple (cells are essentially one-component tuples).

When reading an icell, governed by rule SLoadICell, an indexed natural number

of type nat i is returned. The index i is obtained from the current state ϕ via the

state name u. When writing to an icell with a new indexed natural number, the state

is updated with the new value, ϕ[u 7→ i2], as can be seen in rule SStoreICell.

The use of the state name u explains why I chose to use state u as the type of an

icell (instead of directly using icell): I need the state name to look up in and update

the current state. The current state could have been changed between the typing of

22They could be added in the future.

83

state n and the actual SLOAD. The same reasoning also applies for vectors.

The cost of writing an icell is i1 = 0 ∧ i2 ̸= 0 ? Csset : Csreset.23 This subtlety

comes from EVM’s cost specification, which says that the cost is Csset (currently

20000) when one changes a storage cell from zero to a nonzero value and Csreset

(currently 5000) otherwise. This policy is for incentivizing smart contracts to keep

their storage footprints as small as possible, since larger storage footprints translate

to larger disk space required to run an Ethereum node. This poses a difficulty for

TiEVM to estimate storage-write costs accurately. In the case of icells, TiEVM has

enough information to determine the exact cost; but in cases such as tuples, TiEVM

can only use the larger cost Csset as a conservative estimate. This is a major source

of estimation inaccuracy. I will discuss more about this issue in Chapter 5.

Reads and writes on elements of vectors are governed by rules SLoadVector and

SStoreVector. These rules apply when the top-of-stack operand is vectorPtr u i,

the type of vector pointers. I will describe how to get a value of this type when

discussing rule VectorPtr. Vector reading and writing are similar to the corre-

sponding array operations described in Section 3.4.5, with the same boundary checks.

The index i in vector-pointer type vectorPtr u i stands for the pointer offset, not the

length of the vector; the length j is looked up in the current state ϕ via the state

name u: ϕ(u) = j. As with tuple writes, there is not enough information to determine

the zeroness statically of the old and new value of the target vector element in rule

SStoreVector, so the conservative cost Csset is used.

Vectors have another three operations, governed by rules SLoadVectorLen,

VectorPushBack, and VectorClear, for getting the length of the vector, ap-

pending an element at the end of the vector, and emptying the vector by setting

its length to zero. Reading and resetting length are performed by the same SLoad

and SStore instructions as before. Rules SLoadVectorLen and VectorClear

apply when the first operand is of type state u instead of vectorPtr. Both Vector-

Clear and VectorPushBack change the length of the vector, so the state ϕ needs

to be updated with the new length. Note that the cost in VectorClear is Csreset,

23The i ? i1 : i2 notation is the if-then-else expression for an index. See Chapter 2.

84

since we can be sure in this case the new value is zero.

I have described in the “storage organization” sector above how addresses of map

values and vector elements are calculated using the sha3 hash trick. These calculations

are implemented and hidden by the pseudo-instructions MapPtr and VectorPtr.

As can be seen in rule MapPtr, from the type system’s point of view, what instruc-

tion MapPtr does is that given a map key of type int (a word) and a pointer to

an on-storage tuple, if the pointer points to a component that happens to be of type

map (tuple −→τV)24, MapPtr will construct a pointer pointing to the head of a tuple
−→τV : tuplePtr −→τV 0 true. This resulting pointer is the address of the value associated

with the key given as the first operand. The second operand is the “base address”

of the map as described in the “storage organization” sector. The base address is

typed as a tuple pointer. Refer back to rule StateMap saying that the type of a

map state is a tuple pointer.25 The VectorPtr pseudo-instruction works similarly;

given a first operand which is the base address of the vector and a second operand

which is the number of the desired element (the offset), it constructs a pointer of type

vectorPtr u i, pointing to the address of element i of the vector.

The last rule, RestrictView (“restricting the view of a pointer”), addresses the

issue that different tuple-pointer types can represent the same storage address. For ex-

ample, the address of type tuplePtr [τ1, τ2, τ3] 1 true can also be typed tuplePtr [τ2, τ3] 0 true
and tuplePtr [τ2] 0 true, among others. Rule RestrictView converts a tuple pointer

pointing to the middle of a larger tuple to a pointer pointing to the beginning of a

smaller tuple. The smaller tuple must be contained within the larger one. Instruc-

tion RestrictView is a noop instruction; it is used to implement tuples of tuples

on storage at the source-language level, where they are flattened into single large

tuples by the compiler. Instruction RestrictView corresponds to going from the

outer tuple to the inner tuple on the source level.26 Without this instruction, a tuple

pointer with a larger view cannot, for example, be passed to a function expecting a
24Map values are always tuples.
25I essentially used tuple pointers to represent storage addresses.
26Readers familiar with C can think of it as dereferencing a 2D-array pointer, which does not

change the pointer value but does change its type so that later operations such as “plus one” have
different interpretations.

85

τ1 = ∀α :: κ. τ ′ Ω,Λ ⊢ τ :: κ

Ω,Λ, τ1;S ⊢ AppTτ : Ω,Λ, τ ′[τ/α];S ▷ 0
AppT τ1 = ∀a : s. τ Ω ⊢ i : s

Ω, τ1;S ⊢ AppIi : Ω, τ [i/a];S ▷ 0
AppI

Ω,Λ ⊢ τ1 :: ∗ τ1 = ∃α :: κ. τ ′ Ω,Λ ⊢ τ2 :: κ Ω,Λ ⊢ τ ≡ τ ′[τ2/α]

Ω,Λ, τ ;S ⊢ Packτ1
τ2 : Ω,Λ, τ1;S ▷ 0

Pack

Ω,Λ ⊢ τ1 :: ∗ τ1 = ∃a : s. τ ′ Ω ⊢ i : s Ω,Λ ⊢ τ ≡ τ ′[i/a]

Ω,Λ, τ ;S ⊢ PackIτ1i : Ω,Λ, τ1;S ▷ 0
PackI

Ω,Λ ⊢ τ :: ∗ τ = τ2
−→c τ2 = µα :: κ. τ3 Ω,Λ ⊢ τ1 ≡ τ3[τ2/α]

−→c
Ω,Λ, τ1;S ⊢ Foldτ : Ω,Λ, τ ;S ▷ 0

Fold

τ = τ1
−→c τ1 = µα :: κ. τ2

τ ;S ⊢ Unfold : τ2[τ1/α]
−→c ;S ▷ 0

Unfold Ω,Λ ⊢ τ :: ∗ Ω,Λ ⊢ τ1 ≡ τ

Ω,Λ, τ1;S ⊢ AscTypeτ : Ω,Λ, τ ;S ▷ 0
AscType

τ = ∃α :: κ. τ ′

Λ, τ ;S ⊢ Unpackα : Λ;α :: κ, τ ′;S ▷ 0
Unpack τ = ∃a : s. τ ′

Ω, τ ;S ⊢ UnpackIa : Ω; a : s, τ ′;S ▷ 0
UnpackI

Ω = ∆.1 Ω ⊢ i : Time ∆ ⊢ J ▷ (i′, j) Ω ⊢ i′ ≤ i

∆ ⊢ AscTimei; J ▷ (i, j)
AscTime

Figure 3-9: TiEVM typing rules (miscellaneous)

pointer with a smaller view.

3.4.8 Miscellaneous

Figure 3-9 lists some of the other typing rules not covered in previous sections. They

all have counterparts in TiML’s typing rules and do not interact much with TiEVM’s

assembly-level features. The rules from AppT to UnpackI, which are all noop in-

structions with zero costs, just change the type of the top-of-stack value. Readers

can refer to the corresponding TiML typing rules in Section 2 for understanding the

modifications of the type. The AscTime rule27 relaxes the time estimation of the

following instruction sequence, given that the provided new estimation can be proved

to be no less than the original one. There is a similar AscSpace instruction for heap-

allocation estimation. Note that in TiEVM every mention of resource costs means

the costs from that point to the very end of the execution.

27“Asc” stands for “ascribe”.

86

Chapter 4

The type-preserving compiler

The type-preserving compiler that compiles TiML programs to TiEVM programs

consists of four major compilation phases (or “stages”): (1) a phase that translates a

surface version of TiML (called Surface-TiML) to the TiML version that is described

in Chapter 2 (called µTiML in this chapter); (2) a CPS-conversion phase that trans-

lates µTiML programs in direct style into µTiML programs in continuation-passing

style; (3) a closure-conversion phase that makes the capturing of variables in locally

defined functions explicit and turns each locally defined function into a top-level def-

inition; (4) a code-generation phase that translates µTiML programs into TiEVM

programs, taking care of register allocation and array/tuple initialization. All these

phases assume that the input program is well-typed and guarantee that the output

program be well-typed. Each of these four major phases will be covered by a section

in this chapter.1

Besides these major phases, there are some minor phases including parsing, elabo-

ration that translates an abstract-syntax tree (AST) used by the parser to an AST of

Surface-TiML, name resolution that translates string representation of bound names

into de Bruijn indices, pseudo-instruction expansion for TiEVM programs, and assem-

bling of TiEVM programs that translates a TiEVM AST into a binary format (and

takes care of code-label renaming). These minor phases do not involve typechecking

1Phases (2) and (3) are heavily influenced by [63], which in turn was influenced by the compilation
strategy of SML/NJ [15].

87

and will not be discussed in this dissertation.

The main job of the compiler is to transform programs in the “top-down” direc-

tion, from the source language to the target language. But a special concern in this

resource-analysis setting is that the compiler’s behavior influences the costs of each

operation in the source language (i.e. the cost model of the source language). The

only ground truth about costs is the cost model of the target TiEVM language, given

by the official EVM specification. Therefore, when designing and implementing the

compiler, I needed to analyze its influence on costs and define the cost model for each

intermediate language2 in the “bottom-up” direction, firstly defining it for the lowest

intermediate language and then moving up, until I reached a definition for the cost

model of the Surface-TiML language. The last section in this chapter will describe

these derived cost models.

4.1 Surface-TiML to µTiML

Section 2 described TiML as a System-F-like calculus that has building blocks such

as recursive types, existential types, and sum types. Astute readers may have found

that there is a discrepancy between this formulation and the code examples shown

in Section 2.1, the latter of which use language features such as datatypes, pattern

matching, and the absidx keyword. These code examples are actually written in a

language called “Surface-TiML,”3 and the formally defined language in Chapter 2 is

called “µTiML” (read as “micro-TiML,” as in “a core calculus for TiML”). Outside

this section (and Section 4.5), I generally use “TiML” as a shorthand for µTiML,

ignoring the fact that there is a higher-level language above it4. This section will

describe Surface-TiML and the translation from it to µTiML.

2Phases (2), (3), and (4) share the same intermediate language, µTiML, as input but use different
cost models.

3I apologize for the lack of a better name.
4µTiML is easier to define, prove sound, and use as an intermediate language, which is why this

thesis focuses on µTiML most of the time. Surface-TiML is easier to actually program in for the
user.

88

Type
τ ::= <same as µTiML minus µα : κ. τ , ∃a : s. τ , and τ + τ>

| datatype α
−→
β −→s as

−−−−−−−−−−−−−−−−→
c : ∀−−→a : s. τ → α

−→
β

−→
i

Term
e ::= <same as µTiML minus let and irrelevant forms>

| case e of −−−→p ⇒ e | c −→τ −→
i e | let −→d in e end

Pattern
p ::= c −→a p | (p, p) | () | x

Declaration
d ::= val p = e | idx a = i | type α = τ | absidx a : s = i with −→

d end

Figure 4-1: Syntax of Surface-TiML

4.1.1 Surface-TiML

The syntax of Surface-TiML is shown in Figure 4-1. Surface-TiML shares the same

indices and sorts with µTiML. For types, Surface-TiML replaces the more primitive

recursive types, existential types, and sum types with a single feature: datatypes.

Each datatype consists of several constructors5, each of which can construct a value

of the datatype. Constructor names are denoted as c. Let us zoom in on the syntax

for a datatype in Figure 4-1. Each datatype needs a name α to refer to itself in its

constructors. A datatype can be parametrized on some type variables −→
β and some

sorts −→s . The type of each constructor is a function that returns a value of type

α
−→
β

−→
i given an input of some type τ . τ can be any type that is well-formed under

the current context (e.g. τ can mention α and −→
β). The −→

i in the constructor’s

result type can also be any indices as long as they are of sorts −→s 6. A constructor

can introduce some local index variables −→a which −→
i can mention7. As an example,

5Currently there must be at least one constructor for each datatype; datatypes with no construc-
tors (representing the empty type) will be allowed in future versions.

6Note that the type arguments to the datatype in each constructor’s result type are required to
be −→

β (no type-polymorphic recursion for datatypes). The reason for this is a technical constraint
resulting from the translation of datatypes into µTiML’s more primitive building blocks. Section
4.1.2 has a footnote explaining this technicality.

7Note that in τ and −→
i , the only available variables are α, −→β , and −→a . −→s do not introduce any

variables.

89

below is the list datatype in Section 2.1 written in formal syntax:

list def
= datatype α β Nat as [Nil : unit → α β 0,

Cons : ∀n : Nat. β × α β n → α β (n+ 1)].

Note that α here is a self-reference name corresponding to the name list in Figure

2-1, while β here is the list-element type corresponding to α in Figure 2-1. I give the

first constructor ([]) a name Nil here and the second constructor (::) a name Cons.
Surface-TiML’s terms also have a large overlap with µTiML’s. Surface-TiML

has three term forms which µTiML does not have: pattern matching, constructor

application, and compound let-binding. Pattern matching is the elimination form of

datatypes, whose usage has been demonstrated by the code examples in Chapter 2.

Note that the constructor pattern c −→a p can give names −→a to the constructor-local

index variables (i.e. the −−→a : s in the constructor’s definition c : ∀−−→a : s. τ → α
−→
β

−→
i).

Constructor application is the introduction form of datatypes, constructing a value of

a datatype using one of its constructors. Compound let-binding extends the simple

let-binding in µTiML by allowing multiple bindings between let and in8. Each of

these bindings is called a “declaration.” Binding a value to a term variable is just

one form of declaration, written as val x = e. The variable x can be generalized to

be any pattern, which is the same as doing a pattern matching with just one branch.

Other declaration forms include index/type definition (or “aliasing”) and abstract-

index definition. Abstract indices have been described in Chapter 2, whose special

feature is that the definition of a can only be seen in the inner declarations −→d , outside

of which only the sort of a is visible.

Typing rules for Surface-TiML

Surface-TiML has its own type system, which again has a large overlap with µTiML’s.

I show in Figure 4-2 the kinding rule for datatype and the typing rule for absidx to

help clarify the scoping of variables.

The kinding rule for datatype mainly checks that each constructor is well-kinded
8This feature is borrowed from Standard ML.

90

Ω,Λ ⊢ τ :: κ , ∆ ⊢ d : ∆′ ▷ i and ∆ ⊢ e : τ ▷ i

Ω ⊢ wf −→s
κ

def
= ∗m ⇒ −→s ⇒ ∗ Ω,Λ;α :: κ;

−−−→
β :: ∗ ⊢ ∀

−−−→
a : s′. τ

0−→ α
−→
β

−→
i :: ∗ (for each constructor)

Ω,Λ ⊢ datatype α β1 · · ·βm
−→s as

−−−−−−−−−−−−−−−−−→
c : ∀

−−−→
a : s′. τ → α

−→
β

−→
i :: κ

Datatype

∆ ⊢ wf s ∆ ⊢ i : s ∆; a : {a : s | a = i} ⊢
−→
d : ∆′ ▷ j

∆ ⊢ absidx a : s = i with −→
d end : (a : s;∆′) ▷ j

AbsIdx

∆ ⊢
−→
d : ∆′ ▷ i1 ∆;∆′ ⊢ e : τ ▷ i2 τ , i1 and i2 do not contain variables in ∆′

∆ ⊢ let −→d in e end : τ ▷ i1 + i2
Let

∆(c) = (τ1, n,m) ∆ ⊢ e : _ ▷ j ∆;x : τ1 ⊢ x −→τ −→
i e : τ2 ▷ _

∆ ⊢ c −→τ −→
i e : τ2 ▷ j + CConstr(|

−→
i |, n,m)

AppC

Figure 4-2: Surface TiML kinding, typing, and declaration-checking rules (selected)

if seen as an arrow type ∀
−−→
a : s′. τ

0−→ α
−→
β

−→
i . In other words, the kind checking for

datatype delegates the job to that for arrow types. The cost of each constructor is

determined by its definition (see rule AppC), not given via annotations, so a cost of

zero is used as a placeholder in the arrow type. The kind of the whole datatype is

∗m ⇒ −→s ⇒ ∗, which is a shorthand for ∗1 ⇒ · · · ⇒ ∗m ⇒ s1 ⇒ · · · ⇒ sn ⇒ ∗.

Rule AbsIdx is one of the declaration-checking rules, which have the judgment

form ∆ ⊢ d : ∆′ ▷ i. ∆′ stands for variables newly introduced by the declaration d,

and i is the cost of evaluating the declaration (e.g. a val declaration). A derived

judgment ∆ ⊢
−→
d : ∆′ ▷ i is for a sequence of declarations, in which case ∆′ and i

are the accumulated new-variable context and cost. Declaration checking is used to

typecheck let as shown by rule Let, where there is a “no-escape” condition requiring

that the typechecking results τ and i1 + i2 do not contain local variables visible

only within the let-binding. In rule AbsIdx, the crucial arrangement is that when

checking the inner declarations −→
d , index variables a’s sort is {a : s | a = i}, while

when exporting the new variable a to the outside world, its sort is changed to s.

I also show the typing rule for constructor applications. ∆(c) = (τ1, n,m) means

looking up the information of constructor c in the context9. τ1 is the type of the

9Datatype definitions are stored in the kinding context.

91

constructor, expressed as an arrow type (the type ∀
−−→
a : s′. τ

0−→ α
−→
β

−→
i in rule

Datatype). n is the number of constructors that c’s datatype has, and m is the

position of c among its siblings (starting from 0). n and m are used for calculating

the cost, which will be described in Section 4.5. Rule AppC delegates the job of

typechecking c −→τ −→
i e to typechecking x −→τ −→

i e where x is of type τ1
10.

4.1.2 Translating into µTiML

Translating datatypes

The translation of datatypes is shown below. The rule uses the translation of construc-

tors which is shown below it. A datatype is translated into a higher-order recursive

type, whose kind is ∗m ⇒ −→s ⇒ ∗. The body of the recursive type is a type-level

function that takes in type arguments −−−→β :: ∗ and index arguments −−→b : s and returns a

sum type. I use Σ−→τ to mean the sum of a list of types, with right associativity11.

Each of the components of the sum type is the translation of a constructor.s
datatype α β1 · · · βm s1 · · · sn as

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
c : ∀a1 : s′1, · · · , ak : s′k. τ → α

−→
β i1 · · · in

{
= µα :: ∗m ⇒ −→s ⇒ ∗. λ

−→
β , b1 : s1, · · · , bn : sn. Σ

−−−−−−−−−−−−−−−−−−→r
c : ∀

−−→
a : s′. τ → α

−→
β

−→
i

z
r
c : ∀a1 : s′1, · · · , ak : s′k. τ → α

−→
β i1 · · · in

z
= ∃a1 : s′1, · · · , ak : s′k, _ : {b1 = i1 ∧ · · · ∧ bn = in}. JτK

(4.1.2.1)

In the constructor translation, the local index variables
−−→
a : s′ are translated to

be existentially quantified variables. There is another existentially quantified index

variable, _ : {b1 = i1 ∧ · · · ∧ bn = in}, whose name does not matter and whose sort12

contains the information that b1 = i1∧· · ·∧bn = in
13. The index variables −→b represent

the index arguments of the constructed datatype, and b1 = i1∧ · · · ∧ bn = in connects

10The cost estimation of x −→τ −→
i e is not used, though the cost of e (j in rule AppC) is needed.

In the typechecker implementation, j is returned after typechecking x −→τ −→
i e.

11−→τ is required to be nonempty, so Σ−→τ is well-defined.
12Remember that sort {θ} is a shorthand for the subset sort {_ : Unit|θ}.
13The encoding of polymorphic datatypes using equality constraints is inspired by [80].

92

the formal arguments −→b with the actual arguments −→i in each constructor.14

As an example, the translation result of the list datatype is shown below.

µα :: ∗ ⇒ Nat ⇒ ∗. λβ :: ∗. λb : Nat. (∃_ : {b = 0}. unit)+
(∃n : Nat, _ : {b = n+ 1}. β × α β n)

Translating constructor applications

Jcπ τ1 · · · τm j1 · · · jk eK = foldJπK −→τ −→
i [

−→
j /−→a]

(inj#c,#π (pack ⟨−→j ; (), JeK⟩)) (4.1.2.2)

The translation of constructor applications is shown above. The constructor c is

assumed to be one of the constructors of the datatype in Equation 4.1.2.1, denoted

as π. −→τ and −→
j are the actual type and index arguments; −→τ will substitute for

the formal type arguments −→
β , and −→

j will substitute for the local index variables
−→a 15. A constructor application is translated into a packing followed by an injection

followed by a folding16. The type of the final result of this sequence of operations, as

annotated in fold, is JπK −→τ −→
i [
−→
j /−→a]. We can see that the actual arguments that will

substitute for −→b are −→i [−→j /−→a], meaning −→
i with variables −→a replaced by −→

j (−→a and
−→
j are of equal lengths). In µTiML, fold, inj, and pack all require type annotations

to guide typechecking; here I only show the annotation for fold, from which the other

annotations are easy to figure out.

In the injection, I write #c to mean the position of the constructor c among its

siblings (starting from 0) and #π to mean the number of π’s constructors. injp,n is

14The reason for fixing the type arguments in the result type of each constructor to be −→
β is that

the Surface-TiML-to-µTiML translation uses an encoding where the type and index arguments to α
in the result type are introduced as variables (called “result variables”) . For indices, I can say that
the local index variables are existentially quantified and are in a relation with the result variables.
But for types, I cannot use this trick because type unification cannot depend on an arbitrary premise
context as in index unification. When I fix the result type variables to be −→

β , each constructor’s
argument type is naturally expressed using −→

β , so I avoid this difficulty.
15Note that −→

j will not substitute for the formal index arguments −→
b , as indicated by the length

k instead of n.
16The sequence of these introduction forms corresponds to the sequence of types used in the

translation of datatypes.

93

defined as17

inj0,1 e = e

inj0,n e = l.e
injp,n e = r.(injp−1,n−1 e).

(4.1.2.3)

The packing step packs indices −→j and the unit index () with JeK18. The unit index

is an instance for the sort {b1 = i1∧· · ·∧bn = in}. The condition b1 = i1∧· · ·∧bn = in

will be checked by the VC checker, according to the sorting rule for refinement sorts

(see Figure 2-9). Note that this condition is trivially true because −→
b have been

replaced by −→
i [
−→
j /−→a] when the typechecking reaches this point.

As an example, below is the translation of an expression involving applications of

the two constructors from datatype list.

JCons int 0 (10,Nil int ())K =
foldJlistK int 1 (inj1,2 (pack ⟨[0, ()], foldJlistK int 0 (inj0,2 (pack ⟨[()], ()⟩))⟩))

Translating pattern matchings

The section describes how to translate a compound pattern matching case e of −−−→p ⇒ e

into a sequence of more primitive operations such as simple let-binding, pair pro-

jection, simple case-analysis for binary sum types, unfolding, and unpacking19. The

pattern language used in compound pattern matching, shown in Figure 4-1, includes

one that matches a datatype constructor, one that matches a pair, one that matches

a unit value, and one that matches anything and gives it a name (or “alias”). In this

section I will ignore the naming aspect and write the last pattern as _ (a wildcard

pattern)20. I use pairs instead of tuples in this section to simplify the illustration.

The implementation uses tuples. The input pattern-matching expression is assumed

to have passed the Surface-TiML typechecker, which checks that the branches are

17inj is essentially a unary encoding of natural number p using the left and right injection as zero
and successor. In the future I may change it to a binary encoding.

18I write pack with a list of indices as a shorthand for a series of single-index packs.
19The translation is similar to [60] though I was not aware of the work beforehand.
20Pattern aliases are used by the compiler as hints to choose variable names.

94

exhaustive and that there are no useless branches21.

As a preparation step, each constructor pattern c −→a p is transformed into a

combination of patterns comprised by three new pattern forms: fold p for matching a

value of a recursive type, pack a p for matching a value of an (index-)existential type,

and injj,k p for matching a value of a k-component sum type constructed by the j-th

injector (starting from 0). The translation of a constructor pattern into these patterns

is the same as the translation of a constructor application in Equation 4.1.2.2, except

that −→
j ; () in pack is replaced with −→a ; b where b is any name (not used) and type

annotations are not needed.

The main complication in translating pattern matchings is the handling of pair

patterns. When translating a pattern matching against a pair, the analysis of its

second component needs to be postponed until the pattern matching for its first

component is fully translated. So the input to the translation function includes the

current pattern matching and all the postponed ones, which are in some sense “con-

tinuations” after the current pattern matching. I present the input to the translation

function as a matrix: uwwwwwwwwwv

e1 e2 · · · en

p1,1 p1,2 · · · p1,n e′1

p2,1 p2,2 · · · p2,n e′2
...

pm,1 pm,2 · · · pm,n e′m

}���������~
.

e1 is the current matching target; p1,1 to pm,1 are the patterns in each branch (m

branches in total); and e′1 to e′m are the branch expressions. The submatrix from

e2 to pm,n is the “continuation” part. To begin with, the translation of a pattern-

21The algorithm is adopted from [42]

95

matching expression22 below is written as and equivalent to the right-hand side:uwwwwwwwwwv

case e of
| p1 ⇒ e′1

| p2 ⇒ e′2
...

| pm ⇒ e′m

}���������~
≡

uwwwwwwwwwv

e

p1 e′1

p2 e′2
... ...

pm e′m

}���������~
.

At the beginning, there are no continuations. Continuations are introduced when

matching pair patterns, as defined below.

uwwwwwwwwwv

e1 e2 · · · en

(p1,1a, p1,1b) p1,2 · · · p1,n e′1

(p2,1a, p2,1b) p2,2 · · · p2,n e′2
...

(pm,1a, pm,1b) pm,2 · · · pm,n e′m

}���������~
=

let x = Je1K in
let y1 = x.1 in
let y2 = x.2 inuwwwwwwwwwv

y1 y2 e2 · · · en

p1,1a p1,1b p1,2 · · · p1,n e′1

p2,1a p2,1b p2,2 · · · p2,n e′2
...

pm,1a pm,1b pm,2 · · · pm,n e′m

}���������~
To be a valid pattern matching, the patterns in all branches must be compatible

with each other. In the case of pairs, all current patterns (those in the first column)

must be pair patterns. A word on the wildcard pattern _ here23: if a pattern is

required to be in a particular form but it is a wildcard, it is seen as a pattern in that

form with all inner patterns being wildcards. For example, if a pattern is required to

be a pair pattern but is actually _, it is seen as (_,_); if it is required to be a fold
pattern, it is seen as fold _. Special care for wildcards is taken when translating inj
patterns as described later. Note that each column of patterns can only have at most

one required form; if there are two patterns in the same column with incompatible

forms (e.g. a pair pattern and a fold pattern), the translation will fail (this situation

22I write a bar in each branch as an indicator for the start of that branch.
23Variable patterns have been converted into wildcard patterns.

96

is ruled out by the Surface-TiML typechecker).

In the translation for pair patterns above, the first-component patterns p1,1a to

pm,1a become “current patterns” (first-column patterns) matching against the first

component y1 of expression e1; the second component y2 and its patterns p1,1b to

pm,1b are pushed into the continuation to be dealt with later. The recursive call of

the translation function is well-founded because the total size of the types of the

“discriminees” (the match targets e1 to en)24 is decreased, because we replaced a

product type with its two components (thus removed the product combinator). y1

and y2 are bound to the first and second projections of e1. I use an intermediate

variable x to make sure that e1 is only evaluated once (since it may have side effects).

When all current patterns are wildcards or unit patterns, the translation for the

current pattern matching is done and it moves on to the continuation part, as shown

below. uwwwwwwwwwv

e1 e2 · · · en

_ p1,2 · · · p1,n e′1

_ p2,2 · · · p2,n e′2
...

_ pm,2 · · · pm,n e′m

}���������~
=

let _ = Je1K inuwwwwwwwwwv

e2 · · · en

p1,2 · · · p1,n e′1

p2,2 · · · p2,n e′2
...

pm,2 · · · pm,n e′m

}���������~
uwwwwwwwwwv

e1 e2 · · · en

() p1,2 · · · p1,n e′1

() p2,2 · · · p2,n e′2
...

() pm,2 · · · pm,n e′m

}���������~
=

let _ = Je1K inuwwwwwwwwwv

e2 · · · en

p1,2 · · · p1,n e′1

p2,2 · · · p2,n e′2
...

pm,2 · · · pm,n e′m

}���������~
The translated expression starts with a let-binding of the match target e1, because

though the value of e1 is not used, it still needs to be evaluated to trigger its side

effects.

24Or equivalently the types of the patterns

97

The handling of fold and pack patterns is largely the same as that of pair pat-

terns. In each case, it makes sure that the first-column patterns have the same form

(wildcards are converted into the required form as discussed before) and then moves

its focus onto the inner patterns. The respective elimination forms unfold and unpack
are used to open up the discriminee expression and expose the inner part. In the

pack-pattern case, note that the introduced local index variable a can be α-renamed

to have the same name in each branch, so that this common name a can be used for

unpack25.

uwwwwwwwwwv

e1 e2 · · · en

fold p1 p1,2 · · · p1,n e′1

fold p2 p2,2 · · · p2,n e′2
...

fold pm pm,2 · · · pm,n e′m

}���������~
=

let x = unfold Je1K inuwwwwwwwwwv

x e2 · · · en

p1 p1,2 · · · p1,n e′1

p2 p2,2 · · · p2,n e′2
...

pm pm,2 · · · pm,n e′m

}���������~
uwwwwwwwwwv

e1 e2 · · · en

pack a p1 p1,2 · · · p1,n e′1

pack a p2 p2,2 · · · p2,n e′2
...

pack a pm pm,2 · · · pm,n e′m

}���������~
=

unpack Je1K as ⟨a, x⟩ inuwwwwwwwwwv

x e2 · · · en

p1 p1,2 · · · p1,n e′1

p2 p2,2 · · · p2,n e′2
...

pm pm,2 · · · pm,n e′m

}���������~
The handling of injection patterns, shown below, is a bit more complicated, be-

cause (1) the branches need to be grouped according to the injector and (2) a wildcard

should belong to all the groups because it matches any injector. The grouping should

preserve the order of the branches because earlier branches take precedence over later

ones. I express these considerations using the row-filtering operation, which applies a

partial function to each pattern row (any row except for the first row (e1, e2, · · · , en))

and discards the rows where the partial function is not defined. The partial function

25This subtlety is handled automatically by de Bruijn indices.

98

used for the j-th injector is selectj, which accepts a row if its first pattern is injj,k p

(and transforms it to p) or a wildcard.

uwwwwwwwwwv

e1 e2 · · · en

injj1,k p1 p1,2 · · · p1,n e′1

injj2,k p2 p2,2 · · · p2,n e′2
...

injjm,k pm pm,2 · · · pm,n e′m

}���������~
=

case Je1K of

| inj0,k x ⇒

uvx e2 · · · en

<rows filtered by select0>

}~
...

| injk−1,k x ⇒

uvx e2 · · · en

<rows filtered by selectk−1>

}~
selectj(injj,k p1, p2, · · · , pn, e) = (p1, p2, · · · , pn, e)

selectj(_, p2, · · · , pn, e) = (_, p2, · · · , pn, e)

The translation result uses a case analysis for multi-component sum types, which is

defined using the simple case analysis for binary sum types. Its definition is easy to

figure out given the encoding of injectors in Equation 4.1.2.3.

The terminating case of the translation function is shown below, which applies

when all the patterns have been translated into let-bindings, projections, etc., and it

just needs to translate the branch expression. There could still be multiple branches

even after we have walked through a pattern path26, because wildcards can provide

branches for injectors that have been covered by earlier branches. For example, if

the first branch matches inj0,2 and the second branch matches _, there will be two

branches applicable for the inj0,2 case. In such cases, the first branch takes precedence.

m will always be at least 1 because the Surface-TiML typechecker checks that pattern

matchings are exhaustive. uwwwwwwwwwv
e′1

e′2
...

e′m

}���������~
= Je′1K

26And even when the Surface-TiML typechecker has ruled out useless branches

99

As an example, below is the translation of the foldl function in Figure 2-1.

foldl def
= Λα β : ∗. rec g. e

e
def
= Λm n : Nat. λf : α× β

m−→ β. λy : β. λl : list α n.

case unfold l of
z. unpack z as ⟨_,_⟩ in y

or z. unpack z as ⟨n′, w⟩ in unpack w as ⟨_, u⟩ in g m n′ f (f(u.1, y)) u.2

e : ∀m n : Nat. (α× β
m−→ β)

0−→ β
0−→ list α n

(m+4)×n−−−−−→ β

g is the self-reference name of the recursive function. case here is the simple case

analysis in Figure 2-4 for binary sum types. Some simple let-bindings are inlined.

Translating declarations (especially abstract indices)

The fact that Surface-TiML allows multiple declarations in a let-binding is not es-

sential; such a let-binding can be transformed into a series of single-declaration let-

bindings, as the following example shows.

let
val x = e1

idx a = i

type α = τ

absidx b = j with −→
d end

in
e2

end

⇒

letval x = e1 in
letidx a = i in
lettype α = τ in
letabsidx b = j with −→

d in
e2

letval is then translated into µTiML’s simple let-binding. letidx and lettype are elim-

inated by inlining the index/type’s definition27. letabsidx is translated into a pack

27This inlining will increase the size of the AST. In the future I will add letidx and lettype into
µTiML and change its typechecking to carry index/type definitions in the typechecking context.

100

followed by an unpack, as shown below.

uv letabsidx a = i with val x = e1 in
e2

}~ =

unpack
pack ⟨i, Je1K[i/a]⟩

as ⟨a, x⟩ inJe2K
The translated form makes sure that the definition of a is visible in e1 but not in

e2. Currently the translation only works on absidx with a single val as its inner

declaration. In the future, multiple vals could be translated together as a tuple.

4.2 CPS conversion

The CPS-conversion phase is designed following the scheme in [63]. There are two

complications brought about by TiML’s unique setting that are not present in [63]:

costs and states. I will explain these two complications when I delve into the definition

of the translation function.

4.2.1 Type translation

r
⟨ϕ1, τ1⟩

i−→ ⟨ϕ2, τ2⟩
z

def
= ∀jTime×Nat, ϕState. ⟨ϕ1 ∪ ϕ, Jτ1K × ⟨ϕ2 ∪ ϕ, Jτ2K⟩ j−→ ■⟩ i+j−−→ ■q

∀ia:s. τ
y def

= ∀as. ∀jTime×Nat, ϕState. ⟨ϕ, ⟨ϕ, JτK⟩ j−→ ■⟩ i+j−−→ ■JαK def
= αJintK def
= intJτ1 × τ2K def
= Jτ1K × Jτ2K
Figure 4-3: CPS conversion for types

Like all transformations in this compiler, the CPS conversion translates both types

and terms. The translation for types is shown in Figure 4-3. To de-emphasize minor

details and save space, in this section I write sort and type annotations as superscripts.

101

The first rule in Figure 4-3 conveys the essence of CPS conversion28: transforming a

function that takes in an argument and returns a result, to a function that takes in an

argument and a “continuation function” that accepts the result, and never returns.

If we ignore all the cost and state aspects, the first rule can be simplified as

Jτ1 → τ2K def
= Jτ1K × (Jτ2K → ■) → ■.

TiML does not allow functions that never return, so I choose to give bounds to the

two arrows in the translated type29. The bound for the second arrow (i.e. the cost

of the entire function) usually depends on the bound for the first arrow (the cost of

the continuation). The cost of the continuation is universally quantified because the

function should be able to work with any compatible continuation. In this section I

follow the convention from Chapter 3 that a cost written as a single number could

actually mean a cost pair (time and space). I write ∀jTime×Nat to mean ∀jTime
1 jNat

2 ,

and j will stand for (j1, j2) in its scope. The first rule in Figure 4-3 says that the

cost of the whole function is i+ j, the sum of the costs of the function body and the

continuation.

Now let us move on to the issue of states. A function’s precondition ϕ1 and

postcondition ϕ2 usually only mention the state names that are used by the function,

ignoring other state names that are present in the environment but not touched by the

function. The continuation, however, may touch state names ignored by the function.

Therefore, the translated version of the function should mention in its precondition

both state names used by the original function and those used by the continuation.

And since the translated function should be able to work with any continuation,

the set of state names for the continuation should be universally quantified. This is

where the ∀ϕState comes from, and also the motivation of adding the base sort State
to the index language. An index of sort State can be constructed by giving a concrete

string-to-index map {−−→u : i} or by using the “map union” index operator to combine

28The ∪ operator will be explained in the next paragraph.
29In a non-terminating setting, → ■ should be interpreted as a function that never returns; in

TiML’s setting, it can be seen as → ⟨·, unit⟩.

102

two indices30. The benefit of treating a state specification as an index (instead of

always requiring it to be a concrete map) is that it can be universally quantified.

The translated function has a precondition ϕ1 ∪ ϕ, the union of the precondition

of the original function and the “frame” part ϕ which the continuation will use and

the function just passes along. The new postcondition is ϕ2 ∪ ϕ31.

The translation of a ∀ type is very similar to that of an arrow type, since an arrow

is just a degenerate form of ∀ in a dependent type system like Coq’s. Here I only

show the case for index-∀; the case for type-∀ is the same when replacing a : s with

α :: κ. Remember that like arrows, a ∀ abstraction is a suspended computation that

costs resources when triggered, so its type ∀i
a:s. τ has the cost specification i (actually

a pair of indices). The translated term is very similar to the one above, except that

∀’s pre- and postcondition are always empty32. Note that in the translated term, the

∀as polymorphism no longer has costs, because the entire variable-introduction part

∀as, jTime×Nat, ϕState will be treated as a whole from now on33.

The translation on other types is just a congruence, meaning it just recursively

traverses the type, preserving its structure. The cases for type variables, base types,

and product types are given as examples.

4.2.2 Term translation

The translation function JeKϕ(k, jk) = e′, i for terms (shown in Figure 4-4) has four

inputs: the term to be translated (e), the continuation (k), the cost of the continuation

jk, and the “frame” state (ϕ) that needs to be passed along to the continuation. The
30If there is an overlap of the domains of two maps, the second map overshadows the first in the

union result.
31Note that the translated function usually is only well-typed when ϕ1 and ϕ are disjoint. Since

all continuations except for the initial one are constructed by the translation, and the initial one
(picked by the compiler) has an empty precondition, this condition always holds. The typechecker
currently is not able to validate the disjointness, so the soundness of the type system needs to rely
on the fact that the compiler will never generate terms with overlapping unions. In the future,
disjointness could be checked by having “disjoint” predicates in propositions.

32Because the computation a ∀ abstraction does is always creating a value (e.g. another abstrac-
tion) without using any state names, according to the value restriction for polymorphism

33In other words, before CPS conversion, index/type application (or “instantiation”) has run-
time effects (e.g. creating a new closure); after CPS conversion, index/type application is only for
typechecking purposes and does not have runtime effects.

103

s
(λx. e)⟨ϕ1,τ1⟩

i−→⟨ϕ2,τ2⟩
{ϕ

(k, jk)

def
= k (∀jTime×Nat, ϕState. λϕ1∪ϕ(xJτ1K, c⟨ϕ2∪ϕ,Jτ2K⟩ j−→■).Jeτ2Kϕ(c, j + CCpsAbs1(e))), jk + CCpsAbs2(e)r

eϕ1,τ1
1 eϕ2,τ2

2

zϕ
(k, jk)

def
= Jeτ11 Kϕ(λϕ1∪ϕx

Jτ1K
1 . e′2, i2)

where (e′2, i2) = Jeτ22 Kϕ(λϕ2∪ϕx
Jτ2K
2 . x1 (jk + CCpsApp1(k)) (x2, k)),

i+ jk + CCpsApp2(k))

_ i−→ _ = τ1r
(Λa : s. e)∀

i
a:s. τ

zϕ
(k, jk)

def
= k (∀as. ∀jTime×Nat, ϕState. λϕc⟨ϕ,JτK⟩ j−→■.Jeτ Kϕ(c, j + CCpsAbsT1(e))), jk + CCpsAbsT2(e)q

eϕ1,τ i
yϕ

(k, jk)
def
= Jeτ Kϕ(λϕ1∪ϕxJτK. x i (jk + CCpsAppT1(k)) k, j[i/a] + jk + CCpsAppT2(k))

where ∀ja:s. _ = τJxK(k, jk) def
= k x, jkJcK(k, jk) def
= k c, jk + CConstJrecτ x. eKϕ(k, jk) def
= k (recJτK x. e′) , jk + i

where (e′, i) = Jeτ Kϕ(id, 0)r
(case eϕ

′,τ ′ of x.e1 or x.e2)τ
zϕ

(k, jk)

def
=

r
eτ

′
zϕ

(λϕ′∪ϕyJτ ′K. let xk = k in case y of x.e′1 or x.e′2,
CCpsCase0(k) + max(i1, i2 + CJumpDest))

where (e′1, i1) = Jeτ1Kϕ(xk, jk + CCpsCase(e1, k))

(e′2, i2) = Jeτ2Kϕ(xk, jk + CCpsCase(e2, k))q
out eϕ1,τ

yϕ
(k, jk)

def
= Jeτ K(λϕ1∪ϕxJτK. k (out x), jk + CCpsUnOp(out))r

eϕ1,τ1
1 obt e

ϕ2,τ2
2

zϕ
(k, jk)

def
= Jeτ11 K(λϕ1∪ϕx

Jτ1K
1 . e′2, i2)

where (e′2, i2) = Jeτ22 Kϕ(λϕ2∪ϕx
Jτ2K
2 . k (x1 obt x2), jk + CCpsBinOp(obt, τ1, τ2, ϕ2))q

pack ⟨i, eϕ1,τ ⟩
yϕ

(k, jk)
def
= Jeτ K(λϕ1∪ϕxJτK. k (pack ⟨i, x⟩), jk + CPack)r

unpack eϕ1,τ1
1 as ⟨a, x⟩ in eτ22

zϕ
(k, jk)

def
= Jeτ11 K(λϕ1∪ϕx

Jτ1K
1 . unpack x1 as ⟨a, x⟩ in e′2, i2 + CUnpack)

where (e′2, i2) = Jeτ22 Kϕ(k, jk)r
let x = eϕ1,τ1

1 in eτ22

zϕ
(k, jk)

def
= Jeτ11 K(λϕ1∪ϕx

Jτ1K
1 . e′2, i2)

where (e′2, i2) = Jeτ22 Kϕ(k, jk)Jeτ ▷ iKϕ(k, jk) def
= Jeτ Kϕ(k, jk) ▷ i+ jk, i+ jk

Figure 4-4: CPS conversion for terms

104

necessity of the last two inputs can be seen from the fact that they appear in the

translated terms34. The translation result has two parts: the translated term (e′) and

the cost of the translated term (i). The latter is needed because of recursive calls

of the translation function. I omit unused (or passed to recursive calls unchanged)

parameters when writing translation rules. The translation often needs to know the

types of the source term or its components, which I write as superscripts. These

annotations will be provided by a typechecking phase before the CPS conversion35.

The translated code will be let-normalized after CPS conversion, so an expression

such as e (x, k) when k is not a variable will be normalized to let y = k in e (x, y).

The translation rules for lambda abstraction and function application (as the

introduction and elimination form of arrow types), again, convey the essence of CPS

conversion. The former should be easy to understand when read together with the first

rule in Figure 4-3. A function (i.e. lambda abstraction) in direct style is translated

into a function in continuation-passing style, and the new function (as a value) is

given to the outer continuation k36. Note that when translating the function body

e, the input continuation is the newly introduced variable c37. Cost annotations in

the translation result need to be adjusted carefully to guarantee the translated terms

to be well-typed and to avoid any precision loss. These cost adjustments are derived

from the cost models of the source and target language of CPS conversion38. The

definitions of the cost adjustments in Figure 4-4 are listed in Appendix B.2, and I

will describe the cost models in Section 4.5.

The translation of function applications, if we ignore the continuation costs, can
34The translated terms use them in the annotations, which are needed for typechecking.
35In this compiler there is a typechecking phase between any two compilation phases, which is for

both sanity checking the previous phase and providing annotations for the next phase. The AST
of the input term to each translation can be thought to be fully annotated, where the type of each
subtree is available, i.e. it can be called a “derivation tree” instead of a “syntax tree.” In practice,
to minimize AST size, the typechecker has switches to fine-control what annotations will be added.
Each compilation phase sets these switches for the typechecker to generate only the annotations it
needs, and consumes them to avoid passing unnecessary data to downstream phases.

36Note that for all value forms (e.g. λx. e, Λa. e, x, and c), the translation result is k (· · ·), i.e.
giving the translated value to the outer continuation k.

37And the inputs for continuation cost and frame state are the newly introduced variables j and
ϕ.

38The derivation of these cost adjustments for CPS conversion took a large amount of coding and
debugging time.

105

be written as

r
eϕ1,τ1
1 eϕ2,τ2

2

zϕ

(k, jk)
def
= Jeτ11 Kϕ(λϕ1∪ϕx

Jτ1K
1 . Jeτ22 Kϕ(λϕ2∪ϕx

Jτ2K
2 . x1 (jk+CCpsApp1

(k)) (x2, k))).

The translated term can be understood in two parts. The first part is

Jeτ11 Kϕ(λϕ1∪ϕx
Jτ1K
1 . Jeτ22 Kϕ(λϕ2∪ϕx

Jτ2K
2 .

which is for evaluating e1 and e2 to values. This part is the same for all binary term

operations (as can be seen in the e1 obt e2 case several lines below). e1 is annotated

with a state specification ϕ1, which is the state after evaluating e1
39.

The second part is

x1 (jk + CCpsApp1
(k)) (x2, k)

which is the core of the translated term. This is how one uses a function (x1) in

continuation-passing style: by passing in the actual argument (x2) and the continua-

tion (k). Before the argument, the continuation cost is also provided to the function.

Shrewd readers may find that another index argument, the frame state, is missing.

Here I rely on a feature of TiML’s typechecker: when the frame-state argument is

missing, it can automatically infer it by calculating the difference between the current

state and the function’s precondition40.

The translations of Λa. e and e i are similar to the rules above and should be

easy to understand after the previous description. The translation of rec x. e is a bit

special. Ignoring continuation costs, it can be written as

Jrecτ x. eKϕ(k, jk) def
= k (recJτK x. JeτKϕ(id, 0)).

39This annotation is also provided by the pre-phase typechecking.
40This calculation is possible because an index of sort State will always be a union of concrete

maps and variables. The calculation fails when one index cannot be shown to be a sub-state of
the other index by comparing map keys and variable names. This failure will not occur for the
terms generated by the CPS conversion. I could also have omitted the continuation-cost argument
and let the compiler infer it. The inference is for making the CPS conversion simpler, but from a
TCB-minimization standpoint, it is better to have a typechecker that does not do such inference.

106

Here I am using the translation function in a different way than other cases, where

the translation function is always used with a continuation involving k. Here I use

the identity function id as the continuation, and id will be inlined in the result. This

use relies on the facts that e will always be a value (according to the value restriction

for fixpoints) and that the translation result of a value will always be k (· · ·). One

can specialize e to e.g. λy. e′ and unfold id and the translation function to make sense

of the result.

The translations of case e of x.e1 or x.e2, unpack e1 as ⟨a, x⟩ in e2, and let x =

e1 in e2 all have the form of firstly evaluating the first term and then evaluating later

term(s) with continuation k. There is a let-binding in case’s translation to avoid

duplicating k in the result. The translations of unary term operation out e and binary

term operation e1 obt e2 are similar to and simpler than that for function applications.

pack is similar to unary operations. The last rule translates cost annotation i into

i+ jk
41.

4.3 Closure conversion

Closure conversion is for explicitly implementing a function’s captured free variables

(variables that are defined outside the function but used by it) as a tuple that will be

passed in as an argument, so that each function will no longer have free variables and

can be lifted to the top level. This compiler’s closure-conversion phase follows that

of [63] without much modification. The only difference is that in addition to type

variables there are also index variables, and that a recursive function is translated

together with the index/type abstractions surrounding it.

Closure conversion is a congruence in most cases42, for both types and terms. The

only non-congruence translation rules are shown in Figure 4-5, where the first rule is

for types and last two are for terms43. For closure conversion the differences between

41Cost annotations cannot be discarded because they may be necessary for later typechecking.
42Meaning it just recurses down the structure
43The last rule covers all function definitions. If a function is not recursive, it is trivially turned

to a recursive function by adding a rec at the beginning.

107

r
∀−→ακ. ⟨ϕ, τ⟩ i−→ ■

z
def
= ∃β∗. (∀−→ακ. ⟨ϕ, β × JτK⟩ i−→ ■)× β

Je1 −→τ e2K def
= unpack Je1K as ⟨β, x⟩ in x.1

−→JτK (x.2, Je2K)r
∀−→ακa

a . rec x. ∀
−→
ακb
b . λϕzτ . e

z
def
= pack ⟨τenv, (vcode

−→
β , (y1, · · · , ym))⟩

where −→
βκc = FITV (<source>)
yτ11 , · · · , yτmm

= FV (<source>)
τenv = τ1 × · · · × τm

generating top-level binding vcode = rec zcode. ∀
−→
βκc ,

−→
ακa
a ,

−→
ακb
b . λϕ(zτenv

env , zJτK).
let x = pack ⟨τenv, (zcode

−→
β −→αa, zenv)⟩ in

let y1 = zenv.1 in
...
let ym = zenv.m inJeK

Figure 4-5: Closure conversion

indices and types are not important so in Figure 4-5 I write a type list such as −→α to

mean a list of types and indices mixed together. FV (<source>) means the free term

variables of the translation input; FITV (<source>) means free index/type variables.

Note that after the translation, every function definition (e.g. vcode) is a rec followed

by some ∀ and then a λ. Since every function definition (indicated by the leading

rec) after closure conversion is closed, it can be freely moved. I write “generating

top-level binding” to mean that the function definition (along with a variable that

represents it) is put into a list which will be combined with the program’s main body

using let-bindings (i.e. function definitions are moved to the top level)44.

Readers are referred to [63] for more explanation of the translation.

4.4 Code generation

The code-generation phase is responsible for translating TiML programs (terms) into

TiEVM programs. The translation is shown from Figure 4-6 to 4-14, for both types

44A closed function can still refer to function names defined before it, so the order of function
definitions needs to be preserved when moving them to the top level.

108

r
⟨ϕ, τ⟩ i−→ ■

z
def
= (ϕ, {rarg 7→ JτK}, ·) i−→ ■Jarray n τ iK def
= arrayPtr n JτK i 32Jtuple −→τ K def
= tuplePtr

−→JτK 0 falseJptr τ ′K def
= tuplePtr

−→JτK 0 true
where −→τ = flattenTuple(τ ′)Jmap τ ′K def

= map (tuple
−→JτK)

where −→τ = flattenTuple(τ ′)

Figure 4-6: Code generation for types

and terms. The translation for types, shown in Figure 4-6, converts TiML arrow types

(in CPS-ed form) to TiEVM code-pointer types. According to the converted type, the

input argument is passed in a designated register rarg (currently rarg = rFirstGeneralReg =

r3), and the stack at the entrance of each function should be empty. It converts

arrays and tuples to array pointers (with offset 32 for skipping the length field) and

in-memory-tuple pointers. The last two rules are for translating state types ptr and

map. They use the operation flattenTuple, defined below, for flattening a tuple of

tuples into a large single-layer tuple45.

flattenTuple(tuple [τ1, · · · , τn]) = flattenTuple(τ1); · · · ; flattenTuple(τn) (n > 1)

flattenTuple(τ) = [τ]

There are four translation functions for terms, JeK, BJeK, CJeK, and PJeK. I will

focus on the former two first. The reason for having these two different forms of

term-translation functions is that although all computations are expressed as terms

in TiML, they are implemented by different facilities in TiEVM. Some terms are

implemented by lists of instructions46 without involving jumps and basic blocks, while

some are implemented by several cooperating basic blocks. Because each block starts

with a specification about the index/type/stack/register context at its entry and the

cost bound, the second translation function needs to carry more parameters than the

first.
45Remember from Chapter 3 that in-memory tuples of tuples are implemented by pointers while

in-storage tuples of tuples are implemented by flattening.
46Not an “instruction sequence” as defined in Figure 3-1, which must end with a jump

109

JxKγ def
= Push 32× r

MLoad
when γ(x) = rJxKγ def

= Push l
when γ(x) = lJcK def

= Push JcKJstate uKE def
= Push (state E(u))Je1 obt e2K def
= Je1KJe2KJobtKJe.nK def
= JeK

Push 32× n
Add
MLoadJlen eK def

= JeK
Push 32
Swap1
Sub
MLoadJclear eK def

= JeK
Push 0
Swap1
SStore
Push()JvectorLen eK def

= JeK
SLoadJstorageGet eK def

= JeK
SLoadJiCellGet eK def

= JeK
SLoadJptrProj e nK def

= JeK
Push n
Add
RestrictViewJe τK def

= JeK
AppTJτKJe iK def

= JeK
AppIiq

packτ1 ⟨τ2, e⟩
y def

= JeK
PackJτ1KJτ2KJpackτ ⟨i, e⟩K def

= JeK
PackIJτK

i

Figure 4-7: Code generation for terms

110

Jfoldτ eK def
= JeK

FoldJτKJunfoldτ eK def
= JeK

UnfoldJτKJe : τK def
= JeK

AscTypeJτKJneverτ K def
= Push neverJτKJlτ .eK def
= JeK

Push false
InjJτKJ(eτ11 , · · · , eτnn)K def

= Je1K
...JenK
TupleMalloc−→JτK
Push 32× n
Add

Push 32
Swap1
Sub
Swap1
TupleInit

 repeat n times

TupleDoneJarrayFromListτm {eτ11 , · · · , eτnn }K def
= Push n

ArrayMalloctrueJτK m

Swap1
ArrayInitLen
Push 0

JeiK
Swap2
Swap1
ArrayInitm

Swap2
Pop
Swap1
Push m
Add


for i = 1 to n

Pop
ArrayDone

Figure 4-8: Code generation for terms (continued)

111

Jread32 e1 e2K def
= Je1KJe2K

Push 32
Mul
Add
MLoadJread1 e1 e2K def

= Je1KJe2K
Add
Push 31
Swap1
Sub
MLoad
Int2ByteJwrite32 e1 e2 e3K def

= Je1KJe2KJe3K
Swap2
Swap1
Push 32
Mul
Add
MStore
Push ()Jwrite1 e1 e2 e3K def

= Je1KJe2KJe3K
Swap2
Add
MStore8
Push ()JmapPtr e1 e2K def

= Je1KJe2K
MapPtrJstorageSet e1 e2K def

= Je1KJe2K
Swap1
SStore
Push ()JiCellSet e1 e2K def

= Je1KJe2K
Swap1
SStore
Push ()

Figure 4-9: Code generation for terms (continued)

112

JvectorGet e1 e2K def
= Je1KJe2K

Swap1
VectorPtr
SLoadJvectorSet e1 e2 e3K def

= Je1KJe2KJe3K
Swap2
VectorPtr
SStore
Push ()Jpushback e1 e2K def

= Je1KJe2K
VectorPushBack
Push ()

Figure 4-10: Code generation for terms (continued)

Let us focus on the simplest translation function JeK first. When all the parameters

are spelled out, its full form is JeKγE, where γ is a mapping from variable names to

registers or labels. E is a mapping from state names to integers (as the encodings of

the state names). As before, I omit unused (or passed to recursive calls unchanged)

parameters when writing translation rules. Each generated instruction list does not

consume anything on the stack and will put one word (the result of evaluating the

expression) on top of the stack. It may use the stack to store intermediate results

during the evaluation47.

Most of the rules for JeK are straightforward. The translation of a variable x

depends on whether γ(x) is a register or a code label (i.e. a variable could be im-

plemented by either a register or a code label). I write n as a value of an indexed

natural-number type (instead of a value of type int), which is often used for Push48.

The constant translation JcK is trivial and omitted here. ptrProj, the projection of an

in-storage-tuple pointer, is translated into RestrictView, as discussed in Section

47Note that the translation allows compound expressions, so the input expressions are not required
to be in let-normal form, though after previous compilation phases most of them are. Evaluating
compound expressions may cause stack overflow (will not happen for this compiler because of CPS
conversion), which will be detected by statically analyzing the stack depth in a future version.

48Push often needs its argument to be n instead of n because the value will influence typechecking.

113

3.4.7. l.e, the left injection, is translated into Inj with a false on top of the stack, as

discussed in Section 3.4.2. A tuple is implemented as a TupleMalloc followed by a

series of TupleInits followed by a TupleDone. arrayFromList, for creating an array

with a list of elements, is implemented in a similar fashion with ArrayMalloc, Ar-

rayInit, and ArrayDone. Note the true parameter to ArrayMalloc to indicate

that the array will be initialized upward (from element 0 to element n − 1) and the

m parameter for element width. For array reading and writing, the translation only

supports element widths of 1 and 32 (in bytes) so far.

Now let us move on to the translation function BJeK, whose full form is BJeKγΛ,R,E.

γ and E have the same meanings as before. Λ stands for the combined index-and-

type context of the input expression. R is the current register-typing context. These

two are needed when generating new basic blocks. The output of this translation

must be an instruction sequence, ending with a jump or halt. It can optionally

generate additional blocks. Any unintroduced names in the result code (such as a

register r or a label l) are assumed to be fresh49. Because the output must be an

instruction sequence, the input must be a “continuation” expression, meaning it can

be the body of a CPS-ed function. Such expressions include let-binding, unpacking,

function application, branching, halt, and a continuation expression annotated with

a cost50.

The translation for let x = e1 in e2 first translates e1, then puts the evaluation

result in a fresh register before translating e2. Note that e1 is translated by J K while

e2 is translated by BJ K. unpack is translated similarly, except that the index variable

a is added to Λ when translating e2
51. A function application is simply implemented

by storing the argument to register rarg and then jumping. Branching is one of those

places where extra blocks need to be generated. The three forms of branching, if,
ifi, and case, are all translated in a fashion where the first branch is implemented by

the main output while the second branch is implemented as an extra code block52. I
49There is a register allocator and a label allocator that return ever-larger register and label

numbers. The register allocator is reset for each top-level function.
50After CPS conversion, only continuation expressions may have cost annotations.
51unpack for type existentials is similar.
52JumpDest is a noop instruction that marks the destination of a jump. The EVM specifica-

114

BJlet x = eτ1 in e2KγΛ,R,E
def
= Je1K

Push 32× r
MStore
BJe2Kγ[x 7→r]

Λ,R[r 7→JτK],E
B

q
unpack e∃a:s.τ1 as ⟨a, x⟩ in e2

yγ
Λ,R,E

def
= Je1K

Push 32× r
MStore
BJe2Kγ[x 7→r]

Λ;a:s,R[r 7→JτK,E]

BJe1 e2K def
= Je1KJe2K

Push 32× rarg
MStore
Jump

B
q
if eϕ then e1 else (e2 ▷ i)

yγ
Λ,R,E

def
= JeKγE

IsZero
Push (l Λ)
JumpI
BJe1KγΛ,R,E

generating block l 7→ block {
∀Λ. (ϕ,R, ·) i+CJumpDest−−−−−−−→ ■ :
JumpDest
BJe2KγΛ,R,E }

B
q
ifi eϕ,ibool j then x.e1 else (x.e2 ▷ i)

yγ
Λ,R,E

def
= JeKγE

IsZero
Push ()
Swap1
Push (l Λ)
JumpI
Push 32× r
MStore
BJe1Kγ[x 7→r]

Λ,R[r 7→∃{j=true}.unit],E
generating block l 7→ block {

∀Λ. (ϕ,R, [τ2])
i+CJumpDest−−−−−−−→ ■ :

JumpDest
Push 32× r
MStore
BJe2Kγ[x 7→r]

Λ,R[r 7→τ2],E
}

where τ2 = ∃{j = false}.unit

Figure 4-11: Code generation for terms (outputing instruction sequence)

115

B
q
case eϕ,τ1+τ2 of x.e1 or x.(e2 ▷ i)

yγ
Λ,R,E

def
= JeKγE

Push (l Λ)
BrSum
Push 32
Add
MLoad
Push 32× r
MStore
BJe1Kγ[x 7→r]

Λ,R[r 7→Jτ1K],E
generating block l 7→ block {

∀Λ. (ϕ′, R, [ibool true × Jτ2K]) i+CJumpDest−−−−−−−→ ■ :
JumpDest
Push 32
Add
MLoad
Push 32× r
MStore
BJe2Kγ[x 7→r]

Λ,R[r 7→Jτ2K],E }
BJhalt eτ K def

= JeK
HaltJτK

BJe ▷ iK def
= AscTimei

BJeK
Figure 4-12: Code generation for terms (outputing instruction sequence, continued)

116

B
r

let x = newn enat i
1 eϕ,τ2 in (e ▷ (j1, j2))

zγ

Λ,R,E

def
= Je1KγEJe2KγE

Swap1
Dup1
ArrayMallocfalseJτK n

Dup2
ArrayInitLen
Swap1
Push n
Mul
Push (l1 Λ i)
Jump

generating blocks
l1 7→ block {
∀Λ, a : {a : Nat | a <= i}.
(ϕ,R, [nat (n× a), preArray JτK i a true false, JτK])
a×CNewLoop(n)+CNewLoopTest+CNewPostLoop+j1, j2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ■ :
JumpDest
Push ()
Dup2
IsZero
Push (l2 Λ a)
JumpI
UnpackI
AscTimea×CNewLoop(n)+CNewPostLoop+j1

AscSpacej2

Pop
Push n
Swap1
Sub
ArrayInitn

Push (l1 Λ (a− 1))
Jump }

l2 7→ block {
∀Λ, a : Nat.
(ϕ,R, [∃{a× n = 0}.unit, nat (n× a),
preArray JτK i a true false, JτK])
CNewPostLoop+j1, j2−−−−−−−−−−−→ ■ :
JumpDest
UnpackI
Pop
Pop
Swap1
Pop
ArrayDone
Push 32× r
MStore
BJeKγ[x 7→r]

Λ,R[r 7→arrayPtr JτK i 32],E }

Figure 4-13: Code generation for terms (outputing instruction sequence, continued)

117

C
r
(∀Λ. λϕxτ . e)τ

′
zγ

E

def
= block { ∀Λ. (ϕ,R, ·) i−→ ■ :

JumpDest
BJeKγ[x 7→rarg]

Λ,R,E }
where R = {rarg 7→ JτK}

∀_. _ i−→ ■ = τ ′

P

uwwwv
let x1 = recτ1 x1. e1 in
...
let xn = recτn xn. en in
e

}���~
γ

Λ,R,E

def
= BJeKγn·,·,E

where γi = {x1 7→ l1, · · · , xi 7→ li} for each i
generating block li 7→ CJeτii KγE for each i

Figure 4-14: Code generation for top-level functions and programs

write l Λ to mean l applied to all the index and type variables in Λ, in order. Note

that a cost annotation for the second branch is needed in order to generate the code

block. In the translation of ifi and case, prelude code is needed for both branches to

store the value on top of the stack to the register representing x.

The last rule for BJ K is a special case of let-binding where the first expression is

new e1 e2. The implementation of new is essentially a mini for-loop: the main output

is the code before the loop, block l1 is the loop body, and block l2 is the code after

the loop. The specifications for blocks l1 and l2 need to be carefully tuned to be both

sound (the specification is no less than the actual cost) and accurate (the specification

is close to the actual cost). new must be translated together with its continuation

(as a let-binding) because the translation of the continuation, BJeK, is needed to form

block l2.

The other translation functions, CJeK and PJeK, are for translating a top-level

function definition53 into a basic block and translating the whole program. After

closure conversion, the input TiML program is in the form of a series of top-level

recursive function definitions (defined using let-bindings) followed by a main program

tion stipulates that any jump instruction must jump to an instruction boundary where the next
instruction is JumpDest, in order to prevent malicious jumps into the middle of an instruction.

53After closure conversion, all function definitions are top-level.

118

body, as shown by the input to PJ K. These function definitions are closed (except for

the function names defined before). After translating the whole program, generated

basic blocks are collected and combined with the translated main body to form a

TiEVM program.

4.5 Derived cost models

The only ground truth about costs for Ethereum smart contracts is the official cost

model in the EVM specification. This directly determines the cost parameters in

TiEVM. Going up from there, the cost models for higher-level intermediate and source

languages need to be derived from lower ones, reflecting the compiler transformations

performed between each two consecutive levels. Following this bottom-up direction,

I will first describe the cost model for the TiML language used between closure con-

version and code generation, and then describe the one between CPS conversion and

closure conversion, and so on up to the one for the Surface-TiML language. Note that

except for Surface-TiML, all the others are the same language (the µTiML language)

but with different cost models.

4.5.1 TiEVM cost model

TiEVM’s cost model consists of all the costs in the typing rules in Section 3.4. Most

of them are parameters such as CMLoad and CPush that are defined in the EVM

specification. Some cost parameters such as CMapPtr are for pseudo-instructions that

can be easily derived by expanding the pseudo-instructions.

4.5.2 TiML cost model before code generation

A TiML cost model consists of the definitions of the cost parameters in Figure 2-10.

Most of the definitions do not differ across compilation stages. These definitions are

listed in Appendix B.1. The ones that do are the costs for function application, ab-

straction, index/type application, index/type polymorphism, and branching. Before

119

delving into these interesting costs, I will first discuss variables and let-bindings.

The costs for variables and let-bindings are the same on all stages: zero. This is

due to an accounting scheme I use: each operation is assumed to read its operands

from variables and write its result to a variable by a let-binding, and the costs for

variable reading/writing are paid by the operation, not the variable or the let-binding.

The motivation is that the sequence of operations is relatively stable across compila-

tion stages (the compiler is not supposed to freely insert new operations) while the

structure of let-bindings can be radically different. For example, the source program

can be a large compound expression without any let-binding, while the target pro-

gram can be let-normalized so that each operation is followed by a let-binding. By

adopting this accounting scheme, I am conservatively assuming that a maximal num-

ber of let-bindings will be inserted. I am also assuming that there are no let-bindings

that are just variable renaming (because no operation is accounting for such costs).

A simple inlining can remove all such useless let-bindings.

From Figure 2-10 we can see that the cost of a function application depends on

the cost function CApp(nk, bk), which takes in two parameters nk and bk. nk is the

number of live term variables after this application, which equals to the number of free

term variables in the “continuation.” The continuation is the piece of program from

after this application to the end of this function or branch. bk is a Boolean indicating

whether such a continuation exists (it does not exist e.g. when the application is at the

end of a function, i.e. a tail call). These two parameters are calculated by a backward

program analysis (a live-variable analysis) before typechecking, and they are only

needed when estimating a function application’s cost before the CPS conversion. For

the cost model before code generation, CApp is simply defined as

CPreCodeGen
App = 2× CVar + CSetReg + CJump

where CVar = CGetReg

CGetReg = CPush + CMLoad

CSetReg = CPush + CMStore.

I use superscripts PreCodeGen, PreCC, and PreCPS to indicate the stage, and omit

120

arguments for cost functions (such as nk and bk for CPreCodeGen
App) if they are not used.

A cost parameter should actually be a pair for both time and memory. I stick to

the convention from previous chapters that operations on numbers like + can be

overloaded to mean operations on pairs. Curious readers can make sense of this cost

by checking the code generation for function applications in Figure 4-11.

For an abstraction (or “closure creation”), the two parameters that determine its

cost are CAbsInner(e) and CAbs(e), which are defined at this stage as

CPreCodeGen
AbsInner = CJumpDest

CPreCodeGen
Abs = (0, 0).

CAbsInner is for the prelude and epilogue code added to the function body by the

transformation. This cost will occur when the function is invoked, so it is added

to the cost index in the arrow type. On the other hand, CAbs is for the creation of

the abstraction (closure), occurring at the function’s defining site. An abstraction

has zero cost at this post-closure-conversion stage because here every function is a

top-level definition54.

The cost models of index/type application and index/type polymorphism (or in-

dex/type abstraction) are similar to those for function application and lambda ab-

straction. I will focus on type application and abstraction here since the index version

is almost the same. The first thing to notice is that the ∀ type is also indexed by a

cost, akin to the arrow type, because a type abstraction also needs some computation

to produce its result in the pre-CPS-conversion stage. But in the pre-code-generation

stage, all cost parameters are zero:

CPreCodeGen
AppT = (0, 0)

CPreCodeGen
AbsTInner = (0, 0)

CPreCodeGen
AbsT = (0, 0).

54And function names are represented as code labels, not stored to registers.

121

For case analysis, the single cost parameter CCase is

CPreCodeGen
Case (i1, i2) = CCaseCommon +max(i1, i2 + CJumpDest)

where CCaseCommon = CVar + CPush + CBrSum + CPush + CAdd + CMLoad + CSetReg.

Note that the second branch has an extra cost CJumpDest because of the JumpDest

instruction at the beginning of each code block. The other branching expressions

have similar cost definitions:

CPreCodeGen
If (i1, i2) = CIfCommon +max(i1, i2 + CJumpDest)

CPreCodeGen
Ifi (i1, i2) = CIfiCommon +max(i1, i2 + CJumpDest)

where CIfCommon = CVar + CIsZero + CPush + CJumpI

where CIfiCommon = CVar + CIsZero + CPush + CSwap + CPush + CJumpI + CSetReg.

4.5.3 TiML cost model before closure conversion

The cost of a function application before closure conversion, as shown below, is only

a bit larger than that before code generation. The extra costs correspond to the few

operations closure conversion inserts for a function application in Figure 4-5.

CPreCC
App = CPreCodeGen

App + CUnpack + 2× CProj + CPair

where CPair = CTuple(2)

The costs of an abstraction at this stage start to depend on the function body.

More precisely, they depend on the number of free term variables in the function

body, which is understandable since the main job of closure conversion is to collect

these free variables into a tuple. The costs are defined below:

CPreCC
AbsInner(e) = CPreCodeGen

AbsInner + 2× CProj + CPair + CPack + |FV (e)| × (CLet + CProj + CVar)

CPreCC
Abs (e) = CTuple(|FV (e)|) + CPair + CPack.

where CLet = CSetReg

As in Figure 4-5, FV (e) stands for the set of free term variables in e. The cost of

creating an abstraction, represented by CAbs, comes from the creation of a tuple of

122

length |FV (e)| and some other objects (a pair and a existential package), while the

cost of the prelude code added to the function body by closure conversion involves the

projection of each field of the environment tuple and other administrative operations.

The costs of type application and type abstraction are shown below. Remember

that the CPS conversion converts each type abstraction into a lambda abstraction

(surrounded by some index/type abstractions), so at this post-CPS-conversion stage,

type applications are only for typechecking purposes and do not have runtime effects,

which is why CAppT is zero. Closure conversion skips over type abstractions (only

modifies lambda abstractions), so CAbsTInner is also zero. The cost of creating a type

abstraction is i, the cost of the body, because after CPS conversion the body is

always a lambda abstraction (surrounded by some index/type abstractions), and this

CAbsT(i) = i is just for relaying the cost of creating the lambda abstraction to the

outside world.
CPreCC

AppT = (0, 0)

CPreCC
AbsTInner = (0, 0)

CPreCC
AbsT (i) = i

The costs for branching are exactly the same as in the pre-code-generation stage,

since closure conversion does not perform any special transformations on branching.

4.5.4 TiML cost model before CPS conversion

The effects of CPS conversion are best illustrated by the cost of function applications,

shown below.

CPreCPS
App (nk, bk) = CPreCC

App + CPair + CCreateK(nk, bk)

where CCreateK(nk, bk) = bk ? C
PreCC
Abs (nk) + CPreCC

AbsInner(nk) : (0, 0)

Compared with CPreCC
App , CPreCPS

App contains the extra cost of creating a pair (to con-

tain the argument and the continuation) and potentially creating a function as the

continuation. Looking at the CPS conversion for function applications in Figure 4-4,

readers may wonder why a function needs to be created when the continuation k

123

should already be a function55. The reason is that when k is used in an application

k e in the translated code and k is known to be λx. e′, k e is replaced by let x = e in e′

(i.e. creating and applying a function is replaced by a let-binding) to avoid the cost

of function creation and application. The only case when k appears in the translated

code as an explicit abstraction is when k is assigned to a variable56, in which case the

cost of creating an abstraction will occur.

Whether a continuation function will be created depends on whether there is a

continuation: if there is no continuation, which in a CPS-ed world means the continu-

ation is just the continuation variable passed in as an argument, no new function will

be created since the variable will be used as the continuation; otherwise a function

will be created. This function will be invoked exactly once, so the cost of creating

this function is CPreCC
Abs (nk) + CPreCC

AbsInner(nk). I use nk here as the argument because

CPreCC
Abs (e) and CPreCC

AbsInner(e) really only depend on |FV (e)|, and nk is equal to |FV (k)|,

the number of free variables in the continuation after the call. In other words, the

cost of calling a function at the pre-CPS-conversion stage depends on the number of

live variables after the call. This cost is avoided when the call is a tail call, which

reflects the fact that CPS conversion automatically performs tail-call optimization57.

For the costs of an abstraction (shown below), a subtlety is that there could be a

function call added by CPS conversion at the end of the function body. This is the

call to the continuation at the end: k (· · ·). This call is avoided if the function body

ends with a function/index/type application or a branch. hasTailCall(e) denotes this
test.

CPreCPS
AbsInner(e) = CPreCC

AbsInner(e) + 2× CProj + CCallK(e)

CPreCPS
Abs (e) = CPreCC

Abs (e)

where CCallK(e) = hasTailCall(e) ? CPreCC
App : (0, 0)

55The CPS conversion maintains an invariant that k is either a lambda abstraction or a variable.
56In the case here (of translating a function application), k is used as a function argument in the

translated code, which is the same as being assigned to a variable, because the translated code is
let-normalized after CPS conversion.

57More generally, CPS conversion automatically performs a “frame compression” at each function
call, in the sense that instead of backing up the whole call-frame for restoring local variables in the
future (which is what C does), a function call implemented by CPS conversion only selectively backs
up those local variables that will actually be used after the call.

124

The costs of type application and abstraction (shown below) are very similar

to those for functions, with the only difference being the absence of CPair and 2 ×

CProj. The similarity is because the overheads introduced by CPS conversion, such as

creating the continuation function and the extra k (· · ·) at the end of the function

body, are the same in both cases.

CPreCPS
AppT (nk, bk) = CPreCC

App + CCreateK(nk, bk)

CPreCPS
AbsTInner(e) = CPreCC

AbsInner(e) + CCallK(e)

CPreCPS
AbsT (e) = CPreCC

Abs (e)

The costs of branches before CPS conversion are more involved than the versions

at other stages because CPS conversion (as in Figure 4-4) assigns the continuation to

a variable before branching and uses the variable as continuation when transforming

the branches (to avoid code duplication). Assigning the continuation to a variable

could potentially incur a function creation as discussed above. These extra costs are

easy to understand at this point since they are CCreateK and CCallK, exactly the same

overheads as in applications and abstractions. The reason for adding them is the

same as before.

CPreCPS
Case (i1, i2, e1, e2, nk, bk) = CCaseCommon + CCreateK(nk, bk)

+max(i1 + CCallK(e1), i2 + CJumpDest + CCallK(e2))

The other branching expressions have similar cost models:

CPreCPS
If (i1, i2, e1, e2, nk, bk) = CIfCommon + CCreateK(nk, bk)

+max(i1 + CCallK(e1), i2 + CJumpDest + CCallK(e2))

CPreCPS
Ifi (i1, i2, e1, e2, nk, bk) = CIfiCommon + CCreateK(nk, bk)

+max(i1 + CCallK(e1), i2 + CJumpDest + CCallK(e2)).

4.5.5 Surface-TiML cost model

The gap between Surface-TiML and µTiML is mainly about datatypes, so the only

cost parameters that are Surface-TiML-specific are those for constructor applica-

125

tions and pattern matchings. The cost of a constructor application is determined

by CConstr(k, n,m) (see Figure 4-2), defined below, where k is the number of index

arguments, n is the number of constructors the datatype has, and m is the position

of c among its siblings (starting from 0).

CConstr(k, n,m) = (k + 1)× CPack + numInj(m,n)× CInj + CFold

numInj(m,n) calculates the number of left/right injections it needs to implement a

n-way injection injm,n (see Equation 4.1.2.3), which is defined as

numInj(0, 1) = 0

numInj(0, n) = 1

numInj(m,n) = 1 + numInj(m− 1, n− 1).

It is easy to see that this definition is derived from Equation 4.1.2.3.

The cost of compound pattern matching is hard to express as simple mathematical

formulas, since the transformation (described in Section 4.1.2) is somewhat involved.

The Surface-TiML typechecker employs a “simulation” strategy: when typechecking

a pattern matching, it does a dry-run of the translation described in Section 4.1.2

to find out how many projections/unfolds/unpackings/case-analyses will be added

to each branch58, and then uses this information to calculate the cost overhead of

each branch. Note that this strategy is essentially “compile-then-typecheck,” which

is against this thesis’s general principle that typechecking (including cost estimation)

should happen before compilation. But this violation is localized (only for estimating

the costs of compound pattern matchings), and the version of the transformation used

as a subroutine of the typechecking (the dry-run) is simpler and faster than the real

transformation, so I think it is acceptable.

58The dry-run is faster than the real transformation because it uses “fake expressions” as the
result which only record the projections/unfolds/unpackings/case-analyses introduced by the trans-
formation (i.e. they are just the skeletons of the real results).

126

Chapter 5

Evaluation

The evaluation of this thesis consists of two parts. In the first part, I use TiML to

prove the time complexities of 17 classic algorithms in order to gauge the expressivity

of the language and the user experience (e.g. typechecking speed, annotation burden,

etc.) of the system. In the second part, I use TiML to typecheck and compile 8 real-

world smart contracts, demonstrating that TiML can give static estimations of their

actual gas costs (using the official EVM cost model) that are both sound (estimated

costs are no less than the real costs) and accurate (estimated costs are close to the

real costs), and that gas costs of TiML-generated code are comparable to those of

Solidity [8], today’s mainstream smart-contract language/compiler.

5.1 Typechecking classic algorithms

I have tested the TiML typechecker on 17 benchmarks, incorporating classic data

structures and algorithms including trees, doubly linked lists, insertion sort, array-

based merge sort (copying and in-place), quicksort, binary search, array-based binary

heap, k-median search, red-black trees, Braun trees, Dijkstra’s algorithm for graph

shortest paths, functional queues (amortized analysis), and dynamic tables (amortized

analysis). The cost model used in this section is the simple cost model described in

Section 2.1 where only function application costs one unit of time, all other operations

and all memory usage being free.

127

The test is run on a 2.5-GHz quad-core Intel Core i7 CPU with 16GB RAM (actual

memory usage is within 256MB). The SMT solver I use is Z3 [33] 4.4.1. Table 5.1 lists

each benchmark’s filename, description, total time of typechecking (including time for

parsing, typechecking, inference, and VC solving), lines of code, lines of code that

contain time annotations, and asymptotic complexities of the most representative

top-level functions. The numbers are also illustrated in Figure 5-1 and 5-2. Every

benchmark finishes within 0.5 second, most of them within 0.3 seconds.

Name Description Time (s) LoC LoC
with
Anno

A. Comp.

list List operations 0.155 48 9 n, mn
ragged-matrix Ragged matrices 0.113 16 1 m2n
tree Trees 0.18 86 10 mn
msort Merge sort 0.221 49 8 mn logn
insertion-sort Insertion sort 0.142 25 4 mn2

braun-tree Braun trees 0.199 98 11 logn, log2 n
rbt Red-black trees 0.422 316 19 logn
dynamic-table Dynamic tables 0.153 126 10 (amortized) 1
functional-queue Functional queues 0.137 95 6 (amortized) 1
array-bsearch Binary search 0.149 44 2 m logn
array-heap Binary heap 0.221 139 6 m logn
array-msort Merge sort on arrays 0.228 112 7 mn logn
array-msort-inplace In-place merge sort on

arrays
0.255 133 9 mn2

array-kmed k-median search 0.16 70 8 mn2

dlist Doubly linked lists 0.26 112 10 mn
qsort Quicksort 0.128 43 7 mn2

dijkstra Dijkstra’s alg. (shortest
paths)

0.12 75 0 (m+ +m≤)n
2

Table 5.1: Benchmarks. Columns show total time of typechecking (including pars-
ing, typechecking, inference, and VC solving), lines of code, lines of code containing
time annotations, and asymptotic complexities of the most representative top-level
functions.

As an empirical study of the usability of TiML, I explain each benchmark and

analyze the annotations in it. Most of the annotations are at two places: the types of

recursive functions and pattern matches. The former is akin to pre/post-conditions

and loop invariants in program logics. The latter sometimes require annotations

because of the “forgetting problem” of existential-type eliminations: the running

128

lis
t

ra
gg

ed
-m

at
rix tr
ee

m
so
rt

in
se
rt
io
n-
so
rt

br
au

n-
tr
ee rb
t

dy
na

m
ic
-t
ab

le
fu
nc
tio

na
l-q

ue
ue

ar
ra
y-
bs
ea
rc
h

ar
ra
y-
he
ap

ar
ra
y-
m
so
rt

ar
ra
y-
m
so
rt
-in

pl
ac
e

ar
ra
y-
km

ed
dl
ist

qs
or
t

di
jk
st
ra

0

0.1

0.2

0.3

0.4

0.5

T
im

e
(s
)

Typechecking time

Figure 5-1: Typechecking time. This graph shows the total time of typechecking
(including parsing, typechecking, inference, and VC solving) for each benchmark pro-
gram. Every benchmark finishes within 0.5 second, most of them within 0.3 seconds.

129

lis
t

ra
gg

ed
-m

at
rix tr
ee

m
so
rt

in
se
rt
io
n-
so
rt

br
au

n-
tr
ee rb
t

dy
na

m
ic
-t
ab

le
fu
nc
tio

na
l-q

ue
ue

ar
ra
y-
bs
ea
rc
h

ar
ra
y-
he
ap

ar
ra
y-
m
so
rt

ar
ra
y-
m
so
rt
-in

pl
ac
e

ar
ra
y-
km

ed
dl
ist

qs
or
t

di
jk
st
ra

0

50

100

150

200

250

300

N
um

be
r
of

lin
es

Number of lines of code

LoC (has anno)
LoC (no anno)

Figure 5-2: Number of lines of code. The upper part of each bar represents the number
of code lines without annotations, while the lower part represents those that contain
annotations. The ratio of the lower part to the whole bar reflects the annotation
burden.

130

time and result type of unpack should not contain the locally introduced type/index

variables, but it can be hard for the typechecker to figure out how to forget them.

I allow using and return clauses on case to specify the common running time and

result type of all branches, which cannot reference branch-local variables. It is similar

to the return clauses of dependent pattern-matching in Coq. I use some syntactical

tricks to guess these clauses. For example, if a case analysis is directly under a

recursive function, I copy the using and return annotations in the recursive-function

signature.

All annotations in benchmark list (list operations) are types of recursive func-

tions similar to foldl. Benchmark ragged-matrix contains lists of lists with one

index being the length of the outer list and another index being the maximal length

of the inner lists. Benchmark tree contains binary trees and operations on them

such as map, fold, and flatten. The annotations in these two files are similar to

those in list. Benchmark msort has been discussed in Section 2.1. Benchmark

insertion-sort is specified using big-O similarly to msort.

Benchmark braun-tree contains Braun trees [65], a kind of balanced binary trees

for functional implementation of priority queues. In a Braun tree, each node stores

a value that is smaller than all values in the children, and the size of the left child

is equal to or larger by one than that of the right child. It supports enqueue and

dequeue in O(logn) and O(log2 n) time respectively. I define Braun trees as binary

trees indexed by size (i.e. number of nodes), and for a Braun tree of size n+1, I require

the sizes of its left and right child to be ⌈n/2⌉ and ⌊n/2⌋ respectively. All functions

in braun-tree are specified with big-O complexities, so the time-annotation burden

is on par with msort’s. In this benchmark, some implicit-index-argument inference

failed, so I have to supply index arguments explicitly using the @fun_name syntax

(similar to Coq). In benchmark rbt for red-black trees, I have to put two extra

invariants in the definition of rbt other than those shown in Section 2.1. These two

invariants can be derived from the other invariants, but because in TiML lemmas,

lemma invocations, and inductions must be written as ordinary functions (like in

Dafny) which increase a program’s running time, deriving these invariants on-the-fly

131

will increase asymptotic complexity. Annotation burden for time is again on par with

msort’s since big-O complexities are used. In the jump from black-height to logarithm

of tree size, an assumed lemma is used relating logarithms and exponentials.

Benchmarks functional-queue and dynamic-table are two examples showing

how to use TiML to conduct amortized analysis. In a standard cost analysis, a

function’s time is specified in terms of only the input size. Let us write such a type

as ∀n. τn
g(n)−−→ τ ′. In the “potential method” for doing amortized complexity analysis

[27], the running time c is specified by an inequality c + Φ1 ≤ ca + Φ0. Here Φ is a

(nonnegative) potential function defined on configurations (i.e. states), and Φ0 and

Φ1 are the potentials before and after the function. ca is called “amortized cost.”

We can write the type of such a function as ∀n. ∃c n′. τn
c−→ τn′ ∧ P (n, c, n′), where

P (n, c, n′)
def
= c + Φ(n′) ≤ ca + Φ(n) (ca is a parameter). Because sometimes c and

n′ need to depend on the input value (not just its type), the existential quantifiers

need to be pushed later: ∀n. τn
k−→ ∃c. unit c−→ ∃n′. τn′ ∧ P (n, c, n′), where k is a

constant. I call type ∃n′. τn′ ∧ P (n, c, n′) some_output_and_cost_constraint and

type ∃c. unit c−→ ∃n′. τn′ ∧ P (n, c, n′) amortized_comp (“amortized computation”) in

the TiML code.

A functional queue [66] is a queue implemented by two stacks, one for receiving

input, the other for supplying output. When the output stack is empty, the content in

the input stack is dumped to the output stack, in reverse. A dynamic table [27] (like

the “vector” container in C++’s STL) is a dynamically allocated buffer that enlarges

itself when the load factor becomes too high after an insertion, and shrinks itself when

the load factor becomes too low after a deletion. Both of these two data structures

enjoy amortized constant-time insertion and deletion. Note that TiML does not have

any built-in support for amortized analysis, so being able to do it somewhat surprised

me. It is in line with many language designers’ experience that when one starts with

primitives to encode the most basic concepts, many computational phenomena will

arise naturally.

Benchmarks array-bsearch, array-heap, array-msort, and array-msort-inplace

are array-based implementations for binary search, binary heaps, and merge sort

132

(copying and in-place). Their time-annotation burdens are on par with foldl and

msort’s. Benchmark array-kmed does k-median search on an array. Big-O inference

fails in this benchmark, so precise bounds are given. The VC that fails the Big-O in-

ference is 15+m+max(T (m,n−1), T (m,n−1)+4) ≤ T (m,n)−8. The culprit is the

“−8” on the right-hand side. The Big-O inferrer only recognizes a recurrence whose

right-hand side is T (. . .). I can add annotations to massage the VC by moving “−8”

to the left-hand side, which may or may not be better than just spelling out T () in

this case. Function array_kth_median_on_range uses local time annotation to forget

a local index variable. Benchmark dlist implements doubly linked lists using refer-

ences (i.e. arrays). Each function just needs one big-O annotation. Benchmark qsort

for quicksort requires a rather detailed time annotation for function list_qsort to

forget the two local index variables that are the lengths of the two partitions. The

running time of list_qsort is first calculated in terms of these two lengths, and it

is very hard for the typechecker to figure out how to replace these two lengths with

the total length of the input list, hence the annotation. Benchmark dijkstra im-

plements Dijkstra’s algorithm for calculating shortest paths, which surprisingly does

not require any time annotation. The reason is that the algorithm is implemented by

mainly using standard iterators such as app, appi, and foldli provided by the Array

module in the standard library, demonstrating the power of modularity preserved by

TiML from SML.

Among the benchmarks, braun-tree, rbt, dynamic-table, functional-queue,

and all the array-based algorithms crucially rely on the refinement mechanism to

encode data-structure invariants and algorithm preconditions.

As an empirical data point, an undergraduate student with background in SML

took just one day to become fluent in writing and annotating TiML programs.

5.2 Compiling smart contracts

I collected 8 representative smart contracts as a benchmark set, which cover most of

the current and hypothetical use cases of smart contracts. The contract names are

133

listed in Table 5.2, each with a short description. These contracts are collected from

Solidity’s tutorial and the Ethereum blockchain. For the latter, I chose the contracts

that had the highest numbers of transactions (i.e. most used) or the largest balances

(i.e. managing the most wealth) at the time of collection.

Contract Description Source

Token A fixed-supply asset that can be transferred between
accounts.

Solidity
Tutorial

CrowdSale
A contract the allows any person to buy any amount
of a pre-specified token with ethers at a pre-specified
price. It is designed for Initial Coin Offerings (ICO).

Solidity
Tutorial

EtherDelta
A token exchange that allows people to buy and sell
different kinds of tokens (prices are determined by bid-
ding, as in stock exchanges).

Ethereum
blockchain

Congress A voting congress that decides on proposals by voting. Solidity
Tutorial

MultiSig
A multi-sig wallet that is owned by multiple people
and requires a specified number to owners to approve
expenses that exceed a daily limit.

Ethereum
blockchain

CryptoKitties

A collectible non-fungible token (“kitties”) where each
kitty has a unique “gene” and two kitties can mate to
produce a new kitty. Kitties can be auctioned for their
ownership or right to sire.

Ethereum
blockchain

BlindAuction

An auction where each bid is concealed (by allowing
the bid to be fake and hiding the fakeness behind a
hash) and only after the deadline will all real bids
be revealed. It is useful for revealing a bidder’s true
preference since she is shielded from the interference
of other bidders.

Solidity
Tutorial

SafeRemotePurchase

A contract for online purchase where both the seller
and the buyer deposit ethers twice the value of the
goods into the contract and can only get their de-
posits back when the buyer confirms receipt of the
goods. The seller is disincentivized from withhold-
ing the goods (not shipping them), and the buyer is
disincentivized from not confirming receipt, because
in doing so they will lose more than the value of the
goods1.

Solidity
tutorial

Table 5.2: Benchmark contracts and their descriptions. The last column shows where
each contract’s source code comes from.

1If the buyer refuses to confirm after he has received the goods, he will lose v while the the seller
will lose 3v (v is the value of the goods). So a malicious buyer can impose larger damage on the
seller than on himself.

134

All 8 contracts were written in Solidity. I rewrote them in ETiML and took care to

make sure that they closely mimic the original Solidity ones2. After typechecking and

compiling them, I ran the generated bytecode programs (in binary format) on geth

[6], the official Ethereum implementation in the Go language [7], which can report

the actual gas usage of the bytecode.

I use two measurements as the main results of evaluation in this section: (1) the

ratio of the actual gas cost to the costs estimated by the type system, to show that

the estimation is both sound (ratio not larger than 1) and accurate (ratio close to

1); (2) the ratio of the gas cost of a contract compiled by the TiML compiler to the

gas cost of the one compiled by the Solidity compiler (the “slow-down” factor), to

show that the code generated by my compiler is reasonably efficient despite the fact

that it does not have any nontrivial optimizations and was designed mainly for cost-

estimation soundness and accuracy. I treat a slow-down between 1x and 10x against

Solidity-generated code as a sign that the system developed in this thesis is a feasible

approach and could become practical when serious engineering effort on optimization

is put into it.

Because each (public) function of a smart contract can be invoked individually,

the unit of evaluation in this section is a function. Among the 8 benchmark contracts

I collected 36 functions that are nontrivial enough and worth measuring. Some of

them are different runs of the same function where the control flow takes different

paths. Table 5.3 lists the scenarios in which the functions are invoked.

In measuring the first metric (estimation accuracy), I turned off EVM’s special

cost policy regarding zeroness in storage writes. As discussed in Chapter 3, writing

a nonzero value to a storage address whose current value is zero costs significantly

more than storage writes in other cases. Because TiML currently does not track the

zeroness of each storage address (except for icell)3 and can only assume the worst case,

its static-estimation accuracy will be greatly affected by the zeroness overestimation.
2ETiML was designed with Solidity as the reference, so this rewriting is relatively straightforward.
3TiML’s index language is actually almost expressive enough to represent the zeroness of each

element of a map or a vector, since it has the “map index” {−−→u : i}. In the future I will extend the
state specification to allow using a map index to specify the zeroness of each element of a vector or
map (instead of just using a number to specify a vector’s size).

135

Contract Function Scenario

Token

transfer
transferFrom
burnFrom
approve
burn
approveAndCall

CrowdSale

default
checkGoalReached

safeWithdrawal-1 safeWithdrawal, goal not reached,
amount>0

safeWithdrawal-2 safeWithdrawal, goal reached

EtherDelta trade
availableVolume

Congress

addMember

removeMember 8 members (not including 0 and
owner) added, remove the first

newProposal jobDescription=“job”, transaction-
Bytecode=“code”

vote justificationText=“LGTM”
executeProposal-1 executeProposal, passed
executeProposal-2 executeProposal, not passed

MultiSig

confirmAndCheck-1 confirmAndCheck, 5 owners, first
confirm, not enough

confirmAndCheck-2 confirmAndCheck, 5 owners, second
confirm, not enough

confirmAndCheck-3 confirmAndCheck, 5 owners, third
confirm, enough and passed

revoke
clearPending 5 pending

reorganizeOwners 5 original owners with the 2nd re-
moved, reorganize

CryptoKitties

_createKitty
breedWithAuto breeding two gen-1 kitties
givenBirth
ClockAuction.createAuction
ClockAuction.bid
SaleClockAuction.bid
averageGen0SalePrice

tokensOfOwner 7 tokens in total, all belonging to the
caller except the 3rd and 6th

BlindAuction bid

reveal 5 bids, each higher than the previ-
ous one

SafeRemotePurchase confirmPurchase
confirmReceived

Table 5.3: The functions that have been measured and scenarios in which the func-
tions are invoked.

136

To leave out this factor and measure the accuracy for all the other factors, I modified

both my typechecker and geth to set the cost of zero-to-nonzero flip to be the same

as for other storage writes. The modified geth is only used in this measurement.

For the comparison between TiML and Solidity, I commented out function calls

to external contracts to focus on the cost of each function itself. A program in both

TiML or Solidity gets a prelude for dispatching to the desired function based on a

signature within the input data and decoding input data into internal representations.

They also use the same ABI for encoding function signatures and input data [9], so

the comparison between them is fair.

The results are shown in Table 5.4. The first two columns give the name of

the contract and the function. The third column is the ratio of actual gas costs to

estimated ones. The fourth column is the ratio of gas costs of TiML-compiled code

to those of Solidity. The accuracy and TiML-vs-Solidity results are also visualized in

Figures 5-3 and 5-4.

As can be seen in Table 5.4, all cost estimations are sound in the sense that the

accuracy is never above 1. In most cases, the accuracy is above 0.9. In each case

where accuracy is below 0.9, the execution does not take the longest path, so the

inaccuracy is mostly from overestimation for branching. Other minor sources of inac-

curacy include overestimating the cost of reading a variable or a state name (a variable

implemented by a code label is cheaper to read than one implemented by a register)

and overestimation caused by a simple optimization that inlines some let-bindings

(when the bound expression is e.g. type application4, packing, folding, or unfolding).

Note that there is a trade-off between estimation accuracy and code efficiency. More

aggressive and complicated optimizations make the code more efficient but harder to

estimate statically.

When compared against Solidity, most functions compiled by TiML see a slow-

down of around 2x. There are two exceptions, function averageGen0SalePrice and

tokensOfOwner in contract CrypoKitties, which suffer slow-downs of 17.795x and

11.89x. The main source of these large slow-downs is the implementation of for-loops

4Only after CPS conversion.

137

Contract Function Actual/Estimate ETiML/Solidity

Token

transfer 0.976 1.452
transferFrom 0.978 1.498
burnFrom 0.981 1.616
approve 0.993 1.093
burn 0.981 1.629
approveAndCall 0.981 1.121

CrowdSale

default 0.981 1.674
checkGoalReached 0.988 1.629
safeWithdrawal-1 0.728 1.084
safeWithdrawal-2 0.437 1.258

EtherDelta trade 0.974 1.540
availableVolume 0.965 2.325

Congress

addMember 0.986 1.073
removeMember 0.850 1.436
newProposal 0.994 0.745
vote 0.981 1.149
executeProposal-1 0.988 1.596
executeProposal-2 0.667 1.247

MultiSig

confirmAndCheck-1 0.846 1.073
confirmAndCheck-2 0.382 1.651
confirmAndCheck-3 0.519 1.229
revoke 0.964 1.625
clearPending 0.970 1.420
reorganizeOwners 0.474 2.074

CryptoKitties

_createKitty 0.817 1.468
breedWithAuto 0.983 2.342
givenBirth 0.851 1.879
ClockAuction.createAuction 0.984 1.659
ClockAuction.bid 0.979 1.497
SaleClockAuction.bid 0.982 1.207
averageGen0SalePrice 0.911 17.795
tokensOfOwner 0.919 11.890

BlindAuction bid 0.997 1.013
reveal 0.927 1.360

SafeRemotePurchase confirmPurchase 0.985 1.652
confirmReceived 0.988 1.068

Table 5.4: Evaluation results on the 8 benchmark smart contracts. The first two
columns give the name of the contract and the function. The third column is the
ratio of actual gas costs to estimated ones. The fourth column is the ratio of gas costs
of TiML-compiled code to those of Solidity-compiled code (the “slow-down” factor).
The largest two slow-downs are mainly caused by overhead of the for combinator
from the TiML standard library, subtracting which will reduce the slow-downs to
1.972 and 3.67.

138

To
ke
n

C
ro
w
dS

al
e

Et
he
rD

el
ta

C
on

gr
es
s

M
ul
tiS

ig

C
ry
pt
oK

itt
ie
s

Bl
in
dA

uc
tio

n
Sa

fe
R
em

ot
eP

ur
ch
as
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ct
ua

l/
Es

tim
at
e

Ratio of actual gas cost to estimated one

Figure 5-3: Gas-estimation accuracy. This graph shows the ratio of the actual gas
cost to that estimated by the type system, for each function. The estimation is for
upperbounds, whose soundness is witnessed by the fact that the ratios are never above
1. Each ratio below 0.9 is caused by the execution not taking the longest path. The
cost of a zero-to-nonzero storage write is set to be the same as other storage writes
in this measurement.

139

To
ke
n

C
ro
w
dS

al
e

Et
he
rD

el
ta

C
on

gr
es
s

M
ul
tiS

ig

C
ry
pt
oK

itt
ie
s

Bl
in
dA

uc
tio

n
Sa

fe
R
em

ot
eP

ur
ch
as
e

0

2

4

6

8

10

12

14

16

18

T
iM

L/
So

lid
ity

Ratio of gas cost of TiML-generated code to that of Solidity

Figure 5-4: TiML vs. Solidity. This graph shows the ratio of the gas cost of TiML-
compiled code to that of Solidity-compiled code (the “slow-down” factor) measured
for each function. The largest two slow-downs are mainly caused by overhead of the
for combinator from the TiML standard library, subtracting which will reduce the
slow-downs to 1.972 and 3.67.

140

To
ke
n

C
ro
w
dS

al
e

Et
he
rD

el
ta

C
on

gr
es
s

M
ul
tiS

ig

C
ry
pt
oK

itt
ie
s

Bl
in
dA

uc
tio

n
Sa

fe
R
em

ot
eP

ur
ch
as
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

T
iM

L/
So

lid
ity

Ratio of gas cost of TiML-generated code to that of Solidity

Figure 5-5: Same as Figure 5-4, except that the two functions with the largest slow-
downs have been removed.

141

in TiML. TiML does not have built-in for-loops in the language but provides a higher-

order function (or “combinator”) for in the standard library that is similar to foldl5.

Creating and calling functions are still relatively expensive in the current TiML im-

plementation which involve allocating tuples on the heap to store free variables for

a closure and live variables after the function call. I can measure the overhead from

the for-loop (the for combinator) by running the loop with an empty loop body and

then removing the loop altogether. After removing the for-loop overhead, average-

Gen0SalePrice and tokensOfOwner have slow-downs of 1.972 and 3.67 respectively.

Barring these two functions, the slow-downs of all the other functions are illustrated

in Figure 5-5.

As a minor data point, I also measured the time it takes to typecheck and compile

each smart contract (with and without VC checking by an SMT solver), shown in

Table 5.5 and Figure 5-6. The times are measured on a desktop machine with a

quad-core Intel Core i7 7700K CPU at 5GHz.

Contract Typechecking
time (s)

Compilation
time (s)

Typechecking
time w.o. VC
checking

Compilation
time w.o. VC
checking

LoC

Token 0.005 1.755 0.004 0.184 70
CrowdSale 0.004 0.485 0.003 0.057 92
EtherDelta 0.102 4.903 0.022 0.367 241
Congress 0.064 11.381 0.025 2.033 209
MultiSig 0.208 20.802 0.212 8.818 278
CryptoKitties 0.555 65.766 0.303 31.837 978
BlindAuction 0.312 8.253 0.007 1.009 98
SafeRemotePurchase 0.039 7.759 0.006 0.878 82

Table 5.5: Typechecking and compilation time. Typechecking time is included in
compilation time. The fourth and fifth column show the times with the VC checking
turned off. The last column shows the number of lines of code for each contract. The
times are measured on a desktop machine with an Intel i7 7700K CPU at 5GHz.

I measured the typechecking time (included in the compilation time) because the

programmer’s attention is only required during typechecking (to prepare for error

messages). After typechecking, the compilation is guaranteed to succeed. Fast type-

checking provides a fast feedback loop for the programmer to debug compile-time
5for is a recursor for indexed natural numbers in the same way that foldl is a recursor for lists.

142

errors. TiML typechecking is fast on all the benchmark smart contracts, taking no

more than 0.6 seconds, and I have not observed any situation where the typechecker

takes a long time to report an error6.

Compilation time is much longer than typechecking time because there are many

typechecking phases for intermediate programs during the compilation, and these in-

termediate programs are significantly larger than the source program because of the

inlining of index and type definitions. In a future version, index and type definitions

will be supported by µTiML to avoid the inlining. And modulo bugs in the compiler,

it is safe to skip the intermediate typechecking phases7. I also measured the type-

checking/compilation time when the VC checking is skipped, to see how much time

is spent by the SMT solver.

6Many systems suffer from the phenomenon that they finish quickly if the input is good but
become very slow when the input has errors. TiML does not have the problem because (1) the
typechecking algorithm’s worst case is when the program typechecks, in which case the typechecker
traverses the entire AST; (2) the VCs generated by the typechecker are simple enough that the SMT
solver does not exhibit any asymmetric behavior.

7Annotations needed by the compilation phases can be provided by the first typechecking phase.

143

To
ke
n

C
ro
w
dS

al
e

Et
he
rD

el
ta

C
on

gr
es
s

M
ul
tiS

ig

C
ry
pt
oK

itt
ie
s

Bl
in
dA

uc
tio

n

Sa
fe
R
em

ot
eP

ur
ch
as
e0

10

20

30

40

50

60

70

T
im

e
(s
)

Typechecking and compilation time

Typechecking time (no VC checking)
Typechecking time (only VC checking)

0

10

20

30

40

50

60

70

Compilation time (no VC checking)
Compilation time (only VC checking)

Figure 5-6: Typechecking and compilation time. This graphs shows the typechecking
time (on the left, barely visible) and the total compilation time (on the right, including
typechecking time), for each contract. The lower part in each bar represents the time
with VC checking turned off, and the whole bar represents the time with VC checking
turned on. Thus the upper part of each bar represents the time spent by the SMT
solver used for VC checking.

144

Chapter 6

Related Work

Static resource analysis has been under study for about two decades and recently

has gained more attention because of both technical breakthroughs and its potential

value in software quality assurance and security [56, 29]. [43] called for “the great

synergy” between the programming-languages community and algorithms community

to eliminate the unfortunate gap between the study of the structure and efficiency of

programs.

6.1 Dependent ML

The design of TiML is highly influenced by the Dependent ML (DML) language of

[80]. The ideas of indexed types and refinement kinds are from their DML work. They

did not explore the possibility of using their techniques to tackle the problem of static

guarantees of program execution time. A follow-on project [38] also missed TiML’s

central idea that arrow types can be indexed by the function’s cost bound. The work

of [79, 80] has shown that their approach is powerful enough to accomplish tasks

like static array-bound checking and dead-code elimination. I take these abilities for

granted and only focus on resource-related capabilities in this thesis.

145

6.2 AARA and RAML

The Automatic Amortized Resource Analysis (AARA) line of work was initiated by

[50] and successfully pursued by Hoffmann et al. The original idea was to associate

a uniform potential with each list node in an affine type system. Aliasing is allowed

by partitioning the potential among the aliases. Typechecking generates linear in-

equalities involving these (yet-unknown) potential coefficients, and solving this linear

constraint system by a linear-programming solver can give a consistent assignment

to these potential coefficients. The power of this idea is that it bypasses the difficult

problem of recurrence solving altogether, yielding a push-button approach, at the

cost of only supporting linear bounds on monomorphic first-order programs. Later

work extended it to univariate [48] and multivariate [46] polynomial bounds by asso-

ciating a uniform potential to not only one node but every tuple of nodes (of certain

types); other extensions support higher-order programs [54], parallel programs [49],

and a large portion of OCaml [47]. The bounds must be polynomial, and invariants

are not supported. The latest treatment of higher-order functions [47] is somewhat

unsatisfactory in that a higher-order function does not have a type that fully ab-

stracts its behavior, meaning that at call sites the callee’s code (not only its type)

must be available to do typechecking and resource analysis. As a consequence, it is

not possible to do separate typechecking/compilation where library functions’ source

code is unavailable. In contrast, TiML’s typechecking is fully modular in that at a

function’s call site only its type is needed. The AARA approach also suffers from a

common drawback among fully automatic tools that it disallows user-provided hints

and help when automation fails.

The AARA amortization scheme is akin to “the banker’s method” [74] and TiML’s

to “the physicist’s method.”

146

6.3 Program logics and verification systems

Program logics are usually good fits for reasoning about low-level programs. Using

program logics on lower levels of a stack of formal systems that has a type system

on its surface level also seems like a good idea. [16] introduced a program logic

on JVM bytecode for resource verification formalized in Isabelle/HOL [1]. It is a

partial-correctness program logic enjoying soundness and relative completeness, com-

plemented by a termination logic. Parameterized on a resource algebra, the logic is

very general, but verification (i.e. proving) is all manual, and resource recurrences

(arising from the Consequence rule) must be solved by hand.

It is intended as a target language compiled from the type system of [50] in a proof-

carrying-code [64] setting. This is the only other resource-analysis system I know of

that involves a compiler. Unlike TiML’s type-preserving compilation strategy, for the

proposed compiler here, the source language is equipped with a type system while

the intermediate and target languages are equipped with program logics. Unlike

TiML, reconstructing proofs at the intermediate and target-language levels are not

automatic. Actually the whole system is supposed to work within an interactive

theorem prover, and the translation functions and their properties will be used as

lemmas to prove the resource costs of a target program manually (given the typing

derivation of the source program). I cannot find more information about this proposed

compiler system, and it is not clear whether such a system has been built.

[17] proposed another program logic based on separation logic with resource poten-

tials, together with a VC generator (requiring loop-invariant annotations) and a proof-

search system that can automatically discharge VCs and use a linear-programming

solver to infer resource annotations (influenced by [50]). This system, formalized in

Coq, is close to TiML’s design goal of supporting both highly automatic analysis and

expressive invariants, though it is only for a first-order language. Designing program

logics for higher-order languages is generally a hard problem.

[25] proved the inverse-Ackermann bound of union-find in Coq using their charac-

teristic formulae (CFML) framework augmented with potentials. The proof is man-

147

ual, but the CFML framework (essentially an axiomatic semantics for OCaml) is

shown to be very expressive. [62] introduced another Coq framework for time verifi-

cation, which is based on a Coq monad that is indexed not by time but by a predicate

mentioning time (similar to the Dijkstra monad of [73]) which can serve as both time

and correctness invariant. Proofs are written manually. Both systems require “pay”

or “tick” primitives to be inserted at time-consumption sites, either manually or by

a program transformation.

[31] described an Agda library whose core constituent is a graded monad called

“Thunk” whose index stands for the running time of this thunk. The novelty is the

treatment of lazy evaluation with memoization, manifested by the “pay” primitive

and the operational semantics for the thunked language. On the practical side, it

suffers from the usual nuisance of working in an intensional dependent type system:

indices must be definitionally equal for two types to be unifiable.

6.4 Sized types and refinement types

Sized types [69, 52, 75] are similar to indexed types in my setting, though the latter

do not have any built-in size-related meaning while [52] gave a denotational semantics

to the former relating types to their sizes. [75] described an algorithm for automat-

ically generating cost recurrences from sized-type programs (but did not deal with

recurrence solving). Sized types do not support refinements.

Çiçek et al. conducted a line of work [26, 24, 23] on analyzing incremental and

relational time complexity. They use the term “refinement types” in the broad sense

of “types enriched with other information,” in contrast with my use in the narrow

sense of “types of the form {x : t | P (x)}”. They do not support restraining a type

with an arbitrary predicate. Because the asynchronous rules in their type systems

arbitrarily make the choice of relating which subpart of the first program to which

subpart of the second program, the authors were unable to devise a typechecking

algorithm.

[28] presented a type system for resource-bound certification with indexed types.

148

Indices and types are unified in their language, and inductive kinds and primitive

recursion on the type level are supported. The program is intended to be machine-

generated, so annotation burden is heavy (e.g. one cannot relax a time bound without

annotating the “padding” amount). Refinements are not supported.

Liquid types [70, 77, 76] popularized refinement types as a practical middle ground

between traditional ML types and full dependent types. The appeal of liquid types

lies in their support of automatic refinement inference, made possible by fixing a set of

qualifiers and iteratively weakening unsatisfied VCs by removing offending qualifiers. I

would like to apply liquid-type techniques to enable automatic refinement inference in

TiML, though these techniques are not very good at inferring constants in numerical

formulas compared to e.g. counterexample-guided approaches.

6.5 Program analysis

Aside from the community working on type systems and software verification, com-

plexity analysis has been studied for many years by the program-analysis community.

The COSTA line of work [10, 12, 11, 13] aimed at cost analysis of Java bytecode.

[11] made inroads in recurrence solving by converting cost relations to direct re-

cursions and analyzing their evaluation trees. The latter is done by bounding the

branching factors, the tree depths, and the sizes of the nodes. The SPEED line of

work [39, 40, 41] did automatic complexity analysis of first-order imperative pro-

grams by instrumenting the program with multiple counters and using off-the-shelf

abstract-interpretation-based linear invariant-generation tools to infer invariants on

these counters automatically. [22] did complexity analysis of integer programs by

alternating time and size analysis on small parts of the program. [71] handled non-

linear theories by lazily instantiating theorems that are sufficient to approximate a

nonlinear theory.

149

6.6 Gas analysis for Ethereum

[36] built a program-analysis tool working on raw EVM bytecode to detect vulnerabil-

ities resulting from out-of-gas conditions. It does not give gas bounds or estimations,

but detects code patterns that are likely to cause out-of-gas vulnerabilities, for which

the paper gives some examples. [21] is a short paper where the authors translate

Solidity code into F* [72] and verify program properties including gas upper-bounds.

[14] tries to verify smart contracts in Isabelle/HOL. [45] and [37] aim to formally

define the semantics of EVM.

6.7 Other resource-analysis systems

[59] studied complexity analysis of a first-order language where they focused on infer-

ring constants in postcondition templates that can mention time, which is represented

by an instrumented counter variable. Other than postconditions, it does not allow

refinements in other places, so I do not see how it can, for example, relate a red-

black tree’s black-height to its size, which requires invariants of the data structure.

[58] verified resource usage for higher-order functions with memoization by trans-

forming the source program into a first-order program instrumented by resources

and then generating VCs in Hoare-logic style. They also support index inference by

counterexample-guided search. The idea of defunctionalization is also exploited by

[18]. I do not want to use defunctionalization because I want to do fully modular

complexity analysis, which requires analyzing higher-order functions without know-

ing the set of all possible argument functions. I can learn from [59] and [58] when it

comes to index-inference techniques.

[35] introduced a resource-annotated operational semantics and type system for

interaction nets, with the novel notions of “space-time complexity” and “scheduled

types” for guaranteeing the availability pace of data. Since the interaction-net lan-

guage lacks recursion, the programmer (not the language designer) has to define a

new node for each operation like map/fold and its potential function. The paper

150

gives potential functions for the nodes it uses but does not show how to choose such

potential functions for new operations. Annotation inference is not addressed, and

invariants are not supported.

[30] did complexity analysis with linear dependent types, which are indexed linear

types with a special index i meaning “the ith copy of this term.” Linear dependent

types enjoy relative completeness. [34] analyzed the complexity of a concurrent Algol-

like language that is synthesized to hardware circuits directly, by using indices in

types to control contraction in parallel compositions. [32] proposed a procedure to

automatically transform a program into a certain form and read off the complexity-

recurrence equations from there, but they did not address recurrence solving. [19, 20]

used the Mathematica computer-algebra system to solve some forms of recurrences.

151

152

Appendix A

Technical details for TiEVM

A.1 TiEVM instructions (full list)

The following are the “real instructions”, those that come directly from EVM.

Add Mul Sub Div SDiv Mod

SMod Exp Lt Gt SLt SGt

Eq IsZero And Or Xor Not

Byte Sha3 Origin Address Balance Caller

CallValue CallDataSize GasPrice CoinBase TimeStamp

Difficulty CodeSize GasLimit Number MLoad MStore

MStore8 SLoad SStore JumpI JumpDest Pushn w

Dupn Swapn Logn Pop CallDataLoad

CallDataCopy Jump Return

The following are a special kind of pseudo-instructions called “noop instructions”

that expand to empty lists of real instructions.

Packτ
τ PackIτi Foldτ AscTypeτ Unpackα UnpackIa

Unfold AppTτ AppIi Nat2Int Int2Nat Byte2Int

AscTimei AscSpacei ArrayDone TupleDone RestrictView

153

The other pseudo-instructions are listed in Appendix A.2 along with their expan-

sions.

A.2 Expansions of TiEVM pseudo-instructions

The expansions of TiEVM pseudo-instructions into real instructions are listed below.

I use semicolons to separate instructions.

JInitFreePtrnK = Push 32× n; Push 0; MStoreJTupleMalloc−→τ K = Push 0; MLoad; Dup1; Push 32× |−→τ |; Add; Push 0;

MStoreJTupleInitK = Dup2; MStoreJPrintcK = Push 32; MStore; Push 1; Push 32; Push 31; Add;

Log0; Push ()q
ArrayMallocn,b

τ

y
= Push 0; MLoad; Push 32; Add; Dup1; Swap2; Push n;

Mul; Add; Push 0; MStoreJArrayInit32K = Dup3; Dup3; Dup3; Add; MStoreJArrayInit1K = Dup3; Dup3; Dup3; Add; MStore8JArrayInitLenK = Dup2; Push 32; Swap1; Sub; MStoreJInt2ByteK = Push 31; ByteJInt2BoolK = Push 31; ByteJInjτK =
q
TupleMalloc[unit,unit]

y
; Swap1; Dup2; MStore; Swap1;

Dup2; Push 32; Add; MStoreJBrSumK = Dup2; MLoad; Swap1; JumpIJMapPtrK = Push 32; MStore; Push 64; MStore; Push 64; Push 32;

Sha3JVectorPtrK = Push 32; MStore; Push 32; Push 32; Sha3; AddJVectorPushBackK = Dup2; Dup1; SLoad; Swap1; Dup2; Push 1; Add; Swap1;

SStore; Swap1; Swap2; JVectorPtrK; SStoreJHaltτK = Push 32; Swap1; Dup2; MStore; Push 32; Swap1; Return

154

155

156

Appendix B

Technical details for the compiler

B.1 Cost definitions

The cost parameters in TiEVM typing rules (see Section 3.4) are the same as those de-

fined in the official EVM specification [5]. For a pseudo-instruction, its cost is simply

the sum of the instruction costs in its expansion. Technically each cost parameter is

a pair, and the second component (the memory cost) is always zero. The only excep-

tions are CTupleMalloc(n), whose second component is 32×n1, and CArrayMalloc(i, n),

whose second component is n× i+ 32.

The cost parameters in TiML typing rules (see Section 2.3.1) are defined below.

Only those that do not differ across different compilation stages are listed here; the

1Since the expansion of Inj uses TupleMalloc to allocate a pair, the second component of CInj
is 64.

157

others are defined in Section 4.5.

CConst = CPush + CLet

CTuple(n) = n× CVar + CLet + CTupleMalloc + CPush + CAdd + n× (CPush+

2× CSwap + CSub + CTupleInit)

CProj = CVar + CLet + CPush + CAdd + CMLoad

CInj = CVar + CLet + CPush + CInj

CFold = CVar + CLet

CUnfold = CVar + CLet

CPack = CVar + CLet

CUnpack = CVar + CLet

CNatPlus = 2× CVar + CLet + CAdd

CRead(32) = 2× CVar + CLet + CArrayPtr + CMLoad

CRead(1) = 2× CVar + CLet + CAdd + CPush + CSwap + CSub + CMLoad + CInt2Byte

CWrite(32) = 3× CVar + CLet + CArrayPtr + 2× CSwap + CMStore + CPush

CWrite(1) = 3× CVar + CLet + CSwap + CAdd + CMStore8 + CPush

CArrayPtr = CPush + CMul + CAdd

CLen = CVar + CLet + CPush + CSwap + CSub + CMLoad

CArrayFromList(m,n) = n× CVar + CLet + CPush + CDup + CArrayMalloc + CSwap+

CArrayInitLen + CPush + n× (2× CSwap + CArrayInit(m) + CSwap+

CPop + CSwap + CPush + CAdd) + CPop

CNew(n, i) = CNewLoop(n)× i+ CNewPreLoop + CNewLoopTest + CNewPostLoop + 2× CVar

CNewLoop(n) = CNewLoopTest + 2× CPush + CPop + CSwap + CSub + CArrayInit(n) + CJump

CNewPreLoop = 2× CSwap + 2× CDup + CArrayMalloc + CArrayInit + 2× CPush+

CMul + CJump

CNewLoopTest = CJumpDest + 2× CPush + CDup + CIsZero + CJumpI

CNewPostLoop = CJumpDest + 3× CPop + CSwap + CSetReg

158

B.2 CPS cost adjustments

CCpsAbs1(e) = CCallK(e)

CCpsAbs2(e) = CPreCC
Abs (FV (e))

CCpsApp1(k) = CCpsAdjust1(k)

CCpsApp2(k) = CCpsAdjust2(k) + CPreCPS
App

CCpsAbsT1(e) = CCallK(e)

CCpsAbsT2(e) = CPreCC
Abs (FV (e))

CCpsAppT1(k) = CCpsAdjust1(k)

CCpsAppT2(k) = CCpsAdjust2(k) + CPreCC
App

CCpsCase(e1, k) = CCpsAdjust1(k) + CCallK(e1)

CCpsCase(e2, k) = CCpsAdjust1(k) + CCallK(e2)

CCpsCase0(k) = CCpsAdjust2(k) + CPreCodeGen
Case

CCpsAdjust1(k) = isVar(k) ? CPreCC
AbsInner(FV (k)) : (0, 0)

CCpsAdjust2(k) = isVar(k) ? CPreCC
Abs (FV (k)) : (0, 0)

isVar(e) is a function testing whether e is a variable.

159

160

Bibliography

[1] Isabelle/HOL.

[2] Standard ML.

[3] Bitcoin, 2018.

[4] Ethereum project, 2018.

[5] Ethereum yellow paper, 2018.

[6] Go Ethereum, 2018.

[7] The Go programming language, 2018.

[8] Solidity, 2018.

[9] Solidity ABI, 2018.

[10] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of
Java bytecode. In Proceedings of the 16th European Symposium on Programming,
ESOP 2007, pages 157–172. Springer-Verlag, 2007.

[11] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Automatic
inference of upper bounds for recurrence relations in cost analysis. In Proceedings
of the 15th International Symposium on Static Analysis, SAS 2008, pages 221–
237. Springer-Verlag, 2008.

[12] Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, and Damiano Za-
nardini. Costa: Design and implementation of a cost and termination analyzer
for Java bytecode. In Formal Methods for Components and Objects: 6th Inter-
national Symposium, FMCO 2007, pages 113–132. Springer Berlin Heidelberg,
2008.

[13] Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa Gil. Live heap space
analysis for languages with garbage collection. In Proceedings of the 2009 In-
ternational Symposium on Memory Management, ISMM 2009, pages 129–138.
ACM, 2009.

161

[14] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. Towards
verifying Ethereum smart contract bytecode in Isabelle/HOL. In Proceedings
of the 7th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2018, pages 66–77, New York, NY, USA, 2018. ACM.

[15] Andrew W Appel. Compiling with continuations. Cambridge University Press,
2007.

[16] David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl, and
Alberto Momigliano. A program logic for resources. Theoretical Computer Sci-
ence, 389(3):411–445, December 2007.

[17] Robert Atkey. Amortised resource analysis with separation logic. In Proceedings
of the 19th European Conference on Programming Languages and Systems, ESOP
2010, pages 85–103. Springer-Verlag, 2010.

[18] Martin Avanzini, Ugo Dal Lago, and Georg Moser. Analysing the complexity of
functional programs: Higher-order meets first-order. In Proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming, ICFP
2015, pages 152–164. ACM, 2015.

[19] Ralph Benzinger. Automated complexity analysis of Nuprl extracted programs.
Journal of Functional Programming, 11(1):3–31, January 2001.

[20] Ralph Benzinger. Automated higher-order complexity analysis. Theoretical Com-
puter Science, 318(1-2):79–103, June 2004.

[21] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. Formal
verification of smart contracts: Short paper. In Proceedings of the 2016 ACM
Workshop on Programming Languages and Analysis for Security, PLAS ’16,
pages 91–96, New York, NY, USA, 2016. ACM.

[22] Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen
Giesl. Alternating runtime and size complexity analysis of integer programs. In
Tools and Algorithms for the Construction and Analysis of Systems: 20th Inter-
national Conference, TACAS 2014, pages 140–155. Springer Berlin Heidelberg,
2014.

[23] Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann.
Relational cost analysis. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, pages 316–329. ACM,
2017.

[24] Ezgi Çiçek, Zoe Paraskevopoulou, and Deepak Garg. A type theory for incre-
mental computational complexity with control flow changes. In Proceedings of
the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, pages 132–145. ACM, 2016.

162

[25] Arthur Charguéraud and François Pottier. Machine-checked verification of the
correctness and amortized complexity of an efficient union-find implementation.
In Interactive Theorem Proving: 6th International Conference, ITP 2015, pages
137–153. Springer International Publishing, 2015.

[26] Ezgi Çiçek, Deepak Garg, and Umut Acar. Refinement types for incremental
computational complexity. In Programming Languages and Systems: 24th Euro-
pean Symposium on Programming, ESOP 2015, pages 406–431. Springer Berlin
Heidelberg, 2015.

[27] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[28] Karl Crary and Stephanie Weirich. Resource bound certification. In Proceedings
of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2000, pages 184–198. ACM, 2000.

[29] Scott A. Crosby and Dan S. Wallach. Denial of service via algorithmic complexity
attacks. In Proceedings of the 12th USENIX Security Symposium - Volume 12,
SSYM 2003, pages 3–3. USENIX Association, 2003.

[30] Ugo Dal Lago and Barbara Petit. The geometry of types. In Proceedings of the
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2013, pages 167–178. ACM, 2013.

[31] Nils Anders Danielsson. Lightweight semiformal time complexity analysis
for purely functional data structures. In Proceedings of the 35th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, pages 133–144. ACM, 2008.

[32] Norman Danner, Daniel R. Licata, and Ramyaa Ramyaa. Denotational cost se-
mantics for functional languages with inductive types. In Proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming, ICFP
2015, pages 140–151. ACM, 2015.

[33] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Pro-
ceedings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, TACAS
2008/ETAPS 2008, pages 337–340. Springer-Verlag, 2008.

[34] Dan R. Ghica and Alex Smith. Geometry of synthesis III: Resource management
through type inference. In Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011,
pages 345–356. ACM, 2011.

[35] Stéphane Gimenez and Georg Moser. The complexity of interaction. In Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, pages 243–255. ACM, 2016.

163

[36] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and
Yannis Smaragdakis. Madmax: Surviving out-of-gas conditions in Ethereum
smart contracts. Proc. ACM Program. Lang., 1(OOPSLA), 2018.

[37] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A semantic frame-
work for the security analysis of Ethereum smart contracts. In Lujo Bauer and
Ralf Küsters, editors, Principles of Security and Trust, pages 243–269, Cham,
2018. Springer International Publishing.

[38] Bernd Grobauer. Cost recurrences for DML programs. In Proceedings of the
Sixth ACM SIGPLAN International Conference on Functional Programming,
ICFP 2001, pages 253–264. ACM, 2001.

[39] Bhargav S. Gulavani and Sumit Gulwani. A numerical abstract domain based on
expression abstraction and max operator with application in timing analysis. In
Proceedings of the 20th International Conference on Computer Aided Verification,
CAV 2008, pages 370–384. Springer-Verlag, 2008.

[40] Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. SPEED: Precise and
efficient static estimation of program computational complexity. In Proceed-
ings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2009, pages 127–139. ACM, 2009.

[41] Sumit Gulwani and Florian Zuleger. The reachability-bound problem. In Pro-
ceedings of the 31st ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2010, pages 292–304. ACM, 2010.

[42] Robert Harper. Practical Foundations for Programming Languages, chapter 13:
Pattern Matching, page 93–101. Cambridge University Press, 1st edition, 2013.

[43] Robert Harper. Structure and efficiency of computer programs. 2014.

[44] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional
type analysis. In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’95, pages 130–141, New York,
NY, USA, 1995. ACM.

[45] Yoichi Hirai. Defining the Ethereum virtual machine for interactive theorem
provers. In Michael Brenner, Kurt Rohloff, Joseph Bonneau, Andrew Miller,
Peter Y.A. Ryan, Vanessa Teague, Andrea Bracciali, Massimiliano Sala, Fed-
erico Pintore, and Markus Jakobsson, editors, Financial Cryptography and Data
Security, pages 520–535, Cham, 2017. Springer International Publishing.

[46] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amortized
resource analysis. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, pages 357–
370. ACM, 2011.

164

[47] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. Towards automatic resource
bound analysis for OCaml. In Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages, POPL 2017, pages 359–373.
ACM, 2017.

[48] Jan Hoffmann and Martin Hofmann. Amortized resource analysis with polyno-
mial potential: A static inference of polynomial bounds for functional programs.
In Proceedings of the 19th European Conference on Programming Languages and
Systems, ESOP 2010, pages 287–306. Springer-Verlag, 2010.

[49] Jan Hoffmann and Zhong Shao. Automatic static cost analysis for parallel pro-
grams. In Proceedings of the 24th European Symposium on Programming Lan-
guages and Systems, ESOP 2015, pages 132–157. Springer-Verlag New York, Inc.,
2015.

[50] Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-
order functional programs. In Proceedings of the 30th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2003, pages 185–
197. ACM, 2003.

[51] Rodney R. Howell. On asymptotic notation with multiple variables, technical
report. 2008.

[52] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive
systems using sized types. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 1996, pages 410–
423. ACM, 1996.

[53] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Under-
standing and detecting real-world performance bugs. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’12, pages 77–88, New York, NY, USA, 2012. ACM.

[54] Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann.
Static determination of quantitative resource usage for higher-order programs. In
Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2010, pages 223–236. ACM, 2010.

[55] Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan Braud, James W. Ander-
son, and Ranjit Jhala. Finding latent performance bugs in systems implementa-
tions. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE ’10, pages 17–26, New York, NY,
USA, 2010. ACM.

[56] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Proceedings of the 16th Annual International Cryp-
tology Conference on Advances in Cryptology, CRYPTO 1996, pages 104–113.
Springer-Verlag, 1996.

165

[57] K. Rustan M. Leino. Dafny: An automatic program verifier for functional cor-
rectness. In Proceedings of the 16th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, LPAR 2010, pages 348–370.
Springer-Verlag, 2010.

[58] Ravichandhran Madhavan, Sumith Kulal, and Viktor Kuncak. Contract-based
resource verification for higher-order functions with memoization. In Proceed-
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, pages 330–343. ACM, 2017.

[59] Ravichandhran Madhavan and Viktor Kuncak. Symbolic resource bound infer-
ence for functional programs. In Proceedings of the 16th International Confer-
ence on Computer Aided Verification - Volume 8559, CAV 2014, pages 762–778.
Springer-Verlag New York, Inc., 2014.

[60] Luc Maranget. Compiling pattern matching to good decision trees. In Proceed-
ings of the 2008 ACM SIGPLAN Workshop on ML, ML ’08, pages 35–46, New
York, NY, USA, 2008. ACM.

[61] Darko Marinov and Sarfraz Khurshid. Testera: A novel framework for automated
testing of Java programs. In Proceedings of the 16th IEEE International Con-
ference on Automated Software Engineering, ASE ’01, Washington, DC, USA,
2001. IEEE Computer Society.

[62] Jay McCarthy, Burke Fetscher, Max New, Daniel Feltey, and Robert Bruce
Findler. A Coq library for internal verification of running-times. In Functional
and Logic Programming: 13th International Symposium, FLOPS 2016, pages
144–162. Springer International Publishing, 2016.

[63] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to
typed assembly language. ACM Trans. Program. Lang. Syst., 21(3):527–568,
May 1999.

[64] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1997, pages 106–119. ACM, 1997.

[65] Chris Okasaki. Three algorithms on Braun trees. Journal of Functional Pro-
gramming, 7(6):661–666, November 1997.

[66] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1999.

[67] Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static detection of asymptotic perfor-
mance bugs in collection traversals. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’15,
pages 369–378, New York, NY, USA, 2015. ACM.

166

[68] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st
edition, 2002.

[69] Brian Reistad and David K. Gifford. Static dependent costs for estimating execu-
tion time. In Proceedings of the 1994 ACM Conference on LISP and Functional
Programming, LFP 1994, pages 65–78. ACM, 1994.

[70] Patrick M. Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid types. In Pro-
ceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2008, pages 159–169. ACM, 2008.

[71] Akhilesh Srikanth, Burak Sahin, and William R. Harris. Complexity verification
using guided theorem enumeration. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, pages 639–
652. ACM, 2017.

[72] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves
Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-
Béguelin. Dependent types and multi-monadic effects in F*. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2016, pages 256–270. ACM, 2016.

[73] Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin
Livshits. Verifying higher-order programs with the Dijkstra monad. In Proceed-
ings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2013, pages 387–398. ACM, 2013.

[74] Robert Endre Tarjan. Amortized computational complexity. SIAM Journal on
Algebraic Discrete Methods, 6(2):306–318, 1985.

[75] Pedro B. Vasconcelos and Kevin Hammond. Inferring cost equations for recur-
sive, polymorphic and higher-order functional programs. In Proceedings of the
15th International Conference on Implementation of Functional Languages, IFL
2003, pages 86–101. Springer-Verlag, 2004.

[76] Niki Vazou, Alexander Bakst, and Ranjit Jhala. Bounded refinement types. In
Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, pages 48–61. ACM, 2015.

[77] Niki Vazou, Patrick M. Rondon, and Ranjit Jhala. Abstract refinement types.
In Proceedings of the 22nd European Conference on Programming Languages and
Systems, ESOP 2013, pages 209–228. Springer-Verlag, 2013.

[78] Peng Wang, Di Wang, and Adam Chlipala. TiML: A functional language for
practical complexity analysis with invariants. Proc. ACM Program. Lang.,
1(OOPSLA):79:1–79:26, October 2017.

167

[79] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through
dependent types. In Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, PLDI 1998, pages 249–257.
ACM, 1998.

[80] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In
Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 1999, pages 214–227. ACM, 1999.

168

	Introduction
	Motivations for resource-usage analysis
	Static approaches
	Type-based approach

	An application: the Ethereum platform
	Elements of the thesis
	TiML: the source language
	TiEVM: the target language
	The type-preserving compiler

	Novelties
	Notations
	Source code

	TiML
	TiML examples
	Syntax and semantics
	Syntax
	Operational semantics

	Type system
	Typing rules
	Typing examples
	Soundness theorem
	Decidability

	Typechecker implementation and big-O inference
	Formal soundness proof
	ETiML: a TiML variant for smart contracts

	TiEVM
	An EVM primer
	Design of TiEVM
	Syntax
	Typing rules
	Notations and conventions
	Sequences and jumps
	Basic blocks and whole programs
	Stack manipulation and simple arithmetic
	Memory access
	Tuple and array initialization
	Storage access
	Miscellaneous

	The type-preserving compiler
	Surface-TiML to TiML
	Surface-TiML
	Translating into TiML

	CPS conversion
	Type translation
	Term translation

	Closure conversion
	Code generation
	Derived cost models
	TiEVM cost model
	TiML cost model before code generation
	TiML cost model before closure conversion
	TiML cost model before CPS conversion
	Surface-TiML cost model

	Evaluation
	Typechecking classic algorithms
	Compiling smart contracts

	Related Work
	Dependent ML
	AARA and RAML
	Program logics and verification systems
	Sized types and refinement types
	Program analysis
	Gas analysis for Ethereum
	Other resource-analysis systems

	Technical details for TiEVM
	TiEVM instructions (full list)
	Expansions of TiEVM pseudo-instructions

	Technical details for the compiler
	Cost definitions
	CPS cost adjustments

