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Abstract

Geometric operators are common objects in surface-based shape analysis and geome-
try processing. While the intrinsic Laplace–Beltrami operator has been a ubiquitous choice
thanks to its intuitive and often desirable properties, it fails to capture the spatial embedding
of a shape because it discards extrinsic information; furthermore, it is not always sensitive to
the geometric features relevant for a given shape analysis task. To address these challenges,
several alternative operators for shape analysis have been proposed in recent work, with an
emphasis on operators sensitive to extrinsic features. Many operators appearing in previous
work on other problems also encode aspects of extrinsic geometry and are potentially suitable
for shape analysis. In this survey, we unify discussion of operators for shape analysis, high-
lighting key theoretical properties as well as their numerical discretizations. Additionally, we
provide numerical experiments on model tasks in the operator-based shape analysis pipeline,
including computation of descriptors, distances, and segmentations, to demonstrate the effect
of using different operators on the qualitative behavior of algorithms in this space.

Keywords: Shape Analysis, Geometric Operator, Linear Operator, Spectral Geometry, Laplace–Beltrami,

Extrinsic Geometry, Intrinsic Geometry.
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1 Introduction

Two viewpoints typify classical measurements for analyzing surface geometry. The extrinsic approach
considers a surface as it is embedded in three dimensions, relying on distances in the underlying Euclidean
space R3. The intrinsic approach, in contrast, restricts consideration to quantities that can be measured
without leaving the surface, such as geodesic distances, decoupling surface geometry from its embedding.
Historically, the intrinsic approach played a central role in the development of the modern theory of
geometry. Largely a byproduct of its prevalence in the mathematical literature as well as a preference for
isometry invariance in certain applications, this perspective has become pervasive in computer graphics,
geometry processing, and machine learning, leading to many successful algorithms. In practice, that
intrinsic methods are inherently invariant to isometry contributes to their popularity: Real-world objects
often deform in a nearly-isometric fashion, and intrinsic methods by design do not distinguish poses under
these transformations. This is often a desirable feature for applications like shape classification.

The intrinsic approach, however, employs an incomplete description of a surface, in the sense that
the embedding as well as critical cues for humans’ perception of shape cannot be recovered from intrinsic
measurements alone. As a simple illustration, Figure 1 shows cubes with inward or outward bumps;
these models are different extrinsically but identical intrinsically. As an extreme example, all origami
models are intrinsically equivalent to flat sheets of paper. Hence, shape analysis pipelines that desire
to use or learn from all possible geometric cues require reconsideration of their intrinsic building blocks,
discarding extrinsic information only if it is truly irrelevant for a given task.

A critical example of the intrinsic–extrinsic divide appears in the operator-based approach to geometry
processing. Linear operators, such as the intrinsic Laplace–Beltrami operator (or Laplacian for short),
play a central role in geometry processing and shape analysis, applied to tasks including segmentation,
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Figure 1: Two isometric cubes with an inward or outward bump.

retrieval, parameterization, correspondence, local descriptors, deformation, physical simulation, and deep
learning. In particular, Laplacian-based shape analysis has achieved remarkable success and popularity
for most, if not all, of these tasks. By removing extrinsic information, however, the purely intrinsic
surface Laplacian operator can lead to undesirable behavior in shape analysis algorithms. For example,
Laplacian-based algorithms cannot distinguish between the two cubes in Figure 1.

Analyzing shapes using alternative operators has attracted recent interest [Liu et al., 2017, Wang
et al., 2018b], avoiding the loss of information associated to purely intrinsic methods. These operators
can capture aspects of extrinsic geometry and can be sensitive to features other than those typically
detected by the Laplacian [Wu and Levine, 1997, Liu and Zhang, 2007, Raviv et al., 2010, Hildebrandt
et al., 2012, Au et al., 2012, Wang et al., 2014, Andreux et al., 2014, Ye et al., 2018]. While the Lapla-
cian is the “default” choice in many shape analysis methods, replacing it with another operator can
immediately yield algorithms with different—and often improved—behavior. This substitution provides
geometric insight that contrasts from that derived using Laplacian-based constructions but yields ad-
ditional information about shape. For this reason, this survey compares relevant operators, including
the Laplacian, the Dirac operator, boundary integral operators, and others, in a unified framework. We
provide experiments to highlight similarities and differences among the many options.

2 Preliminaries

2.1 Extrinsic and Intrinsic Geometry

We briefly review basic concepts and theoretical constructions for analyzing intrinsic and extrinsic geom-
etry in the paragraphs below; interested readers can refer to texts in differential geometry [Do Carmo,
2016, Frankel, 2011, Lee, 2013] for expanded mathematical discussion and to [Botsch et al., 2010] for a
practical guide to applied geometry.

Intrinsic Geometry Quantities that can be measured without leaving a surface M are considered
intrinsic. The core intrinsic measurement on a surface is its first fundamental form (or metric tensor),
which provides a means of measuring lengths and angles of vectors in the tangent space. Typically, this
tensor per point on the surface is expressed as a matrix g(x) ∈ R2×2 giving the inner products of basis
vectors for the tangent space at x ∈M. We denote entries in the metric tensor as gij , where i, j∈{1, 2},
and we use (gij) = (g−1)ij to denote the inverse metric. Intrinsic quantities like geodesic distances are
fully-determined by the metric of a surface.

The metric allows us to perform calculations about a surface abstractly, without its embedding in R3.
Associating each point with a metric tensor g is already sufficient to define a rich family of mathematical
objects. Intrinsic operators like the Laplacian, as we will see later in §5.2, can be defined using the metric
g only, remaining invariant if the embedding changes so long as the metric g remains the same.

A crowning result of classical differential geometry is that Gaussian curvature, which compares the
circumference of an infinitesimal geodesic circle to that of a circle in the plane with the same area, is
intrinsic. The better-known definition of Gaussian curvature as K(x) = κ1(x)κ2(x), i.e., the product
of the two principal curvatures κ1(x), κ2(x) at a point x ∈ M, involves the eigenvalues of the extrinsic
second fundamental form (below).
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Extrinsic Geometry Extrinsic geometry considers a surface as an object embedded in R3. In classical
differential geometry, when taking this view, it is typical to treat a surface locally using a parameterization
r(u, v) : R×R→ R3 and then apply the analytical tools developed in multivariable calculus to r(·, ·). In
addition to the first fundamental form, this embedding enables measurement of the second fundamental
form, a 2 × 2 matrix giving the rate of change of the surface normal; the eigenvalues of the second
fundamental form are the principal curvatures κ1(x), κ2(x) mentioned above. The mean curvature at a

point x ∈ M, defined as average of the two principal curvatures H(x) =
(
κ1(x)+κ2(x)

)
/2, is an extrinsic

quantity.

2.2 Operators and Spectra

The operator-based approach to shape analysis constructs an operator (discretely, a matrix) that acts on
functions over the surface; for example, the Laplacian roughly maps functions to their second derivatives.
Then, the eigenvalues (or, spectrum) of the operator and its eigenfunctions encode geometric features.
This representation is convenient for a number of reasons. Whereas the list of vertex positions of a
triangle mesh is only known up to permutation, rigid motion, and potentially deformation, operators
easily can be designed whose list of eigenvalues are invariant to these irrelevant changes.

For many choices of operators including the Laplacian [Zeng et al., 2012,Boscaini et al., 2015,Chern
et al., 2018], the Hessian operator [Stein et al., 2018], and the Dirichlet-to-Neumann operator [Wang
et al., 2018b], the operator encodes all information about the shape up to a class of transformations,
in the sense that one can recover an embedding from the operator and/or its spectrum (up to isometry
or rigid transformation, depending on the operator). In this case, the operator can be thought as an
alternative representation of the shape, providing a lossless means of computing geometric information
for algorithms downstream. For this reason, it is fairly common for shape analysis methods to require
only access to the operator constructed from a shape rather than access to the shape itself.

Spectral methods extract geometric information directly from operator eigenvalues and eigenfunc-
tions [Zhang et al., 2010a]. As we will see later, spectral methods naturally separate features at different
scales and extract global features about a shape, making them suitable for design of robust algorithms.

3 Theoretical Aspects and Numerical Analysis

In this section, we present a brief introduction to the theory of linear operators and their applicability
to shape analysis; we also introduce general techniques for their discretization.

3.1 Basics of Linear Operators

LetM be a smooth surface possibly with boundary ∂M, and let L2(M) be the space of square (Lebesgue)
integrable functions. A linear operator is a map A : L2(M) → L2(M) taking in one function on the
surface and returning another function, such that A(u+ v) = Au+Av and A(c · u) = c · Au for c ∈ R.

For our purposes, we can simply think of the function space L2(M) as analogous to the vector space
Rn and the set of operators L2(M)→ L2(M) as analogous to the set of matrices Rn×n, where n is the
number of vertices in a triangle mesh. A complete, rigorous treatment of operators involves functional
analysis and linear operator theory, which is beyond the scope of this paper; we refer interested readers
to [Brezis, 2010] for discussion.

Equivalent Strong and Weak Forms A linear operator and the PDEs associated with it usually
can be expressed using an equivalent integral equation. Let us start with the Laplace equation with
Neumann boundary conditions on M:{

−∆Mu(x) = f(x) x ∈M \ ∂M
∇n(∂M)u(x) = g(x) x ∈∂M

(1)

in which ∆M is the Laplacian operator on the curved surface, and ∇n(∂M) is the normal derivative
operator, satisfying ∇n(∂M)u(x) = n(x) ·∇Mu(x) where ∇M is the intrinsic gradient operator and n(x)
is the normal to the boundary at x ∈ ∂M. For the purpose of discussion in this section, readers may
simply think of the special case where M ⊆ R2, i.e. a planar domain in R2, for which ∆M becomes

∆R2 = ∂2

∂x2 + ∂2

∂y2 and ∇M becomes the usual gradient operator in R2. The general definition of ∆M is
postponed to §5.2, although our discussion below holds in the general case when M becomes a curved
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surface. To simplify notation, we omit the subscript in ∆M, ∇M, and ∇n(∂M) when these operators are
used within integral

∫
M,

∫
M, and

∫
∂M, respectively.

Eq. 1 gives a PDE that is known as the strong form of the Laplace equation. If we integrate both sides
against an arbitrary function v(x) and sum the results, we obtain the weak form of the same problem:

−
∫
M
v(x)∆u(x) +

∫
∂M

v(x)∇nu(x) =

∫
M
v(x)f(x) +

∫
∂M

v(x)g(x), ∀v(x). (2)

In this formula, the function v(x) is known as a test function. Under appropriate assumptions about
the function spaces containing u(x) and v(x), one can show that the weak form and the strong form are
solved by the same u(x). Roughly speaking, when v(x) is chosen as a delta function, the strong form is
recovered: The relationship involving f(x) appears when the delta function is in the interior M\∂M,
and the relationship involving g(x) appears when the delta function is on the boundary ∂M. Using
Green’s first identity, ∫

M
∇u(x) · ∇v(x) = −

∫
M
v(x)∆u(x) +

∫
∂M

v(x)∇nu(x). (3)

The left side of the weak form in Eq. 3 gives a symmetric bilinear form
∫
M∇u(x) · ∇v(x), which takes

two input functions u, v and outputs a scalar. When v=u, the bilinear form becomes
∫
M ‖∇u(x)‖22, the

Dirichlet energy measuring the smoothness of u.
Our discussion so far introduces an equivalence between a PDE (1) and an integral equation (2)

specified by a bilinear form
∫
M∇u(x) · ∇v(x). This equivalence can be generalized to a large range of

PDEs with natural boundary conditions.
Recall that a bilinear form a(u, v) is linear in the arguments u, v, i.e., a(u1+u2, v) = a(u1, v)+a(u2, v)

and a(c · u, v) = c · a(u, v) ∀c ∈ R, and analogously for the second argument v. Bilinear forms and linear
operators generalize matrix operations in finite-dimensional spaces to infinite-dimensional spaces. Hence,
we can make definitions for continuous operators similar to their counterparts in linear algebra, including
the following key classes of bilinear operators:

• Self-adjoint : We call a bilinear form self-adjoint if ∀u, v : a(u, v) = a(v, u). This generalizes the
definition of symmetric matrices A, for which A = Aᵀ.

• Positive semidefinite: We call a self-adjoint bilinear form positive semidefinite (p.s.d.) if we have
a(u, u) ≥ 0 ∀u; the form is positive definite (p.d.) if a(u, u) = 0 implies u ≡ 0. This generalizes
the definition of a p.s.d. matrix A, for which uᵀAu ≥ 0 ∀u ∈ Rn, and a p.d. matrix A, which
additionally satisfies the condition that uᵀAu = 0 implies u ≡ 0.

Our discussion of the Laplacian follows a template common in functional analysis, in which linear
operators are converted to bilinear forms; the linear operator is the strong form and the bilinear form is
the weak form. In particular, given a linear operator A : L2(M) 7→L2(M) we can define a corresponding
bilinear form a(u, v) :L2(M)×L2(M)→R as a(u, v) = 〈u,Av〉M, where u, v ∈ L2(M). In the reverse
direction, a linear operator can be recovered from a bilinear form, e.g., by applying the Riesz Repre-
sentation Theorem [Brezis, 2010]. Such equivalence is trivial in finite-dimensional spaces: Both bilinear
forms and linear maps are given by matrices.

This equivalence allows us to equate the problem Au = f with a weak form

a(u, v) = 〈f, v〉M ∀v (4)

where 〈u, v〉M :=
∫
M u(x)v(x) is the inner product on L2(M), under mild assumptions that u, v, f

come from appropriate function spaces—usually a Sobolev space, consisting of functions whose low-
order partial derivatives have bounded L2 integrals. Returning to the Laplacian operator ∆M, its
corresponding bilinear form is a(u, v) =

∫
M∇u(x) · ∇v(x); note that fewer derivatives are required of

u, v to define the bilinear form than to define the linear operator.

Variational Formulation Given functions f(x) and g(x), consider the variational problem for a
function u(x):

min
u(·)

∫
M

(
‖∇u(x)‖22 − u(x)f(x)

)
−
∫
∂M

u(x)g(x). (5)

Using variational calculus, one can show that problems (1) and (5) are solved by the same function
u(x). This relationship justifies calling the Neumann condition ∇nu(x) = g(x) in (1) by its alternative
name, the natural boundary condition, since it arises from the variational problem (5) without an explicit
boundary constraint.

5



Eigenvalue Problem The eigenvalue problem associated to operator A : H → H is defined as follows:

Aφ = λφ, (6)

where λ ∈ R is known as an eigenvalue and φ(·) is its corresponding eigenfunction. The spectral theorem
states that in the most common case, namely when A is a compact self-adjoint operator and H is a sepa-
rable Hilbert space [Zhu, 2007], there are countably many eigenvalues and corresponding eigenfunctions.
We mainly consider this case in our survey, and hence we use {λi}∞i=0 and {φi(x)}∞i=0 to denote the sets
of eigenvalues and corresponding eigenfunctions of A, respectively, sorted in ascending order such that
λ0 ≤ λ1 ≤ λ2 ≤ · · · .

Known as the Courant–Fischer min-max Theorem, the strong form (6) can be converted to an equiv-
alent weak form by finding saddle points of the optimization problemmin

φ(·)
a(φ, φ)

s.t. 〈φ, φ〉M = 1.
(7)

Assuming a(·, ·) is symmetric, we can follow the convention that {φi(x)}∞i=0 are orthonormal: Eigen-
functions corresponding to different λ’s must be orthogonal, and applying Gram–Schmidt orthogonal-
ization to eigenfunctions with the same λ, followed by normalization, ensures that {φi(x)}∞i=0 are or-
thonormal. A consequence of the spectral theorem, for many choices of operators A, is that the φi’s form
a complete orthonormal basis;1 in classical mathematics, the completeness of the Laplacian is a conse-
quence of the Sturm-Liouville decomposition [Chavel, 1984, Rosenberg, 1997]. Laplacian eigenfunctions
are also known as manifold harmonics. When the surface is a sphere, the Laplacian eigenfunctions are
called spherical harmonics.

The spectrum of an operator, {λi}∞i=0, is the generalization of eigenvalues of a matrix. This spectral
decomposition of A, as we will see later, extracts information about M, from large- to small-scale.

3.2 PDEs and Green’s Functions

A few classic PDEs written in terms of the Laplacian are widely used in shape analysis and provide
physical intution for behavior of algorithms in spectral geometry. As we will see later, solutions to these
problems closely relate to the spectrum of the Laplacian. For simplicity, starting from this section in
the paper we only consider closed surfaces (i.e., ones without boundaries), unless noted otherwise and in
which case boundary conditions will be explicitly discussed.

Laplace Equation The Laplacian admits a Green’s function, also known as the fundamental solution,
given by a function G(x,y) satisfying

∆xG(x,y) = δy(x), (8)

where ∆x is still the operator ∆M with the notation chosen to emphasize that it operates on x and δy(·)
denotes the Dirac δ-function centered at y. Given G, up to an additive constant function, the solution
to the Laplace equation ∆Mu(x) = f(x) for “smooth enough” f(·) can be written in closed-form as

u(x) =

∫
M
G(x,y)f(y) dy.

In other words, the linear operator f(·) 7→
∫
MG(x,y)f(y) dy based on the Green’s function “inverts”

the original Laplacian operator. The Green’s function of a linear operator plays an analogous role to
the pseudo-inverse of a (finite-dimensional) matrix: Recall that for a matrix A ∈ Rn×n whose null
space contains only constant vectors, the solution to the linear system Au = f is u = A†f up to an
additive constant, when the right-hand side f ∈ Rn×1 sums to zero; here A† is the (Moore–Penrose)
pseudo-inverse of A that satisfies the relationship A ·A† = I− 1

n1ᵀ1, similar to the definition in Eq. (8).
Given the spectral decomposition of ∆M defined in §3.1, we have (∆Mu)(x) =

∫
M
∑∞
k=0 λkφk(x)φk(y)u(y) dy.

This expression first decomposes f(·) into an orthonormal basis, and multiplies each component with
the corresponding eigenvalue: high-frequency components are amplified by a factor of λk, so ∆M can
be thought as a high-pass filter in the signal processing view. The following spectral expansion gives an

1Completeness requires that any function in L2(M) can be approximated arbitrarily closely by linear combinations of
{φi(x)}∞i=0.

6



explicit formula for the Green’s function, which can be understood as the pseudo-inverse of the operator
∆M:

G(x,y) =

∞∑
k=n0

1

λk
φk(x)φk(y). (9)

Here, n0 is the number of zero eigenvalues of ∆M; n0 = 1 for simply connected surfaces. The corre-
sponding linear operator f(·) 7→

∫
MG(x,y)f(y) dy, conversely, is a low-pass filter, in the sense that

low-frequency components are exaggerated and emphasized by the multiplicative factor 1/λk.

Heat Equation The heat equation (also known as the diffusion equation) describes a time-varying
evolution of a function u(x, t) given its initial distribution u(x, 0). Physically, this PDE is used to
determine the spatial distribution of temperature on a conductive surface after it diffuses for time t:

(Heat equation)
∂

∂t
u(x, t) = ∆xu(x, t) s.t. u(x, 0) = f(x). (10)

The heat kernel kt(x, y) specifies the transition density function from x to y over a time period t:

kt(x,y) =

∞∑
i=0

e−λitφi(x)φi(y). (11)

Figure 2 visualizes (one column of) the heat kernel in log scale, i.e., log kt(x, ·), where x locates at the
dot in the center of the isolines. kt(x, ·) corresponds the temperature distribution at time t, when the
initial distribution is δx(·), a Dirac δ-function centered at x. It is not a coincidence that log kt(x, ·) looks
like dg(x, ·), the geodesic distance to x: a connection between them is given in §3.4.

Figure 2: Heat kernel in log scale, log kt(x, ·).

Using heat kernel, the solution to the heat equation can be written as

u(x, t) =

∫
M
kt(x,y)f(y) dy. (12)

Substituting (11), this expression for u first decomposes f(·) into an orthonormal basis associated to
the PDE, and then each component decays independently at a rate associated to its eigenvalue. The
heat kernel act similarly to Eq. 9: the linear operator f(·) 7→

∫
M kt(x,y)f(y) dy can be understood as

the exponential of ∆M. If we interpret u(x, t) as a probability density function, then kt(x,y) in (12)
provides the transition density function for Brownian motion [Knight et al., 1981]. Heat diffusion is a
Markov process: kt+s(x,y) =

∫
M kt(x, z)ks(y, z) dz, reflecting the fact that heat starting at x has to

diffuse to y via some z in a “memory-less” fashion. These facts are starting points to prove convergence
of some discrete approximations to the Laplace–Beltrami operator [Coifman and Lafon, 2006].
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Wave and Schrödinger Equations Wave propagation is governed by the wave equation, in which
u(x, t) measures the magnitude of displacement at x at time t:

(Wave equation)
∂2

∂t2
u(x, t) = ∆xu(x, t) s.t. u(x, 0) = f(x) and

∂

∂t
u(x, 0) = g(x). (13)

The wave equation, as a second order differential equation, also requires initial conditions on ∂
∂tu(x, 0)

to yield a unique solution u(·, ·), making the discussion complicated; instead, here we examine a similar
first-order PDE.

Closely related to the wave equation, the Schrödinger equation in Eq. 14 prescribes the evolution of
a quantum particle via the wave function u(x, t) : L2(M)×R+ → C such that |u(x, t)|2 is interpreted as
the particle’s probability density function (p.d.f.) at location x and time t:

(Schrödinger equation) i
∂

∂t
u(x, t) = −∆xu(x, t) s.t. u(x, 0) = f(x) (14)

where i =
√
−1. This equation is later used to define the wave kernel signature (see §4.3) and the

Hamiltonian/Schrödinger operator (see §5.10).

Generalization The PDEs above can be generalized by replacing the operator −∆ with a general
p.s.d. operator A:

(Poisson equation) Au(x) = f(x) (15)

(Heat equation)
∂

∂t
u(x, t) = −Au(x, t) s.t. u(x, 0) = f(x) (16)

(Schrödinger equation) i
∂

∂t
u(x, t) = Au(x, t) s.t. u(x, 0) = f(x) (17)

Solutions to these PDEs can be written in the unified form u(x) =
∫
MGt(x,y)f(y) dy, where

Gt(x,y) =


∑∞
k=n0

1
λk
φk(x)φk(y) Poisson equation∑∞

k=0 e
−λktφk(x)φk(y) Heat equation∑∞

k=0 e
iλktφk(x)φk(y) Schrödinger equation

is the Green’s function for each PDE and {φk(·)}∞k=0 and {λk(·)}∞k=0 are eigenfunctions and eigen-
values of the operator A, such that λ0 = 0, . . . , λn0

= 0, λn0+1 > 0. For fixed t, the map f(·) 7→∫
MGt(x,y)f(y) dy is also a linear operator, which can be thought as the pseudo-inverse or exponen-

tial of A, i.e., A†, e−tA, eitA, respectively, for these PDEs. Loosely speaking, solving these three PDEs
amounts to applying the three operators to f(·). For additional details, we refer the reader to [Evans,
1998].

When A = −∆M, the exponential operator becomes the Laplacian heat kernel et∆M . This relation
allows us to compute the heat kernel from the Laplacian operator, bypassing the difficulty of discretizing
the “exponentiated” operator directly. WhenA is a covariant derivative operator or connection Laplacian
operator, the exponentiated operator becomes an operator of parallel transport along vector field or
geodesics, respectively, with applications to vector field analysis and processing [Azencot et al., 2015,
Sharp et al., 2018] and manifold learning [Singer and Wu, 2012,Wu, 2013].

3.3 Operator Derivation and Discretization

An operator associated to a smooth surface has to be discretized to be used in the computational setting;
there are many techniques for operator discretization that are relevant to this task. On regular grids,
differentials can be approximated by finite differences, in a consistent manner such that the approximation
converges to the differential quantity as the grid resolution increases [Atkinson and Han, 2005]. On
irregular domains like meshes, many discretization methods are possible, including the finite element
method (FEM) and the finite volume method (FVM).

The goal of operator discretization or construction is to obtain a matrix A, accompanied with a mass
matrix M, such that the continuous equation Au = f is discretized as the linear equation Au = Mf ,
where u, f are vectors discretizing u(·) and f(·), e.g., u, f can be vectors storing the values of u(·) and
f(·) at mesh vertices, respectively. In the scenario that function u(·) is given, intuitively the action of
an operator A, i.e., applying A to a scalar function u ∈ L2(M) to yield f ∈ L2(M), is approximated by
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matrix multiplication: f = M−1Au; ideally f should converge to the function f(·) under mesh refinement.
In the other scenario when function f(·) is given, usually the major case of interest, ideally u = A−1Mf
should converge to the continuous solution u(·) under mesh refinement. The weak form corresponding
to A is approximated by the discrete quadratic form: a(u, v) ≈ uᵀAv; again u,v are discretization of
functions u(·), v(·). We summarize the typical approaches used to obtain the matrices A and M below.

Finite and Boundary Element Methods The finite element method (FEM) and boundary element
method (BEM) [Steinbach, 2007, Śmigaj et al., 2015] are frameworks for discretizing operators in a
convergent fashion. The idea of FEM and BEM is to consider the weak form (4), which has to hold for
every test function v, and to restrict u, v and f to finite-dimensional linear subspaces {φi(x)}ni=1 and
{ψi(x)}mi=1. This finite-dimensional approximation can be written u=

∑n
i=1 uiφi, f =

∑m
i=1 fiψi, where

u∈Rn, f ∈Rm stack the coefficients of u and f in the basis. Allowing the test function v to be any basis
function in {ψi(x)}mi=1, Eq. (4) becomes a finite-dimensional linear system Au = Mf , where

A ∈ Rm×n : Aij = a(ψi, φj) = 〈ψi,Aφj〉M (18)

M ∈ Rm×m : Mij = 〈ψi, ψj〉M. (19)

The most commonly-used basis is the piecewise-linear basis, i.e., the “hat functions” on a triangle mesh,
as well as the piecewise-constant functions, specifying per-vertex and per-triangle data, respectively.
Figure 3 shows an example of piecewise-linear basis on a triangle mesh.

Figure 3: The “hat” basis function corresponding to the vertex in the center.

The Galerkin method refers to the case that {φi(x)}ni=1 and {ψi(x)}mi=1 are chosen to be the same
basis, so A becomes a p.s.d. matrix. FEM mostly applies to differential operators whose action is local,
leading to a sparse matrix A with sparsity specified by the vertex adjacency. BEM follows the same
procedure above, but applies to boundary integral operators instead; this leads to differences in how the
inner product a(ψi, φj) is evaluated; we postpone the discussion of BEM until it is used in §5.17.

Discrete Exterior Calculus (DEC) DEC [Desbrun et al., 2005] provides an alternative framework
to derive operators, building discrete operators operating on per-element quantities directly. DEC gives
discrete equivalents of the exterior derivative, Hodge star, and other operators used as building blocks
to construct more complicated differential operators on a surface. Integrated forms and operators are
defined analogously to their continuous counterparts but on mesh elements; they are typically designed
so that discrete versions of important theorems hold exactly, such as the divergence theorem or other
specializations of the generalized Stokes’ Theorem for differential forms [Frankel, 2011]. Sometimes the
operator derived using DEC coincides with the one derived by linear FEM; the cotangent Laplacian is
such an example (see §5.2).

Mixed Methods and Compositions Complicated geometric operators often can be derived as the
composition of “simpler” operators, like differential operators of lower orders, reducing the difficulty of
discretization. As examples, the bi-Laplacian applies the Laplacian twice [Botsch and Kobbelt, 2004,Ja-
cobson et al., 2011]; the Hessian operator is composed of the gradient operator and the matrix divergence
operator [Stein et al., 2018]; and in [Wang et al., 2018b], the Dirichlet-to-Neumann operator is con-
structed as the composition of a few boundary integral operators that are straightforward to discretize.
Such composition usually can be justified by the mixed finite element method.
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Graph Affinity Laplacian For a graph with n vertices connected by edges, its graph Laplacian L ∈
Rn×n, is a matrix such that Lij 6= 0 for i 6= j if and only if vertices i, j are adjacent and Lii = −

∑
j 6=i Lij .

Spectral analyses of graph Laplacians have led to remarkable success for graph partitioning and image
segmentation [Shi and Malik, 2000]. Entries in the graph Laplacian are weights measuring the affinity
or similarity between vertices; a larger edge weight Lij indicates a stronger bond between vertex i and
j such that, e.g., in graph partitioning the edge ij should be less likely to be cut.

Triangle meshes can be viewed as graphs, and hence graph-based methods can be applied to meshes.
Moreover, the discrete operators obtained using other methods, e.g., the cotangent Laplacian (§5.2), can
be thought as particular versions of the graph Laplacian with local-geometry-aware weights that typically
depend on angles and vertex areas in the triangle mesh. With this connection between discrete operators
and graph Laplacians, sometimes the discrete operator matrix A can be constructed heuristically, as
long as matrix entry Lij provides some measure of affinity between vertex i and vertex j.

Variants and Generalizations The domain D and image I of a general linear operator A : D → I
are not necessarily the same function space, in which case the discrete operator becomes a rectangular
matrix Rm×n rather than a square matrix. As an example, the gradient operator (see e.g. [Tong et al.,
2003]) maps a scalar function to a vector field, which live in different function spaces. We may also obtain
a rectangular matrix due to the choice of basis: In Eq. 18, if {φi(x)}ni=1 and {ψi(x)}mi=1 are chosen as
spaces of piecewise linear and piecewise constant functions, respectively, then we obtain an operator of
size Rf×n, i.e., #faces×#vertices. The function space can go beyond the set of real-valued functions. For
example, the Dirac operator [Liu et al., 2017] maps quaternion-valued functions L2(M;H) to L2(M;H),
and the operator becomes a quaternion-valued matrix in Hm×n. Operators can also act on vector fields
or forms rather than scalar fields, e.g., divergence and curl operators [Tong et al., 2003].

Operator Properties and Desiderata When discretizing an operator, it is desirable that certain
algebraic properties of the continuous operator transfer to the discrete operator. In this case, theorems
and properties of some continuous functions can be preserved in a discrete sense. As an example, applying
the Laplacian to a constant function yields zero function: ∆x1(x) = 0(x). Accordingly, for a discrete
Laplacian L̃, we would like L̃1 = 0. One may ask for a discretization of a discrete operator that preserves
as many of the properties of the smooth operator as possible. It is usually not possible for a discrete
operator to enjoy all possible discrete analogs of smooth properties; see [Wardetzky et al., 2007] for a
“no free lunch” theorem in the case of discrete Laplacians.

3.4 Operators and Geometry

Geometric PDEs [Taylor, 2011,Taylor, 2013] defined onM as well as geometric operators like ∆M encode
and reveal information about the geometry and topology of M. Several methods in shape analysis and
geometry processing are based on this observation.

Geometric analysis is a branch of mathematics that applies analytical tools to operators and PDEs
for purposes of studying the underlying geometry. It also connects the global geometry of a surface
with its topology. As an example, elliptic differential operators on M satisfy the Atiyah-Singer index
Theorem [Booss, 2012], which relates analytical properties of the operator to the topology of M. As a
special case, the familiar Gauss–Bonnet Theorem equates the total Gaussian curvature

∫
MK(x) on M

with a topological quantity—the Euler characteristic—distinguishing spheres, torii, and other surfaces
with varying genus. Equipped with the tools to study geometry and topology quantitatively, Perelman’s
proof of the Poincaré Conjecture [Perelman, 2002,Perelman, 2003a,Perelman, 2003b] is among the most
remarkable achievements of geometric analysis.

Spectral geometry studies the relationship between spectral properties of operators and the underlying
geometry. As an example, the (Laplacian) heat kernel kt(x,y) is related to the geodesic distance dg(·, ·)
via the following formula obtained by [Varadhan, 1967]:

lim
t→0

t log kt(x,y) = −1

4
d2
g(x,y)

In graphics, this relation is exploited for efficient geodesic distance computation by the heat method [Crane
et al., 2013b].

Spectrum asymptotics provide another example relating an operator with the geometry. Weyl’s Law
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gives the following asymptotic formula for Dirichlet eigenvalues of Laplacian on a domain Ω ⊆ Rd:

λj ∼
(2π)2

(vol(Ω)|B(d)|)2/d
j2/d, j →∞

where |B(d)| is the volume of the unit ball in Rd, and vol(Ω) is the volume of Ω. See [Chavel, 1984,
Rosenberg, 1997, Zelditch, 2009, Craioveanu et al., 2013] for Weyl’s Law and other results relating the
Laplacian spectrum to geometric quantities. The recent survey [Henrot, 2017] summarizes progress in
spectral geometry with connections to shape optimization, which studies problems such as determining
the shape that maximizes or minimizes λj for certain j.

3.5 Inverse Problems

While an operator and its spectrum can be deterministically computed on a given surface M, inverse
problems study what information about M can be recovered and extracted from an operator or its
spectrum.

Shape-From-Operator A central inverse problem for operator-based geometry is to ask, given a
particular operator, whether or not we can recover the shape, possibly up to rigid motion or isometry.
Below we list some examples drawn from the smooth and discrete geometry literatures:

• Laplacian: In continuous theory, the Laplacian determines the metric of a surface; accordingly,
one can recover edge lengths and vertex coordinates (up to isometry) from the discrete Laplacian
operator [Zeng et al., 2012,Boscaini et al., 2015,Corman et al., 2017a,Chern et al., 2018].

• The single layer potential is another example of an operator for which the inverse problem above is
well-posed, since it encodes the inverse distance between pairs of vertices; multi-dimensional scaling
can recover the embedding from distances, up to rigid motion, see e.g. [Williams, 2002].

• The Dirichlet-to-Neumann operator determines the first and second fundamental forms of the
underlying surface, which in turn determines its geometry up to rigid motion due to the Bonnet
Theorem [Wang et al., 2018b].

• Dirac: Although this property is not explicitly mentioned in the geometry processing literature, it
is also straightforward to see that a mesh can be recovered up to translation from the strong form
of discrete relative Dirac operator [Crane et al., 2011,Liu et al., 2017,Kostrikov et al., 2018], which
stacks edge vectors in an edge–vertex adjacency graph.

Algorithms have been proposed to recover shape from forms [Wang et al., 2012], metrics [Chern et al.,
2018], and operators [Boscaini et al., 2015,Corman et al., 2017a], although many of these techniques rely
on nonlinear methods without guarantee of success.

Shape-From-Spectrum A more difficult question is whether or not it is possible to uniquely recover a
shape from an operator’s eigenvalues only, again up to rigid motion or isometry. This is a famous problem
in mathematics: “Can one hear the shape of a drum?,” as posed by [Kac, 1966]. This question is also
of practical interest: Eigenvalues are used as “ShapeDNA,” global shape signatures, and “shape2vector”
features, using various operators [Reuter et al., 2006,Liu et al., 2017,Wang et al., 2018b], and hence the
inverse problem is equivalent to asking whether these signatures are unique/invertible.

For the Laplacian operator, in the general setting the answer is negative: there exist isospectral
surfaces [Gordon et al., 1992a,Gordon et al., 1992b]. However, if the shape space is restricted to convex
planar regions with analytic boundary, the answer is positive [Zelditch, 2000]. Furthermore, it remains
an open question for non-convex analytic planar domains; also, for the case that the shape is a closed 2-
manifold or 2-manifold with analytical boundary, which attracts the most practical interest, the question
is still open. The recent work [Cosmo et al., 2019] tackles this inverse problem using differentiable
eigensolvers, leading to empirical successes recovering surfaces from their Laplacian spectra.

Few results are known for operators other than Laplacian. For the intrinsic Dirac operator, examples
of Dirac-isospectral tori are given in [Ammann and Bär, 1998]. For Dirichlet-to-Neumann operator (to the
best of our knowledge), whether “hearing the shape” for 3D surfaces is possible is still an open challenge.
A recent result indicates that the 2D polyline can be recovered from its Steklov eigenvalues [Levitin
et al., 2017].
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4 Spectral Shape Analysis and Applications

In this section, we discuss how practical algorithms can benefit from geometric operators and their
eigendecompositions. Before we look into particular methods, we first present a few ideas that motivate
the use of geometric operators and their eigendecompositions in computational tasks.

4.1 Spectral Analysis: from Euclidean Space to Manifold

A Signal Processing Viewpoint Spectral methods provide bases to represent geometric signals and
associated data. Particularly, eigenfunctions {φi}∞i=0 of an appropriate operator (see §3.1) generalize
the Fourier basis for 1-periodic functions T(1) = {f ∈ L2(R) : f(x) = f(x + 1)}, i.e., {sin(2πnx)}∞n=1 ∪
{cos(2πnx)}∞n=0, to a curved manifoldM. This provides a basis to represent geometric signals, allowing
us to generalize traditional signal processing and image analysis for data associated to points in Rn,
to data on a geometric domain. Figure 4 shows an example of reconstructing geometric signals—in
particular mesh coordinates—using its Laplacian eigenfunctions. Typically, the Laplacian eigenfunctions
are used as the generalization of Fourier bases, but eigenfunctions of any p.s.d. operator A that form
a complete basis can be used as well. Applying this idea to problems in graphics dates back to curve
Fourier descriptors [Zahn and Roskies, 1972] and surface signal processing (via Laplacian) [Taubin,
1995], if not earlier.

(a) Rest Pose. (b) 10 (c) 20 (d) 40

(e) 100 (f) 200 (g) 400 (h) 800

Figure 4: Reconstructing mesh coordinates using increasing numbers of eigenfunctions. The color encodes
the error of reconstructed coordinates.

Multi-Resolution and Hierarchical Representation Spectral methods enable multi-resolution
analysis on meshes. The multi-resolution approach processes information and features at different scales
separately. Inspired by the success of multi-resolution methods in signal processing and image analysis,
the importance of multi-resolution analysis on meshes has been recognized since the pioneering work
of [Eck et al., 1995,Kobbelt, 1997].

[Guskov et al., 1999] generalize image-based Laplacian pyramids and wavelets to meshes, based on
mesh decimation and upsampling procedures. As an alternative, [Mahadevan, 2007] and [Zhong and Qin,
2014] construct wavelets out of Laplacian eigenfunctions. This spectral approach has a natural advantage:
It separates geometric signals at increasing frequencies, making it easy to apply multiresolution analysis
to geometric data. The multi-resolution consideration is also influential in designing practical algorithms:
A recurrent strategy we will see in this section is to apply the multi-scale organization of a spectral basis
to obtain a coarse-to-fine hierarchy, an idea that appears in hierarchical segmentation [De Goes et al.,
2008,Huang et al., 2009] and approximation of multi-scale descriptors [Vaxman et al., 2010].

12



Spectral Shape Analysis and Processing Motivated by the facts above, geometric operators and
their spectral decompositions provide a versatile toolbox for mesh processing, known as spectral mesh
processing. [Zhang et al., 2010a, Zhang et al., 2010b] survey this topic, focusing on Laplacian-based
methods. Although most methods in spectral mesh processing were originally introduced for Laplacian,
many remain valid if we simply substitute the Laplacian with an alternative operator, e.g. any of the
operators discussed in [Raviv et al., 2011b, Hildebrandt et al., 2012, Aflalo et al., 2013, Liu et al., 2017,
Wang et al., 2018b,Ye et al., 2018].

4.2 Spectral Data Analysis

Spectral shape analysis is strongly influenced by developments and advances in spectral data analysis,
particularly spectral graph theory [Chung and Graham, 1997] and manifold learning [Cayton, 2005].
These areas study the geometric structures of graphs and data manifolds, usually sharing similar con-
siderations with problems in analyzing 3D surfaces. As we will see in the section, many spectral or
operator-based methods in shape analysis can be thought as adaptions or variants of prior counterparts
in these areas; as an example, [Rustamov, 2009] points out an equivalence between the Laplacian mesh
editing and semi-supervised learning. For this reason, we highlight relevant methods in spectral data
analysis.

Spectral Graph Theory with Applications The analogy between spectral shape analysis and
spectral graph theory has been explored since the inception of spectral shape analysis and geometry
processing [Gotsman et al., 2003, Gotsman, 2003]. Indeed, many discrete geometric operators can be
thought as special instances of the graph Laplacian or adjacency matrix, with geometry-aware entries,
i.e., weights determined by geometry of the underlying polygonal mesh like edge lengths or angles. From
this view, discrete mesh analysis might be considered a specialization of graph analysis.

Earlier work in (spectral) shape analysis uses various versions of graph Laplacians constructed on the
mesh graph [Taubin, 1995,Liu and Zhang, 2007], largely inspired by applications of spectral graph theory
to image analysis and computer vision [Shi and Malik, 2000]. While graph combinatorial measurements
such as the average node degree are of interest for graph analysis, this information is irrelevant to
geometry processing, reflecting only e.g. which polygon mesh representation is used or the meshing
algorithms generated the data. To alleviate sensitivity to graph combinatorics, graph Laplacians, as well
as their spectra [Levy, 2006], were quickly replaced by the cotangent Laplacian, which converges to the
smooth Laplace–Beltrami operator and exhibits more robust behavior [Dyer et al., 2007].

Many concepts and algorithms used for mesh processing and analysis are exactly same as those for
graphs. As an example, the Fiedler vector φ1(x) is the eigenvector corresponding to the second-smallest
eigenvalue of the graph Laplacian, which has been used for graph partitioning [Fiedler, 1975, Spielman
and Teng, 1996]. Fiedler theory reveals the number of zero Laplacian eigenvalues equals to the number
of connected components in a graph; an identical statement holds for manifolds.

Manifold Learning and Data Science Manifold learning explores geometric structure in clouds
of data points. Techniques in this area employ spectral methods for analyzing data manifolds, under
the assumption that a dataset is an empirical sample from a low-dimensional manifold on which the
data resides. Many of these methods have been adapted to analyze meshes or are incorporated in mesh
processing pipelines, as we will see in §4.4.

Two classic examples from the early literature in manifold learning are IsoMap [Tenenbaum et al.,
2000] and LLE (locally linear embedding) [Roweis and Saul, 2000], which use spectral methods to find
embeddings of data that preserve global and local distances within a set of data points, respectively.
IsoMap uses multi-dimensional scaling (MDS) to embed data points, so that Euclidean distances in the
embedded space preserve, as much as possible, the geodesic distances from the original manifold. Prior to
IsoMap, [Schwartz et al., 1989] propose to flatten a curved surface by minimizing a related distance-based
distortion metric, giving a similar solution to what they referred to as the mapmaker’s problem. LLE uses
k-nearest neighbors (kNN) to build a graph over the data points, computes the (row-wise) normalized

graph Laplacian L (which is asymmetric) and its singular value decomposition (SVD) L = UΣ
1
2 Vᵀ, and

finally outputs VΣ
1
2 as the embedding.

Laplacian LLE [Belkin and Niyogi, 2003] is an variant improving LLE by considering the non-
normalized graph Laplacian, which is symmetric and whose spectrum provably converges to that of
the Laplace–Beltrami operator and applying an eigen-decomposition rather than the SVD; this is iden-
tical to how the Laplacian typically is used in shape analysis on meshes. These methods inspire mesh
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parameterization methods, as we will see in §4.4. Hessian LLE [Donoho and Grimes, 2003] replaces the
Dirichlet energy used in Laplacian LLE with the Hessian energy (whose formula is given later in Eq. 32).
There are various followups including local tangent space alignment (LTSA) [Zhang and Zha, 2004].
LTSA first constructs the approximation of tangent space at each data point, and then aligns all tan-
gent spaces, yielding a global parameterization of the underlying manifold. Later [Rosman et al., 2010]
take the topological properties of the embedding into consideration. With spirit similar to LTSA, spec-
tral affine-kernel embeddings (SAKE) [Budninskiy et al., 2017] introduces the multi-Laplacian quadratic
form Q, which is assembled from local operators Li whose null space only contain locally-affine functions
around each point i, and replaces the Laplacian matrix previously used in manifold learning with this
new matrix Q. Recent parallel transport unfolding (PTU) [Budninskiy et al., 2019] replaces the geodesic
distances obtained via Dijkstra paths as used in IsoMap with geodesic distances obtained via parallel
transport, removing the limitation that Isomap can handle only geodesically convex sampled domains.
PTU can generate a quasi-isometric, low-dimensional embedding of a manifold with arbitrary topology.

Diffusion maps [Coifman and Lafon, 2006] draw connections between the row-normalized graph
Laplacian P (defined as follows) and Markov chains. They relate P to anisotropic diffusion, proving
that P converges in a pointwise fashion to the Laplace–Beltrami operator plus a term depending on the
point-wise sampling density, when t 7→ 0+. In particular, P is defined by taking

Wij = exp

(
−d (xi,xj)

2

t

)
and P = D−1W,

where di =
∑n
j=1 Wij and D = diag (di), i.e., D is a matrix that stacks row sums from W along the

diagonal. After defining the operator P, we can compute the diffusion embedding(
e−λ1tφ1(x), e−λ2tφ2(x), · · · , e−λktφk(x)

)
(20)

for clustering data points, an embedding designed to map similar points on the manifold also close to
each other in the embedded space, while being robust and insensitive to noise.

The P used above is an example of a point cloud Laplacian operator. For applications like diffusion
maps, various results on the convergence of different versions of point cloud Laplacians are derived
in [Belkin and Niyogi, 2005, Hein et al., 2005, Belkin et al., 2008, Belkin et al., 2009, Liang and Zhao,
2013,Shi and Sun, 2017].

There are related methods in machine learning. Multiple methods [Shi and Malik, 2000, Meila and
Shi, 2001,Ng et al., 2002] employ eigenfunctions of a Laplacian or affinity matrix for spectral clustering
and segmentation on data points. Harmonic interpolation solves a Laplacian system for label propagation
in semi-supervised learning [Zhu et al., 2003]. Manifold regularization [Belkin et al., 2006] proposes to
add Dirichlet energy as a regularization term to the loss function in classification, yielding Laplacian
support vector machines (LapSVM).

4.3 Spectral Analysis: Point Embedding, Signature, and Geometric Descrip-
tors

Rather than general clouds of data points, our focus in this survey is spectral analysis of geometric data
expressed as a mesh. To this end, in this section we provide a few problems, including segmentation, point
signature computation, and distance computation, whose solutions often explicitly involve eigenfunctions
of a geometric operator, closely related to the methods we saw in §4.2.

Spectral Embedding and Segmentation Methods for mesh vertex clustering (i.e., segmentation)
follow patterns similar to those in clustering data manifolds.

As an example, the Global Point Signature (GPS) [Rustamov, 2007] considers the following high-
dimensional embedding of points x on a triangle mesh surface based on the eigenfunctions and eigenvalues
of the Laplacian: (

φ1(x)√
λ1

,
φ2(x)√
λ2

, · · · , φk(x)√
λk

)
(21)

This embedding is isometry-invariant, thanks to the use of Laplacian eigenfunctions. [Rustamov, 2007]
applies standard k-means algorithms to the embedded vertices, yielding an isometry-invariant segmen-
tation. Figure 5 illustrates the first few dimensions of the diffusion and harmonic embeddings, re-
spectively. Later methods derive analogs of this embedding for different operators, with success for
segmentation [Hildebrandt et al., 2012,Liu et al., 2017,Wang et al., 2018b].
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(a) (b) (c)

Figure 5: The Stanford bunny model with a log heat kernel log kt(x, ·) is shown in (a). The same
bunny model but replacing the x, y, z coordinates of a vertex x with (b) the harmonic embedding(
φ1(x)√
λ1
, φ2(x)√

λ2
, φ3(x)√

λ3

)
or (c) the diffusion embedding

(
e−λ1tφ1(x), e−λ2tφ2(x), e−λ3tφ3(x)

)
.

Spectral Distances Computing the distance between any pair of points on the surface is a fundamen-
tal task for shape analysis. While the geodesic distance is a natural choice, it is sensitive to noise and
small topology changes; moreover, computing full pairwise geodesic distances is expensive. Spectral dis-
tances including diffusion distance [Coifman and Lafon, 2006] and bi-harmonic distance [Lipman et al.,
2010] are alternatives with favorable robustness properties.

The diffusion distance dD(·, ·) and bi-harmonic distance dB(·, ·) between points on surface x,y ∈M
are defined as L2 distances between the corresponding spectral embeddings:

dD(x,y)2 =

∞∑
i=1

e−2tλi (φi(x)− φi(y))
2
, dB(x,y)2 =

∞∑
i=1

1

λ2
i

(φi(x)− φi(y))
2
.

The following equalities for dD and dB provide interpretations of these distances: The distance between
x and y is the integrated difference between the Green’s functions or heat kernel functions at x and y:

dD(x,y)2 ≡ k2t(x,x) + k2t(y,y)− 2k2t(x,y) ≡
∫
M

(kt(x, z)− kt(y, z))2 dz,

dB(x,y)2 ≡ GB(x,x) +GB(y,y)− 2GB(x,y) ≡
∫
M

(G(x, z)−G(y, z))2 dz,

where GB(x,y) =
∑∞
k=1

1
λ2
k
φk(x)φk(y) is the bi-harmonic Green’s function. Note diffusion distance is

not a true metric, since dD(x,y) = 0 does not necessarily imply x = y; this issue is addressed by the
bi-harmonic distance [Lipman et al., 2010].

The commute-time distance or harmonic distance [Qiu and Hancock, 2007] is popular in graph anal-
ysis, due to connections to random walks on graph:

dH(x,y)2 =

∞∑
i=1

1

λi
(φi(x)− φi(y))

2 ≡ G(x,x) +G(y,y)− 2G(x,y).

However, it cannot be defined on continuous surfaces since G(x,y)|y=x is singular.

Point Signatures and Descriptors The goal of shape descriptors or signatures is to compute a
vector per point x on a surface, such that the vector summarizes and encodes local (and sometimes
global) geometry near x. After discretization, these descriptors are expressed as per-vertex feature
vectors that can be used for higher-level tasks such as shape matching or correspondence:

• The global point signature (GPS) [Rustamov, 2007] uses the embedding in Eq. 21 as a signature,
which can be ambiguous due to rotations within eigenspaces:

GPS(x) :M→ RK , GPS(x) :=

(
φ1(x)√
λ1

,
φ2(x)√
λ2

,
φ3(x)√
λ3

)
. (22)
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• The heat kernel signature (HKS) [Sun et al., 2009] uses the diagonal of the heat kernel as a signature,
summarizing the geometry near a point x:

HKS(x, t) :M× R+ → R, HKS(x, t) := kt(x,x) ≡
∞∑
i=0

e−λitφi(x)2. (23)

The HKS is not subject to the rotation ambiguity of the global point signature (GPS). Additionally,
an “informative property” shows that for any x, HKS(x, ·) determinesM up to isometry. The HKS
has been extended using operators beyond the Laplacian, leading to the affine-invariant HKS [Raviv
et al., 2011a], the modified Dirichlet HKS [Hildebrandt et al., 2012], the Steklov HKS [Wang et al.,
2018b], and the Dirac HKS [Liu et al., 2017]. Figure 6 illustrates a typical heat kernel signature
with a fixed small time, computed using the Steklov eigenfunction, combining [Sun et al., 2009]
and [Wang et al., 2018b]: we see the signature roughly aligns with the local curvature.

Figure 6: The heat kernel signature computed using the Steklov eigenfunctions.

Developed in parallel to the HKS, the auto diffusion function (ADF) [Gebal et al., 2009] proposes
to consider the time-varying scalar field ADFt(x) := kt/λ1(x,x), which is a time scaled version of
HKS, for segmentation and skeletonization.

• The scale-invariant heat kernel signature (SI-HKS) [Bronstein and Kokkinos, 2010] modifies the
HKS to factor out the effect of scale using operations in the spatial and frequency domains.

• The wave kernel signature (WKS) [Aubry et al., 2011] is derived from the Schrödinger equation,
Eq. 14, whose solutions can be written in the form u(x, t) =

∑∞
k=0 e

iλktφk(x)fE(λk). In particular,
the WKS is defined as follows:

WKS(x, E) :M× R+ → R, WKS(x, E) := lim
T→∞

∫ T

0

‖u(x, t)‖2 ≡
∞∑
k=0

f2
E(λk)φk(x)2,

where f2
E(·) is chosen as a log-normal distribution function with parameter E:

f2
E(x) =

[∑
k

e
−(logE−log λk)2

2σ2

]−1

e
−(logE−log x)2

2σ2 .

The WKS can be interpreted as the average (over time) probability density at x. Compared to
the HKS, the WKS is more discriminative to geometric features and information at small scales,
usually leading to more accurate shape matching.

• From a signal processing perspective, the HKS and WKS apply different one-parameter filter
functions (parameterized by t or E) to λ, i.e., e−λt and f2

E(λ), respectively. Optimal spectral
descriptors [Litman and Bronstein, 2014] learn this filter function rather than using a pre-designed
function.
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• The discrete-Time Evolution Process (DEP) descriptor [Melzi et al., 2018a] considers a discrete-
time process rather than a continuous one as in HKS and WKS. The discrete-time process is
fully-specified by a generic pairwise relation function Aδ(x,y) depending on a scale parameter δ,
similar to the heat kernel kt(x,y) which depends on a time parameter t in HKS. Given an initial
function f (0)(·), this iterative evolution is very similar to the continuous diffusion in Eq. 12, with
time t replaced with discrete step index l ∈ Z:

f
(l)
δ (x) =

∫
M
Aδ(x,y)f

(l−1)
δ (y) dy.

The DEP point signature is defined as follows:

DEP(x, {1, 2, ...,K}) :M×{1, 2, ...,K} → R, DEP(x, k) := sδk(x).

in which the score function sδ(x) is defined as

sδ(x) :=

∞∑
l=1

rlδf
(l)
δ (x),

where rδ is a constant that depends on δ.

• The intrinsic shape context (ISC) descriptor [Kokkinos et al., 2012] builds a local geodesic chart
system for each x ∈ M and uses the average of some per-vertex descriptor I(x) over intrinsic
angular bins and radial bins within the chart. This corresponds to diffusion in the chart; Geodesic
CNNs (GCNN) [Masci et al., 2015] apply similar operations in learnable settings.

4.4 Shape Analysis and Geometry Processing

That operators and their spectra encode geometric information has been explored by a variety of appli-
cations in geometry processing, shape analysis, and computer graphics. Early work utilizing geometric
operators include [Reuter et al., 2005], which proposes to use eigenvalues of the continuous Laplace–
Beltrami operator as a shape representation, and [Levy, 2006] which considers the Laplacian eigenfunc-
tions as a means to understand geometry, with applications to surface registration, segmentation and
parameterization. Since then a large number of methods—mainly based on the Laplacian—has been
developed.

Geometric operators encode geometric information, from which topological properties can also be
inferred. We first look at segmentation, skeletonization, and quadrangulation, which leverage the fact
that topological structures can be extracted from level sets of functions derived from eigenfunctions
and eigenvalues. In particular, the zero level-set of an eigenfunction is called the nodal set, which
appears in many methods. Geometric operators also encode information such as symmetry. Particularly
symmetric patterns in eigenfunctions and derived descriptors reveal symmetry in the shape. [Ovsjanikov
et al., 2008] embeds shape vertices to their point-wise spectral signature and reduces the problem of
intrinsic symmetry detection to determining Euclidean symmetries in the signature space. [Thomas and
Natarajan, 2014] proposes a multi-scale symmetry detection method by examining contours of level sets
of first few eigenfunctions.

Segmentation [Liu and Zhang, 2004] apply spectral clustering methods from other fields to mesh seg-
mentation; their method applies the normalized cuts [Shi and Malik, 2000] to a point cloud Laplacian.
Extending this work, [Liu and Zhang, 2007] embed meshes to 2D using the first two nonzero eigenfunc-
tions of Laplacian and a related geometric operator, i.e., mapping x ∈M → (φ1(x), φ2(x)) ∈ R2, and
apply contour analysis to the projected planar shape for segmentation. [De Goes et al., 2008] use diffusion
distances to build a coarse-to-fine hierarchy of segments for articulated bodies. [Huang et al., 2009] use
eigenvectors of the Hessian of a nonlinear deformation energy instead of Laplacian, for hierarchically
decomposing deformable shapes. Finally, [Reuter et al., 2009] use the Laplacian nodal sets for shape
segmentation.

Related, spectral surface reconstruction [Kolluri et al., 2004] applies a variant of spectral graph parti-
tioning to a Delaunay tetrahedralization of a point cloud, to identify inside and outside tetrahedra, and
outputs triangular faces adjacent to both inside and outside tetrahedra.
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Skeletonization (and Segmentation) Skeletonization might be considered as a “dual” problem to
segmentation. As an example of this duality, [Shi et al., 2008] consider the Fiedler vector of an anisotropic
Laplacian, i.e. the scalar function φ1(x), and constructs its Reeb graph, intuitively a graph whose edges
pass orthogonally to the isolines of φ1(x) and whose vertices correspond to regions where the isolines
have a particular connectivity; in this method, the vertices of the Reeb graph roughly correspond to
segments on the surface determined by the Fiedler vector. Similarly, [Patane et al., 2008] identify critical
points (saddle and extreme points) of Laplacian eigenfunctions, applies isoline analysis to these points,
and connects them to extract a Reeb graph, from which shape segmentations and skeletonizations can
be then obtained.

Nodal sets of the Fiedler vector can be unstable. To address this issue, the Auto Diffusion Func-
tion [Gebal et al., 2009] uses diffusion to define a time-varying scalar field ADFt(x) := kt/λ1(x,x) (see
§4.3), evaluates ADFt(x) at multiple t values, extracts Reeb graphs for each of them, and finally outputs
a skeleton combining these Reeb graphs. More broadly, the Reeb graph extracts a topological skeleton
for M, and hence can be used as a (graph-valued) shape descriptor.

Parameterization and Remeshing Laplacian eigenfunctions demonstrate patterns that can be ex-
ploited and extracted for surface parameterization and quadrangulation. The most famous relevant
result, Courant’s theorem states that the number of partitions by the nodal set for the k-th Laplacian
eigenfunction φk(·) is less or equal to k [Courant, 1923].

The Morse–Smale complex associated to a real-valued function f :M→ R is a cellular decomposition
ofM into quadrangular patches. The edges of the complex form a graph onM whose vertices are critical
points of f and whose edges roughly align with directions of the gradient ∇Mf . Laplacian eigenfunctions
enjoy several properties that make them strong candidates as the generating function f . In particular,
their minima and maxima appear alternately, and critical points are evenly distributed with respect to
geodesic distance.

Spectral surface quadrangulation [Dong et al., 2006] generates an initial Morse–Smale complex from
φk(x), where k is the expected number of nodal sets; in practice, k roughly equals the eigenfunction
index thanks to Courant’s Theorem above (usually k<100). Computation of the complex is followed by
topological noise removal, patch boundary adjustment, and refinement. This yields a smooth parameter-
ization that can be used to generate a quadrilateral mesh. Examples of this technique and comparison
to other quad meshing algorithms are provided in the survey [Bommes et al., 2013].

Spherical parameterization is the task of mapping genus-0 meshes to the unit sphere. [Gotsman et al.,
2003] tackle this problem by optimizing for a graph Laplacian matrix on the mesh graph such that its
spectral embedding x∈M→ (φ0(x), φ1(x), φ2(x))∈S3 becomes a valid spherical parameterization.

Iso-charts [Zhou et al., 2004] apply an IsoMap-like procedure for mesh parameterization and spectral
clustering, as basic steps in a pipeline to decompose a mesh into low-stretch atlases/charts. Based on
the key observation that geodesic distance distortion is closely related to stretch distortion induced by
parameterization, IsoMap is used to generate the initial parameterization. A similar idea appears in the
earlier work [Zigelman et al., 2002], which applies MDS to preserve the surface geodesic distances and
uses the first two dimensions of the optimal MDS embedding as a surface parameterization, leading to a
texture map with low distance distortion.

The spectral embedding (u,v) = (φ1(x), φ2(x)) can be used as a parameterization with fairly low
distortion [Liu and Zhang, 2007]. Spectral conformal parameterization [Mullen et al., 2008] uses a gen-
eralized Fiedler vector of the conformal energy matrix C, defined via[

u
v

]ᵀ
C

[
u
v

]
:= uᵀLu + vᵀLv − 1

2

∑
eij∈∂M

(uivj − ujvi),

where L is the cotangent Laplacian and eij is an edge along the boundary. The third term in this energy
equals the total area of the parameterization. An earlier method coined intrinsic parameterization [Des-
brun et al., 2002] first proposes this energy and solves a related linear system.

Relatedly, eigenfunctions have been used for frame field design, tangential vector and n-vector field
processing on surfaces [Azencot et al., 2015,Azencot et al., 2017,Brandt et al., 2017,Brandt et al., 2018].

Data Compression Since the φi’s generalize the Fourier basis, it is straightforward to use {φi}ki=0 to
compress geometric data and signals. Spectral compression of mesh geometry [Karni and Gotsman, 2000]
projects vertex (x, y, z) coordinate functions onto {φi(·)}ki=0. [Ben-Chen and Gotsman, 2005] present
theoretical results roughly showing that spectral compression using the Laplacian basis is optimal in the
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mean-square error sense, for a random mesh whose vertex positions are drawn from certain probability
distributions. [Aflalo et al., 2015] prove the optimality of the Laplacian eigenfunctions for approximating
functions with bounded variation on surfaces.

Mesh Smoothing and Fairing As an example of generalizing signal processing to meshes, the spectral
filtering methods proposed in [Vallet and Lévy, 2008] apply low-pass, high-pass, and band-exaggeration
filters to eigenvalues, leading to effects of mesh smoothing, details sharpening, and band-feature en-
hancement, respectively. Relatedly, locally amplifying surface area according to its Gaussian curvature
produces natural exaggeration effects [Sela et al., 2015].

Feature Extraction Descriptors like heat and wave kernel signatures in §4.3 provide powerful tools
to find keypoints that can be candidates for landmark correspondences. Similarly, spectral information
can be used to detect salient points and regions on a surface. For example, spectral mesh saliency
detection [Song et al., 2014] generalizes image spectral saliency detection [Hou and Zhang, 2007] to
meshes: Simply speaking, instead of applying a filter function to eigenvalues as in spectral filtering, the
method essentially applies a filter to the log of eigenvalues, to amplify and emphasize the low-frequency
part of the spectrum.

Shape Matching and Correspondence [Ovsjanikov et al., 2010] apply the HKS to match feature
points for the correspondence problem. The influential framework of functional maps [Ovsjanikov et al.,
2012] directly computes a map F between eigenfunctions on two domains M and N , i.e., F : L2(M)→
L2(N ). Many methods have been proposed to improve this framework and extend it to alternative
applications, such as the partial shape correspondence [Rodolà et al., 2017]. We refer to the recent
course notes [Ovsjanikov et al., 2016] for an extensive survey.

Shape Differences Shape differences provide a framework to compare two shapes that are put into
correspondence using a functional map [Rustamov et al., 2013]. Given two geometric domainsM and N
as well as a functional map F : L2(M) → L2(N ), the shape difference operator D : L2(M) → L2(M)
measures the pointwise distortion induced by F onM. In particular, D modifies any function f ∈ L2(M)
linearly, i.e. the modification yields Df ∈ L2(M), such that the bilinear form is best preserved under the
map F , in the sense that ∀g ∈ L2(M) : |aM(g,Df)−aN (Fg, Ff)| is minimized. Here a(·, ·) is a positive
semi-definite bilinear form (i.e., inner product), which can be the Dirichlet energy (Laplacian), the area
form (identity operator) [Rustamov et al., 2013], or the DtN/Steklov operator in weak form [Wang et al.,

2018b]. The resulting operator D = A†MF ᵀANF reflects how the local surface geometry of M and N
differ under map F , where AM,AN is the operator A operating on the domain M,N , respectively,
operator A is the strong form that corresponds to the bilinear form a(·, ·) with a(u, v) = 〈u,Av〉M for
u, v ∈ L2(M), and the superscript ·† denotes the pseudo-inverse of an operator. Spectral basis reduction
can be applied to A· and F , decreasing the computational cost.

The shape difference framework provides methods for shape analogy tasks and shape dataset explo-
ration. Combined with a shape-from-Laplacian routine like those proposed in [Boscaini et al., 2015,Cor-
man et al., 2017a, Chern et al., 2018], it leads to applications including style and deformation transfer,
and computation of an “intrinsic average” of a few shapes by “averaging” their Laplacian eigenspaces.
Recent work [Huang et al., 2019] proposes a learning-based framework to reconstruct surfaces from shape
difference operators.

Shape Retrieval [Reuter et al., 2006] advocate using the vector of Laplacian eigenvalues as “ShapeDNA,”
an ID for shape retrieval. In “Shape Google” [Bronstein et al., 2011], descriptors including heat kernel
signatures and scale-invariant heat kernel signatures are collectively used to construct a “bag of features”
whose distributions are used to represent a shape. [Lian et al., 2013] provide a comprehensive comparison
of shape retrieval algorithms including many spectral methods.

Self functional maps [Halimi and Kimmel, 2018] provide an alternative shape representation/signature
that can be used for retrieving shapes. Conceptually similar to the construction of shape difference op-
erators, this framework studies the interaction between two different metric spaces on the same domain.
It uses functional maps between spaces spanned by the regular and the scale-invariant Laplacian eigen-
functions (see §5.5) as the shape signature.
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Geometric (Deep) Learning Geometric operators have also been applied to geometric deep learn-
ing [Bronstein et al., 2017], in architectures based on convolutional neural networks (CNNs). Geodesic
CNN (GCNN) [Masci et al., 2015] and anisotropic CNN (ACNN) [Boscaini et al., 2015] consider diffusion
and anisotropic diffusion operators as alternative models to planar 2D convolutions on a curved surface.
Surface networks [Kostrikov et al., 2018] use the Laplacian and Dirac operators in lieu of the graph
adjacency matrix used in Graph Neural Networks [Scarselli et al., 2009]. The recent work [Wang et al.,
2019] further proposes a framework for learning a family of discretized operators on meshes, including
the Laplacian and Dirac operators.

Instead of applying operators in spatial domain, Spectral graph neural networks [Bruna et al., 2014,
Defferrard et al., 2016] apply the graph Laplacian operator in the spectral domain. Synchronized spectral
CNN [Yi et al., 2016] applies and extends this approach to 3D meshes, with a setup similar to functional
maps. Deep functional maps [Litany et al., 2017] learn to refine the point-wise SHOT descriptor [Tombari
et al., 2010] to be used in a differentiable functional map layer, minimizing the geodesic error from the
ground-truth correspondence. Later unsupervised versions [Halimi et al., 2019,Roufosse and Ovsjanikov,
2018] remove the need of the ground-truth: [Halimi et al., 2019] employ a geodesic distortion loss,
and [Roufosse and Ovsjanikov, 2018] define an unsupervised loss function in spectral domain, combined
with the functional map framework.

While the deep learning methods above have gained recent popularity, the application of spectral
data to learning from geometry emerged prior to geometric deep learning. For example, [Aflalo et al.,
2011] learn a diffusion kernel for shape retrieval, and optimal spectral descriptors [Litman and Bronstein,
2014] learn spectral filter coefficients in a signal processing fashion.

Structure and Vibration Analysis In mechanics, the eigenfunctions of the stiffness matrix (Hessian)
of some nonlinear energy—which become the Laplacian eigenfunctions for a certain energy—correspond
to principal vibration modes to which the shape resonates most, under external forces and perturbations
without damping. The corresponding eigenvalues are known as the intrinsic frequencies for the shape.
Beyond the Laplacian, the bi-harmonic equation, having been considered in geometric modelling [Botsch
and Kobbelt, 2004], is another common linearized elastic model, whose eigenfunctions represent modes
of vibration of a thin elastic plate.

Acoustics The eigenvalues of the stiffness matrix correspond to the characteristic frequencies of the
sound made by the shape, appearing in a large number of works in sound simulation [van de Doel and
Pai, 1996,van de Doel and Pai, 1998,O’Brien et al., 2002,Chadwick et al., 2009,Ren et al., 2013,Langlois
et al., 2014]. This is the forward problem of computing eigenvalues from the shape. Next we talk about
its inverse problem, that is, designing a shape making sound of certain frequencies.

Shape Optimization Shape optimization searches the optimal shape that minimizes a given objective
functional—which frequently involve eigenvalues and eigenfunctions—from a class of shapes. In the in-
verse acoustic problem of instrument design, eigenvalues are directly used as part of an objective function
for shape optimization [Yoo et al., 2006,Yu et al., 2010,Bharaj et al., 2015]. In shape analysis, [Cosmo
et al., 2019] propose isospectralization, optimizing and deforming shapes to match a given spectrum,
as a prepossessing step for better correspondence. See [Henrot, 2017] for recent theoretical progress in
spectral geometry with connections to shape optimization.

Reduced Simulation Constraining shape deformation to be within the span of top eigenfunctions of
some operator reduces the degrees of freedom for physical simulation significantly, achieving interactive
speeds for simulating deformations of large meshes. Using eigenfunctions of the stiffness matrix associated
to a physical system is known as modal analysis [Pentland and Williams, 1989, Hauser et al., 2003,
Barbič and James, 2005, Hildebrandt et al., 2011]; Laplacian eigenfunctions are often used for reduced
deformation, when the deformation energy is not specified [Rong et al., 2008]. The scalar- and vector-
valued Laplacian eigenfunctions are also used for reduced fluid simulation [Liu et al., 2015].

4.5 Other Aspects of Spectral Shape Analysis

Localized Bases Laplacian eigenfunctions, as the generalization of the Fourier basis to manifolds, are
globally supported, which can be a limitation in many applications. Reduced simulation is an example:
deformation, restricted as a linear combination of eigenfunctions, must be global, leading to counter-
intuitive visual effects. Hence, some works promote locality and sparsity in a spectral-type basis. For
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instance, Compressed manifold harmonics (CMH), originating in scientific computing [Ozoliņš et al.,
2013], are introduced to graphics in [Neumann et al., 2014]. These methods add an additional term, the
L1 norm on eigenfunctions φi(·), to the objective in the original eigenvalue problem (see Eq. 7), to promote
sparsity in the solution. Relatedly, [Bronstein et al., 2016] study how to appropriately and consistently
discretize the L1-norm on meshes. Localized manifold harmonics (LMH) [Melzi et al., 2018b] propose
to modify the standard Laplacian, yielding a new operator whose eigendecomposition leads to localized
orthogonal bases. Multiscale diffusion wavelets [Mahadevan, 2007] construct hierarchical wavelet trees
using Laplacian eigenfunctions.

Bases for Shape Collections When multiple poses of a shape are available, methods like the singular
value decomposition (SVD) or proper orthogonal decomposition (POD) provide modes that are frequently
used for modal analysis in engineering sciences, see e.g. [Kunisch and Volkwein, 2002]. Data driven
methods, like those used in tensor factorization on shape frames, animation compression [Alexa and
Müller, 2000], and inverse skinning [Kry et al., 2002], also involve similar techniques; see the recent
survey [Jacobson et al., 2014] for an extensive review. Relatedly, given a collection of 3D shapes, fuzzy
correspondence [Kim et al., 2012] proposes a framework for robustly computing point correspondence. It
first constructs an approximate shape-wise correspondence matrix C ∈ Rns×ns, where s is the number
of shapes and n the number of vertices in each shape, and then applies spectral analysis to C. The
similarity between two vertices is defined as the distance between their spectral (diffusion) embedding of
C.

When there are multiple non-isometric shapes, Laplacian eigenfunctions are not compatible across
shapes. To address this issue, coupled quasi-harmonic bases [Kovnatsky et al., 2013] study the joint diago-
nalization problem of Laplacians computed on shape collections. Laplace–Beltrami basis pursuit [Schon-
sheck et al., 2018] aligns the eigenfunctions between two shapes, with applications to non-isometric
shape registration. It optimizes for a conformal deformation of the source shape, such that the Laplacian
eigenfunctions of the deformed shape match those on the target shape.

4.6 Numerical Aspects

Most of the applications above rely on matrix approximations of an operator designed to capture quan-
tities on a smooth surface. Machinery from numerical analysis is needed to justify the discrete ap-
proximations of smooth quantities. Algorithms that are well-founded numerically tend to have stronger
invariance to remeshing and other common confounding factors in geometry processing.

Convergence When M is a flat domain in Rn, the mathematical theory of FEM establishes con-
vergence of the linear problem Au = Mf , showing that u converges to u(·) under suitable assump-
tions [Brenner and Scott, 2007]. Similarly, the continuous eigenvalue problem is approximated by the
generalized eigenvalue problem of the discretized matrix system

Aφ = λMφ s.t. φᵀMφ = I. (24)

The discrete spectrum {λi,φi}ki=0 usually converges to the continuous one, proved on a case-by-case
basis using similar techniques [Sun and Zhou, 2016].

Surprisingly, for a curved surfaceM, convergence analysis of linear problems involving the Laplacian
only recently has been established [Holst, 2001,Dziuk and Elliott, 2013]. A rigorous analysis of FEM on
manifolds inevitably requires theorems and techniques involving geometric analysis on curved surfaces,
machinery that is not necessary for FEM on flat domains.

Eigensolvers Most methods like FEM yield sparse linear systems whose eigenvalue problems needs to
be solved. Recall that linear systems can be solved using either direct or iterative algorithms; [Botsch
et al., 2005] include pointers to many sparse linear solvers and as well as the corresponding preconditioners
for systems arising in mesh processing. Similarly, for the eigenvalue problem, direct or iterative algorithms
can be employed. Direct solvers output all eigenvectors and eigenvalues, while iterative solvers return the
first few ones. In most applications, only the first few eigenfunctions/eigenvalues are needed, in which
case iterative solvers are favored.

Iterative eigensolvers, including shifted power method, orthogonal projection methods, and Krylov
subspace methods (e.g. Arnoldi method and Lanczos algorithm), further combined with filtering and
restarting techniques and the use of a preconditioner, have a large number of variants [Saad, 2011]. The
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state-of-the-art methods, including the implicitly restarted Arnoldi method, are widely available in sparse
linear algebra packages including ARPACK [Lehoucq et al., 1998]. Some methods, particularly BEM for
integral-based operators, lead to dense linear systems. They can be solved by iterative algorithms like
LOBPCG (locally optimal block preconditioned conjugate gradient) [Knyazev, 2001], which only asks
for an oracle that implements the matrix-vector product, with implementations widely available.

Accelerations and Preconditioners Iterative eigensolvers can be accelerated using spectral shift and
preconditioning. In computer graphics, since [Dong et al., 2006] a shift eigenvalue solver is frequently
used, with a properly chosen value of spectral shift σ. σ prescribes the maximum frequency (eigenvalue)
of interest and separates the eigenvectors out of the range [0, σ), efficiently accelerating the convergence.

The use of a preconditioner can greatly accelerate the convergence of an iterative linear or eigen-solver.
Preconditioners proposed first for linear problems can be used for eigensystems as well, including those
based on the incomplete Cholesky/LU factorization, the multi-grid methods [Golub and Van Loan, 2012],
or more general black-box algebraic multi-grid methods. Inspired by the breakthroughs in theoretical
computer science of linear time graph preconditioners [Spielman and Teng, 2004], in [Krishnan et al.,
2013] a multi-level preconditioning scheme is efficiently implemented for the Laplacian, with linear time
and memory complexity, successful applied to mesh and image editing.

For for dense BEM systems, efficient approximations can be obtained by employing the hierarchical
matrix [Börm et al., 2003] or fast multipole [Coifman et al., 1993] methods.

Multiresolution, Subsampling, and Approximation Methods There are multiple methods to
approximate eigenfunctions. Since low-frequency eigenfunctions are stable to sampling rate, one approach
to accelerate computations is to reduce the mesh size. This can be done by either explicitly maintaining
a smaller downsampled mesh, or implicitly using algebric prolongation and restriction operators like ones
in multigrid method [Brenner and Scott, 2007].

The Nyström subsampling method [Williams and Seeger, 2001,Drineas and Mahoney, 2005] samples
columns from the operator matrix. [Liu et al., 2006] apply the Nyström subsampling method to efficiently
approximate eigenvectors; farthest point sampling is recommended over random point sampling for better
accuracy. Multiresolution techniques are used in [Dong et al., 2006] and [Wang et al., 2018b] for Laplacian
and Steklov eigenvalue problems, respectively. [Wang et al., 2018a] apply low-rank estimation through
the Nyström method to the kernel matrix in kernelized functional maps. [Vaxman et al., 2010] introduce
a multiscale approach to evaluate heat kernels hierarchically.

The recent work [Nasikun et al., 2018] proposes a fast approximation scheme for the Laplacian
eigenfunctions. It first constructs a subspace, and then solves the eigenvalue problem in variational form
(Eq. 7) but restricting the solution within the subspace. The subspace, whose construction is inspired by
skinning weights for shape deformation, is fast to compute and capable to well approximate low-frequency
functions.

Robustness [Dyer et al., 2007] empirically study the robustness of the Laplacian eigenvalues when
evaluated on different discretizations of the same object, showing superiority of the mesh Laplacian
over the graph Laplacian. Exploring the fact that lowest eigenvalues are robust to sampling, the recent
spectral coarsening [Liu et al., 2019] algorithm constructs and optimizes a sparse operator matrix, of
a much smaller size than the mesh size, whose lowest eigenvalues well preserve those of the original
geometric operator. It first applies a combinatorial coarsening procedure to select key nodes, and then
uses the nodes to construct a graph Laplacian. Entries of this Laplacian are determined by minimizing
the error of multiplying the Laplacian to the ground truth top k eigenfunctions.

Padé Approximation of Heat Kernel and Distance For some problems, it is possible to avoid
computing the sequence {φi, λi}ki=0 altogether. As an example, we have seen that the matrix exponential
e−tL and reciprocal 1/Lp are frequently used in operator-based geometry processing, and it suffices to
approximate these matrix functions directly. To this end, [Patané, 2015,Patané, 2017] explores the idea
of using the Padé approximant of matrix exponentials and reciprocals. Generically speaking, the Padé
approximant of a function is a ratio of two polynomials P (·), Q(·) whose coefficients can be derived using
a Taylor expansion. For instance, the following expression gives the Padé approximation of the matrix
exponential:

e−tL :=

∞∑
i=0

(−tL)i

i!
≈ P (L)

Q(L)
= c0I +

k∑
i=1

ci
L + siI
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we have the last equality, as the result of algebraic factoring of the polynomials. Applying this operator
reduces to solving a few linear systems rather than solving an eigenvalue problem. [Patanè, 2017] reviews
Laplacian kernels and distances including numerical aspects of fast approximation.

5 Relevant Geometric Operators

In this section, we will discuss choices of the geometric operator A to perform spectral shape analysis.
Relevant geometric operators roughly can be categorized as coming from two approaches. The first
approach considers a shape as a thin shell specified by the surface; all intrinsic and some extrinsic
methods fall in this category. The second approach considers a shape as a 3D solid whose boundary is
specified by the surface. In this section, we first discuss methods using the first approach, and then those
using the second approach.

5.1 Identity Operator, Area Form, and Mass Matrix

When discretizing a general linear operator A : L2(M) → L2(M) or equivalently the bilinear form
a(·, ·) : L2(M)× L2(M)→ R, FEM outputs the final discrete operator in the form M−1A, where M is
the mass matrix.

As an example, when A is the identity operator, the corresponding bilinear form is a(u, v) =
∫
M uv.

If we let u, v = 1R, i.e., the constant function supported on region R ∈ M, then a(u, v) evaluates to
the area of R. For this reason, a(u, v) =

∫
M uv is also frequently referred to as the area form. For this

simple identity operator, we have A = M, yielding the discrete operator M−1A = I; in other words,
the mass matrix M is the discrete weak form of the identity operator. M is also a discrete area form, in
that 1ᵀM1 evaluates to the total area of a triangle mesh.

Despite its simplicity, the area form already reveals interesting information about the shape. The
shape difference framework [Rustamov et al., 2013] introduces an area-based shape difference, which
measures the area distortion between two surfaces under a functional map using measurements derived
from the area form.

Discretization: Full Mass Matrix Following exactly the FEM, we have Mij = 〈φi, φj〉M. Using a
piecewise linear basis function on a triangle mesh, M evaluates to the following expression:

Mij = 〈φi, φj〉M =
∑

T∈T (i)∩T (j)

∫
M
φiφj =

∑
T∈T (i)∩T (j)

{
1
6area(T ) if i = j
1
12area(T ) otherwise,

where T (i) is the set of triangles adjacent to vertex i. Such M is referred to as the full mass matrix,
which has the same sparsity pattern as the graph Laplacian induced by the mesh graph.

Discretization: Lumped Mass Matrix The full mass matrix M is a sparse but non-diagonal ma-
trix, making it expensive to invert M or solve the linear system Mx = b, where b is e.g. the mean
curvature normal in Laplacian smoothing [Sorkine et al., 2004]. In practice, instead of using this exact
full mass matrix, a lumped (diagonalized) mass matrix is usually used instead. This substitution can be
justified, in the sense that the asymptotic convergence rate remains the same if a lumped mass matrix
is used [Ciarlet, 2002]. The diagonal entries of a lumped mass matrix associate each vertex i with some
area Ai surrounding it, such that Mii = Ai. Popular area dividing schemes lead to the barycentric or
Voronoi mass matrices.
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(a) Barycentric area. (b) Voronoi area.

Figure 7: The barycentric area (a) and the Voronoi area (b) associated to the vertex in the center.

For any triangle T in the mesh, the barycentric mass matrix Mb simply associates 1
3Area(T ) to each

of T ’s incident vertex, as shown in Figure 7(a)

Mb
ii =

∑
T∈T (i)

1

3
area(T ).

The Voronoi mass matrix Mv sets Mv
ii as the Voronoi area around vertex i, i.e., the area of a

neighborhood in the Voronoi diagram as shown in Figure 7(b). In [Meyer et al., 2003], the Voronoi mass
matrix is recommended, since it leads to a provably tight error bound when used to compute the mean
curvature; a modified Voronoi scheme is proposed to handle negative areas due to obtuse triangles.

5.2 Laplace–Beltrami (Intrinsic Laplacian)

In the extrinsic 2-dimensional space (flat planar domain), the Laplacian operator is defined as: ∆R2 =
∂2

∂x2 + ∂2

∂y2 . The manifold Laplacian (Laplace–Beltrami) generalizes this definition to 2-manifolds, includ-
ing curved surfaces, as follows:

∆M = ∇M · ∇M =
1√
|det g|

∂i

(√
|det g|gij∂j

)
(25)

where gij is the metric tensor and (gij) = (gij)
−1 is the inverse metric. This definition of Laplacian only

involves the metric of M; in other words, the Laplacian is an intrinsic operator, remaining invariant
under isometric transformations which does not change the metric g.

Harmonic functions Harmonic functions, i.e., function u(·) such that ∆Mu = 0, enjoy a long list
of special properties, including the Mean Value Theorem, which roughly states that u(x) equals to the
average value of u(·) evaluated in any neighborhood of x, and consequently the Maximum Principle,
which states that extrema of u(·) must lie on the boundary ∂M. Additionally, harmonic functions are
C∞. This is a remarkable fact: although the definition of harmonic function only involves second-order
derivatives, the condition ∆Mu = 0 is so strong that u(·) has to be infinitely differentiable (i.e. smooth).

These properties contribute to the wide applicability of the Laplacian operator. In mathematics
and physics, the Laplace equation Eq. 1 is particularly common, describing a wide range of physical
phenomena including static electric potential fields, steady-state fluid flow, equilibrium states of diffusion
processes and temperature distributions, and others. These models have been introduced to graphics
and geometry processing, appearing in a large number of early works: Laplacian mesh editing [Sorkine
et al., 2004, Sorkine, 2005], Poisson mesh editing [Yu et al., 2004], Poisson reconstruction [Kazhdan
et al., 2006], Harmonic coordinates [Joshi et al., 2007], Green coordinates [Lipman et al., 2008], mesh
deformation and fairing [Botsch and Kobbelt, 2004], and so on. Solutions to the Laplacian system are
robust to noises and sampling bias, favorable in practical applications.

Discretization On flat or curved triangle meshes, the Laplacian operator has the following celebrated
cotangent formula [Pinkall and Polthier, 1993]:

Lij =


1
2 (cotαij + cotβij) if {i, j} ∈ E

−
∑
j 6=i Lij if i = j

0 otherwise,

(26)
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where αij , βij are the two angles opposite to edge ij, as labeled in Figure 8.

eij

j

i

eji
αij βij

k hp q

Figure 8: An illustration of notations used in this paper. p, q are two adjacent triangles. Triangle p
consists of vertices ikj, and triangle q consists of vertices ijh. αij and βij are the two angles opposite to
the undirected edge ij in the two triangles, respectively. eij = −eji is a pair of opposite directed edges
ij and ji.

The contangent formula in Eq. 26 can be derived in many ways. Using FEM, this formula can
be derived by evaluating Lij as the inner product between gradients of hat basis functions Lij =
−〈∇Mφi,∇Mφj〉M, where φi is piecewise linear basis (hat basis) centered at vertex i. Evaluating
this integral is a standard computation using calculus; the exact steps of calculation can be found in
e.g. [Zhang et al., 2010a]. An alternative derivation of the formula Eq. 26 using the finite volume method
is given in [Botsch et al., 2010, Chapter 3.3]. A derivation using DEC can be found in e.g. [Hirani, 2003].

The discrete approximants can be understood in the strong sense that ∆Mu ≈ M−1Lu or in the
weak sense that

∫
M(∇Mu)2 ≈ −uᵀLu, where M is the mass matrix. Using an lumped mass matrix

leads to the following discrete definition of ∆M on a triangulated mesh:

∆Mu (vi) ≈
1

Mii

∑
vj∈N1(i)

1

2
(cotαij + cotβij) (uj − ui)

where N1 (i) is the set of 1-ring neighbors adjacent to vertex i.

5.3 Combinatorial and Graph Laplacians

The signal processing approach to geometry processing was first introduced in the seminal work [Taubin,
1995], generalizing classical discrete Fourier analysis to discrete surface signal analysis. Prior to the
popularity of the cotangent Laplacian, the uniform Laplacian (Tutte Laplacian) or combinatorial Lapla-
cian [Zhang, 2004] was used instead. The uniform Laplacian [Taubin, 1995] is a graph Laplacian with
uniform weights:

(Lu)i :=
1

|N1 (i)|
∑

vj∈N1(i)

(uj − ui) .

This purely combinatorial and topological definition fails to converge to a continuous operator that
captures the geometry of the surface. This discrepancy, in practical applications, can lead to unde-
sirable behavior; as an example, the resulting parameterization can have large distortions as observed
in [Zhou et al., 2004]. This issue is resolved by the geometry-aware Laplacian, which behaves more con-
sistently compared to the graph Laplacian; a qualitative comparison of spectral behaviors can be found
in e.g. [Sorkine, 2006,Dong et al., 2006]. For this reason, graphics methods based on the graph Laplacian
have been replaced by those using the cotangent Laplacian. Despite the drawbacks, eigenfunctions of
graph Laplacians, favored for their simplicity, have been applied to a variety of geometric deep learning
methods recently such as the spectral mesh CNN [Yi et al., 2016].

5.4 Restricted Laplacian

The restricted Laplacian [Chuang et al., 2009] also discretizes the Laplace–Beltrami operator, but instead
of using piecewise linear hat basis φi(·), it uses a different basis bi(·) defined in the extrinsic 3D space:

Lij = 〈∇Mbi,∇Mbj〉M.

In particular, the basis bi(·) is chosen as spatial polynomials (obtained as product of second order B-spline
basis) supported on nearby voxels. Although the basis is defined extrinsically, the resulting operator is
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close to the cotangent Laplacian in Eq. 26 and converges to the same intrinsic Laplacian under mesh
refinement. A major advantage of this restricted Laplacian is its robustness to mesh tessellation: the
cotangent Laplacian has undesirable numerics and behavior on meshes with low-quality tessellation since
the function cot θ →∞ as θ → 0.

5.5 Scale Invariant Laplacian

In Eq. 25, the Laplacian can be defined given any metric g, not necessarily the natural metric induced by
the embedded space R3. Following this observation, [Aflalo et al., 2013] proposes to use an alternative
metric g̃, the scale and isometry invariant metric, which scales the original metric by g̃ij = |K|gij ,
where K is the Gaussian curvature. This modified metric factors out the effect of scaling, allowing
scale-invariant analysis. This new metric tensor induces a new Laplacian ∆g̃, using the same definition
in Eq. 25 but replacing g with g̃. The new Laplacian ∆g̃ and its derived shape descriptors, by design, are
scale-invariant. Prior work [Bronstein and Kokkinos, 2010] develops scale-invariant descriptors directly,
without introducing a scale-invariant metric. The scale invariant metric is also introduced for volumetric
domains [Raviv and Raskar, 2015].

The scale invariant Laplacian ∆g̃ is discretized as K−1M−1L, where M,L are the same (lumped)
mass matrix and cotangent matrix used for intrinsic Laplacian, and K is a diagonal matrix such that
Kii =

√
K2
i + ε2, where Ki is the discrete Gaussian curvature at vertex i. Ki can be approximated as

Ki =
2π−

∑
j γ

i
j

1
3Ai

, where γij is an angle adjacent to vertex i, and Ai again is the area of vertex i.

Self functional maps [Halimi and Kimmel, 2018] propose to use functional maps between eigenfunc-
tions of ∆g̃ and ∆g as a shape signature.

5.6 Affine and Equi-Affine Invariant Laplacian

The sequence of works [Raviv et al., 2011b, Spagnuolo et al., 2012, Raviv et al., 2014a, Raviv and Kim-
mel, 2015] consider the equi-affine and affine invariant geometry for analyzing shapes under non-rigid
transformations. Affine invariance means that surfaces are considered the same under affine transforma-
tions, i.e., linear transformations x 7→ Ax + b, including squeezing and shearing. Equi-affine invariance
means that surfaces are considered the same under affine transformations that preserve volumes, i.e.,
det(A) = 1. Particularly, an equi-affine invariant metric is first defined in [Raviv et al., 2011b], on top of
which an equi-affine invariant Laplacian can be constructed, again using the same definition in Eq. 25.
The later [Raviv and Kimmel, 2015] obtain an affine invariant metric and the derived affine invariant
Laplacian, by applying the technique of scale invariant metric construction [Aflalo et al., 2013] to the
equi-affine invariant metric.

[Raviv et al., 2011a] apply this insight to a combined geometry-color space, constructing shape
descriptors fusing geometric and photometric information. [Raviv et al., 2014b] apply the affine invariant
approach to medical imaging, evaluating local contractions of soft tissues.

5.7 Anisotropic Laplacian

One implicit assumption in deriving the (regular) Laplacian ∆M is the isotropic assumption, that within
a local chart (tangent plane) the model assumes there is no difference along any direction. Consequently,
the diffusion equation associated with ∆M assumes that the heat diffuses at the same speed in all
directions, as in Figure 2. This assumption can be removed, leading to a more general model.

In the flat domain R2, removing isotropy means that ∆R2 = ∂2

∂x2 + ∂2

∂y2 is replaced by the more general

formula ∆A
R2 =

∑2
i,j=1

∂
∂xj

[
aji(x) ∂

∂xi

]
, where aji(x) is a function of x. On a curved surface, the formula

becomes the expression
∆A
M = ∇M · (A(x)∇M)

where A(x) ∈ R2×2 is the thermal conductivity tensor (matrix) that operates on tangent vectors. ∆A
M

is the anisotropic Laplacian operator; the additional degrees of freedom to choose a tensor field A(x)
allows the anisotropic Laplacian to be directionally sensitive.

[Andreux et al., 2014] propose to use an anisotropic Laplacian for shape analysis, surpassing methods
based on the usual isotropic Laplacian by a large margin on tasks including segmentation and region
detection. Anisotropic diffusion descriptors [Boscaini et al., 2016b] consider spectral feature descriptors
derived by the anisotropic Laplacian, and propose to learn anisotropic kernels. Learnable anisotropic
kernels have been further applied to geometric deep learning to construct anisotropic convolutional neural
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networks (ACNN) [Boscaini et al., 2016a]. A more restrictive anisotropic Laplacian has been proposed
earlier in [Shi et al., 2008] to extract Reeb graphs and skeletons; this version of operator amounts to
setting a12(x) = a21(x) = 0 and a1,1(x) = a2,2(x) in the general form.

Discretization The anisotropic diffusion kernel A(x) needs to be prescribed in a pointwise fashion,
usually in a local coordinate system; [Andreux et al., 2014] use principal curvature directions for this
purpose, and [Boscaini et al., 2016b] propose an alternative kernel parameterization independent of the
extrinsic curvature. Following [Andreux et al., 2014], we assume an orthonormal frame field is given
û, v̂ ∈ R3, which can be e.g. the directions of principal curvatures. The thermal conductivity tensor
A(x) is given per-triangle as Uijk ∈ R3×3, operating w.r.t. the frame field û, v̂. Let êij ∈ R3 denote the
normalized edge vector from vertex i to vertex j. Define H as the shear matrix, which depends on U
and A(x) and encodes anisotropic scaling up to an orthogonal basis change; for an exact formula for H,
we refer to the original paper [Andreux et al., 2014]. Then, we can write

Lij =



1

2

(
〈êkj , êki〉H

sinαij
+
〈êhj , êhi〉H

sinβij

)
if {i, j} ∈ E

−
∑
k 6=i

Lik if i = j

0 otherwise

(27)

where 〈·, ·〉H is the H-weighted inner product, αij , βij are the two angles opposite to edge ij, and k, h
are opposite vertices on which αij , βij locate at, respectively, as labeled in Figure 8. In the isotropic
case, we have H = I.

5.8 Hessian and Normal Restricted Hessian: A Family of Linearized Energies

The Hessian matrix of any nonlinear deformation energy at the rest pose can be used as an alternative to
the Laplacian. This Hessian is guaranteed to be p.s.d., since the deformation energy is minimized at the
rest pose. Discussed in [Zorin, 2005,Hildebrandt et al., 2010], this observation provides an approach to
systematically derive new operators by linearizing any nonlinear deformation energy. Analyzing eigen-
modes of the Hessian is known as modal analysis, a technique that has been applied to reduced physical
simulation [Barbič and James, 2005], shape segmentation [Huang et al., 2009], and shape analysis [Hilde-
brandt et al., 2010].

The resulting Hessian is a matrix in R3n×3n for a mesh with n vertices, and its eigenfunctions in R3n

can be thought of as principal velocity fields along which the energy varies. Analogous to the regular heat
kernel signature introduced as the trace of heat kernel of Laplacian, [Hildebrandt et al., 2010] introduce
a vector version named vibration signature, which uses the principal velocity eigenmodes. Similarly, a
vector-based the vibration signature is introduced using a similar definition to the diffusion distance.

[Hildebrandt et al., 2010] also propose restricting the velocity to the normal direction, leading to a
matrix in Rn×n.

5.9 Modified Dirichlet Energy

Applying the Hessian approach to the thin shell energy leads to the modified Dirichlet energy [Hildebrandt
et al., 2010, Hildebrandt et al., 2012]. The modified Dirichlet energy is the sum of the Dirichlet energy∫
M

1
2‖∇Mu(x)‖22 and an additional term∫

M

1

2
(κ2

1(x) + κ2
2(x))u(x)2 ≡

∫
M

(
H(x)2 − 1/2K(x)

)
u(x)2

where κ1(x) and κ2(x) are the two principal curvatures at x. In geometric modeling, when u(x) = 1(x)
the additional term is often referred to as the total curvature functional and is closely related to the
Willmore energy [Zorin, 2005], that is,

∫
M

1
4 (κ1(x)− κ2(x))2 ≡

∫
M
(
H(x)2 −K(x)

)
.

The additional term is extrinsic, penalizing u(·) in regions with large extrinsic bending. Applying the
spectral surface quadrangulation method of [Dong et al., 2006], but instead using these new eigenfunc-
tions, yields quadrangulations that better align to the extrinsic curvature of the surface. The descriptors
and distances derived using the modified Dirichlet energy are sensitive to extrinsic curvatures.
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5.10 Hamiltonian (Schrödinger) Operator

The Hamiltonian operator [Choukroun et al., 2018b] H, or the Schrödinger operator [Choukroun et al.,
2018a], is an elliptic operator of the form

Hf = −∆Mf + Vf, (28)

where f ∈ L2(M), and V :L2(M)→ L2(M) is the diagonal operator defined as [Vf ](x) = V (x)f(x), in
which V :M→ R is a prescribed real-valued scalar function.

The weak form of the Hamiltonian operator amounts to modifying the Dirichlet energy by adding
the term ∫

M
V (x)u(x)2.

This additional term penalizes u(·) differently on different regions on M. In particular, using the vari-
ational definition of the eigenvalue problem, the lowest eigenfunctions will avoid regions where V (x) is
large and will instead concentrate on regions with low potential. [Choukroun et al., 2018a] study the
problem of designing potential functions.

The PDE associated with the operator, the Schrödinger equation, can be viewed as replacing the
Laplacian in the wave equation with the Hamiltonian operator. The Schrödinger equation in quantum
mechanics prescribes the probability wave density function Ψ(x, t) of a particle with mass m under
potential field V :

i~
∂Ψ

∂t
=
−~2

2m
∆MΨ + VΨ, (29)

where ~ is the Planck’s constant and |Ψ(x, t)|2 is interpreted as the probability density distribution.

5.11 Curvature Laplacian

Among the earliest work applying a spectral approach to shape analysis, [Liu and Zhang, 2007] introduce
a graph Laplacian L called curvature Laplacian. L := D−W, where D is a matrix whose diagonal stacks
summations of rows in the weight matrix W, i.e, di =

∑n
j=1 Wij ,D = diag (di), and W is defined as

Wij =

{ (∣∣κmini

∣∣+
∣∣κminj

∣∣) |eij |
h |〈

eij
|eij | , z〉| if κmini < 0 or κminj < 0

ε otherwise,

where κmini is the minimal principal curvature at vertex i, eij is the (unnormalized) edge vector of edge
ij (as labeled in Figure 8), h is the average edge length in the mesh, and z is the normalized average of
the directions for curvatures κmini and κminj . When κmini , κminj ≥ 0, which implies local convexity, Wij is
set to a small value ε merely to maintain mesh connectivity. An edge ij will have a large weight if vertex
i or j has a negative minimal principal curvature direction roughly aligning with eij ; this implies that
locally the mesh is bent roughly along edge ij, so the edge ij should not be cut in a spectral embedding
using this operator. The spectral embedding of this Laplacian, combined with contour analysis, results
in segmentation that is aware of the extrinsic bending.

5.12 Concavity-aware Laplacian

With the observation that vertices on concave seams are often part of potential segmentation boundaries,
[Au et al., 2012,Wang et al., 2014] propose a concavity-aware Laplacian of the following form:

Lij =


wij∑

{i,k}∈E wik
if {i, j} ∈ E

− 1 if i = j

0 otherwise,

where E is the set of edges, and wij is a concavity-sensitive weights:

wij =
eijβ

|Ki|+ |Kj |+ ε
.

In this expression, Ki is the Gaussian curvature at vertex i, and β = 0.01 if either i or j is a concave vertex
and β = 1 otherwise. The vertex concavity factor β is determined locally by using the inner product
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between edge vector directions and normal difference, or more robustly via PCA within the vertex’s
1-ring neighborhood; to further improve robustness, this operator can be constructed on a smoothed
mesh.

[Au et al., 2012] define solutions to linear systems involving the concavity-aware Laplacian to be
concavity-aware fields, whose isolines align with concave seams and serve as candidate cuts. [Wang et al.,
2014] use the eigenfunctions of the concavity-aware Laplacian in a framework involving hierarchical
spectral analysis and isoline-based boundary detection.

5.13 Extrinsic and Relative Dirac Operators

The Dirac operator D, named after Paul Dirac, is a square root of the negative semi-definite Laplacian
operator, whose definition thus has to resort to number systems with imaginary parts. In 1D we have

D =
√
−1 ∂

∂x andD2 = − ∂2

∂x2 = ∆x; this definition can be generalized to a curved surface. Dirac operators
are defined to operate on spinors on abstract manifolds, and in particular on a 3D surface, spinors can
be understood as a quaternion-valued fields, suggesting the notation D : L2(M;H)→ L2(M;H). There
are multiple Dirac operators D; we discuss the extrinsic Dirac operator [Kamberov et al., 1996] first.

Extrinsic Dirac Operator Df Identifying R3 with Im(H), a 3D surface can be defined as a map f :
M→ H, i.e., from a point on the (abstract) surfaceM to R3. The differential of the map, df : TM→ H,
maps a tangent vector to R3 or Im(H).

Consider a surface deformation that applies a local conformal transformation (i.e., rotation and
scaling) to each tangent plane, using a smooth quaternion field φ(·). In quaternion language, this
procedure can be written as a pointwise modification on df to d̃f = φ̄ · df · φ. For d̃f to be integrable,
i.e., consistent in the sense that the modification remains the differential of a surface, the following Dirac
equation (or integrability condition) has to hold:

Dfφ = ρφ (30)

where ρ :M→ R is a real-valued function that controls local distortion of the curvature, and Df is the
extrinsic Dirac operator defined as

Dfφ := −df ∧ dφ

|df |2
.

Here, |df |2 is the squared length element that corresponds to the unsigned area element for surface
f . [Crane et al., 2011] propose to use the Dirac equation Eq. 30 to compute the conformal transformation
φ(·) of a triangle mesh, with prescribed function ρ(·) encoding curvature information. This work proposes
the following discrete version of the extrinsic Dirac operator D ∈ H|F |×|V |. Dpi is nonzero as long as
vertex i is within triangle p, given by the expression

Dpi = − 1

2Ap
e(i)
p ,

where Ap is the area of triangle p, and e
(i)
p is the opposing edge vector of vertex i within triangle p in

quaternion value. The right-hand rule has been assumed, such that edge vectors are oriented counter-
clockwise around each triangle. Numerically, a quaternion-valued matrix can be equivalently written
as a real-valued matrix by expanding each entry into a 4 × 4 block. The extrinsic Dirac operator also
appears in conformal surface flows [Crane et al., 2013a], with applications to surface fairing. Surface
Networks [Kostrikov et al., 2018] use this version of Dirac operator in deep neural networks, to capture
extrinsic geometric information.

Relative Dirac Operator DN As mentioned earlier, Df can be thought of as a square root of the
Laplacian. This phrase can be understood via the relation

D2
fφ = ∆φ+

dN ∧ dφ

|df |2

where N is the Gauss map. [Liu et al., 2017] make the observation that the additional term

DNφ := Df,Nφ = −dN ∧ dφ

|df |2
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defined as the relative Dirac operator of a single surface f , is a purely extrinsic operator. The closely
related relative Dirac operator between two surfaces f1, f2 with correspondence is defined as

Df1,f2φ := −df2 ∧ dφ

|df1|2
.

With this theory in place, [Liu et al., 2017] use the following one-parameter family of operators to linearly
blend the Laplacian and the relative Dirac operator

L(τ) := (1− τ)∆ + τDN .

Since the relative Dirac operator vanishes on purely flat regions, this blending with the Laplacian injects
ellipticity (positive definiteness) that constrains the large kernel of the operator and stabilizes the lowest
eigenfunctions.

By considering φ as a face-based function, [Ye et al., 2018] define an alternative discrete extrinsic Dirac
operator DE ∈ H|F |×|F |. We denote the extrinsic Dirac operator as DE , which comes from the same
continuous operator as Df ; this alternative notation is merely to reflect that a different discretization
will be used. For each triangle p,

(DEφ)p =
1

2

∑
q

(2Hpq + epq) (φq − φp)

where φ ∈ H|F |×1, the sum
∑
q · is over all the three triangles adjacent to triangle p, Hpq is a quaternion

whose real part equals to the integrated mean curvature Hpq over the edge, and epq is a quaternion whose
imaginary part equals to the edge vector in R3; unspecified real or imaginary parts are always zero. Here
the integrated mean curvature is Hpq := 1

2 |epq| tan
θpq
2 , where θpq is the bending angle at edge pq.

This version of the extrinsic Dirac operator connects to a discrete spin transformation, resulting in
improved numerical performance. It also leads to a discrete intrinsic Dirac operator derived in a unified
framework, discussed as follows.

5.14 Intrinsic Dirac Operator DI

The recent work [Ye et al., 2018] also proposes to use an intrinsic Dirac operator, whose original intrinsic
definition requires the languages of spinors and spin manifolds. An equivalent definition of the intrinsic
Dirac operator DI is as follows:

DI = Df +H

where H is the mean curvature (as a diagonal operator). Although it can hardly be seen from this
formula, H cancels out the extrinsic part of Df , yielding an intrinsic operator DI that only depends on
surface metric.

Following the same notation in the previous subsection, an alternative discrete intrinsic Dirac operator
DI ∈ H|F |×|F | on a mesh can be defined as

(DIφ)p =
1

2

∑
q

(2Hpq + epq) cos
θpq
2

φq.

The cosine factor plays the role of a correction, ensuring exact covariance of the discrete operator to
isometric deformations, providing a key theoretical property analogous to the continuous counterpart [Ye
et al., 2018]. Empirically this discretization improves performance on relevant applications. See [Hoff-
mann and Ye, 2018] for more theoretical justifications of this version of discrete Dirac operators, using a
definition of the discrete spin structure. The definition of the intrinsic Dirac operator explicitly involves
the spin structure, making it more discriminative than the intrinsic Laplacian, e.g., in distinguishing two
approximately isometric tori with different spin structures as illustrated in [Ye et al., 2018, Figure 5].

5.15 Volumetric (Extrinsic) Laplacian

So far we have discussed operators taking the thin shell approach; now we move to operators that consider
shapes as the boundaries of solids. Namely, starting from this subsection, we consider a volumetric
domain Ω whose boundary is specified by a surface M = ∂Ω.
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The Laplace equation with Neumann boundary conditions is defined as follows:
−∆R3u(x) = 0 x ∈Ω

∂

∂n
u(x) = 0 x ∈∂Ω

(31)

where ∆R3 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the (extrinsically defined) Laplacian operator in R3. Critical information
about the surface is encoded by parts corresponding to the boundary condition. The volumetric heat
kernel signature [Raviv et al., 2010, Wang and Wang, 2015, Patané, 2015] considers the heat kernel of
∆R3 and applies it to analyze solid shapes.

This volumetric Laplacian can also be discretized by a cotangent matrix L: Lij is nonzero if i, j are
adjacent vertices, and the weights Lij are cotangents of dihedral angles opposite to edges within the
same tetrahedron; see e.g. [Jacobson, 2013, §2.1] for an explicit formula and derivation.

5.16 Hessian Energy

Hessian energy The Hessian LLE [Donoho and Grimes, 2003] substitutes the Hessian in place of the
Laplacian used in LLE, enjoying several theoretical guarantees. For a volumetric domain Ω given by a
tetrahedral mesh, [Stein et al., 2018] consider and discretize the Hessian energy defined as:

EH2(u) :=
1

2

∫
Ω

‖H(u(x))‖2F =
1

2

∑
i,j

∫
Ω

(
∂2

∂xi∂xj
u(x)

)2

(32)

where H(u(x)) ∈ R3×3 is the symmetric matrix consisting of second-order partial derivatives. Spectral
analysis on the Hessian energy can be thought as an application of Hessian LLE to mesh data. An
interesting property of the Hessian energy is that its null space contains only affine functions, i.e.,
1,x,y, z. [Stein et al., 2018] discretize the Hessian energy as a composition of the gradient operator
and a matrix divergence operator, using a mixed FEM approach. As pointed out in their paper, such
discretized operator sometimes includes spurious modes in its kernel; this issue seems to be empirically
avoided by the followup work [Stein et al., 2019]. Furthermore, [Stein et al., 2019] generalize the (planar)
Hessian energy to a curved surface, with an additional term correctly taking into account the effect of
intrinsic curvature.

The bi-Laplacian energy, used for a variety of tasks [Botsch and Kobbelt, 2004, Zorin, 2005, Jacob-
son et al., 2010, Jacobson et al., 2011], is closely related to the Hessian energy; they both correspond
to the same PDE (bi-harmonic equation ∆2

R3u = 0) but with different boundary conditions. [Fisher
et al., 2007] present a DEC Laplacian with modified boundary conditions, and the resulting bi-Laplacian
energy [Wang et al., 2015] also includes affine functions in the kernel, similarly to the Hessian energy.

5.17 Single Layer Potential Operator and Kernel Method

Starting from this subsection, we look at operators defined using boundary integrals. Such operators
can be discretized using boundary element methods (BEM).

One example of a boundary integral operator is the single layer potential operator V : H−1/2(Γ) →
H1/2(Γ), which is defined on surface Γ as

[Vu](x) :=

∫
Γ

G(x,y)u(y) dΓ(y),

where G(x,y) := 1
4π

1
|x−y| is the fundamental solution of the Laplace equation.

[Wu and Levine, 1997] simulate the shape as an electric conductor and exploit the resulting charge
distribution for shape segmentation. This amounts to solving a linear system consisting of (the inverse of)
the single layer potential operator. The charge density function for an electric conductor with constant
electrical potential is [V−11](x), where 1(·) is the constant function. It is well known in physics that this
charge density function is highly correlated with the shape concavity: the charge tends to vanish at most
concave regions and accumulate at sharp convexities. Based on this key observation, [Wu and Levine,
1997] use the charge density function as a segmentation clue: it first detects highly concave seams by
tracing local minima charge density, and then cuts along these seams to segment the shape.
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Boundary Element Method (BEM) The single layer potential is an example of an integral operator
for which vertices globally interact with each other, unlike differential operators whose actions are local.
In §3.3 we presented a framework applicable to both FEM and BEM; following the discussion there,
BEM is a similar technique to FEM, with the difference that the inner product 〈ψi, φj〉a—which now
involves boundary integrals—will be evaluated with different techniques. In the case of the single layer
potential operator, the corresponding weak form is

a(u, v) =

∫
Γ

∫
Γ

u(x)G(x,y)v(y) dΓ(x) dΓ(y) ≈
∑
xi

∑
yi

w(xi,yj)u(xi)G(xi,yj)v(yj),Area(xi)Area(yj),

where xi,yj are the quadrature points, Area(xi),Area(yj) are the associated areas, and w(xi,yj) is
the corresponding quadrature weight. Since G(x,y)|y=x is singular, special case needs to be taken when
designing the quadrature scheme to properly handle the integrable singularity in the inverse distance
kernel [Steinbach, 2007].

The strong form of the single layer operator is V ∈ Rn×n, given by Vij =
∫

Γ

∫
Γ
φi(x)G(x,y)φj(y) dΓ(x) dΓ(y),

an integrated version of piecewise inverse distances. V is a dense matrix, which usually admits a low
rank approximation for efficient computations; details can be found in [Steinbach, 2007]. Getting back
to the method of [Wu and Levine, 1997], after discretization, the resulting charge density is V−1M1,
where 1 ∈ Rn is a constant vector.

More generally, it is possible to replace the kernel 1
|x−y| with 1

|x−y|p or Gaussian e−
1
t |x−y|

2

: this

amounts to applying the kernel method in machine learning for vertex clustering [Shawe-Taylor et al.,
2004].

5.18 Dirichlet-to-Neumann Operator (Poincaré-Steklov Operator)

Consider the Laplace equation with Dirichlet boundary conditions:{
∆R3g(x) = 0 x ∈ Ω

g(x) = u(x) x ∈ Γ=∂Ω.
(33)

The Dirichlet-to-Neumann operator (DtN) S : L2(Γ) → L2(Γ) is defined as the map u 7→ gn = ∂
∂ng(Γ).

In physics, this operator models small vertical oscillations of an ideal fluid in a container. The eigenvalue
problem of the DtN operator is known as the Steklov eigenvalue problem. Like the Laplace–Beltrami
spectrum encoding intrinsic geometry, the Steklov spectrum encodes extrinsic geometry information: the
Steklov heat kernel admits an asymptotic expansion whose coefficients are determined by the mean and
the Gaussian curvatures H(x) and K(x) [Polterovich and Sher, 2015]. The Steklov spectral geometry
also enjoys many other properties [Girouard and Polterovich, 2017].

The DtN operator can be written as the composition of boundary integral operators:

S = V−1

(
1

2
I +K

)
= H+

(
1

2
I +Kᵀ

)
V−1

(
1

2
I +K

)
where the double layer potential K : H1/2(Γ) → H1/2(Γ) and hypersingular operator H : H1/2(Γ) →
H−1/2(Γ) are defined as:

[Kφ](x) :=

∫
Γ

∂G(x,y)

∂n(y)
φ(y) dΓ(y), [Hφ](x) := −

∫
Γ

∂2G(x,y)

∂n(x)∂n(y)
φ(y) dΓ(y).

To discretize the operator S, it suffices to discretize these boundary operators V,K,H. Although these
operators are defined on the boundary, another remarkable property of S is that its weak form corresponds
to the volumetric Dirichlet energy on the harmonic extension of a surface function into the interior. That
is, the corresponding strong form is a(u, v) =

∫
Ω
∇Ev·∇Eu ≡

∫
M uSv, where Eu is the smooth (harmonic)

extension of u into the interior, i.e., Eu is the solution to Eq. 33.
[Wang et al., 2018b] use the operator S for shape analysis, as an extrinsic and volumetric alternative

to the Laplace–Beltrami operator. It successfully applies this operator to a large number of tasks, includ-
ing point signature computation, volume-aware distances, segmentation, and extrinsic shape differences,
while being robust to topological changes and noise that affects Laplacian-based computations.
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5.19 Other Extrinsic Methods

There are many other methods capturing various aspects of extrinsic geometry, which may not necessarily
define extrinsic operators explicitly.

The early spectral method [Pauly and Gross, 2001] decomposes meshes into patches, and for each
patch applies Discrete Fourier Transform (DFT) and inverse DFT on extrinsic voxel grids. The Distribu-
tion of Distances (D2) [Osada et al., 2002] and the Signature of Histograms of Orientations (SHOT) [Tombari
et al., 2010] descriptors are extrinsically defined geometric histograms. Spherical harmonics [Kazhdan
et al., 2006] are basis functions in the extrinsic 3D space, independent to the shape to be analyzed. [Wang
et al., 2012] define the discrete first and second fundamental forms as edge lengths and dihedral angles,
and proposes a linear method to reconstruct the surface from the two discrete fundamental forms. [Cor-
man et al., 2017b] introduce multiple shape difference operators including those encode extrinsic geom-
etry. [Rustamov, 2011] interpolates intrinsic Laplacian eigenfunctions into the interior of a surface using
barycentric coordinates, which carry extrinsic information, and builds descriptors using the interpolants.

6 Summary and Experiments

The geometric operators in this paper roughly fall into two categories: operators that view shapes as
thin shells and operators that view shapes as solids. There are also other patterns and common wisdom
about these operators, summarized as follows.

Relevance of curvature A common machinery occurring in multiple methods is to explicitly bake
curvatures into a thin shell operator. Indeed, the modified Dirichlet energy [Hildebrandt et al., 2012]
directly adds the scalar function 1

2 (κ2
1(x) + κ2

2(x)) = H(x)2 − K(x) as a diagonal operator; the scale
invariant Laplacian [Aflalo et al., 2013] uses a multiplicative factor, the inverse Gaussian curvature
K(x)−1, to cancel out the scaling effect in metric g; the curvature Laplacian [Liu and Zhang, 2007] is
defined using the minimal principal curvature as well as its direction; the concavity-aware Laplacian [Au
et al., 2012] constructs a discrete Laplacian whose weights are inverse Gaussian curvatures; and the
extrinsic Dirac operator equals to the sum of the mean curvature H(x) (as a diagonal operator) and the
intrinsic Dirac operator [Ye et al., 2018].

Diagonal operator and operator blending Both the modified Dirichlet energy [Hildebrandt et al.,
2012] and the Hamiltonian operator [Choukroun et al., 2018b] construct a diagonal operator from a
scalar (potential) function, such that the two methods coincide if we set the potential function to be
V (x) = 1

2 (κ2
1(x) + κ2

2(x)). Dirac operators [Liu et al., 2017] use infinite well boundary conditions, which
also amounts to adding a large potential function—as a diagonal operator—only at boundaries. Any
non-negative scalar function can be converted into a p.s.d. diagonal operator, and it would be interesting
to investigate alternative scalar functions rather than ones based on curvatures.

Also, all these methods effectively blend two eigen spaces by linearly adding one operator—usually
the Laplacian—to another operator. The blended operator has a set of “compromised” eigenfunctions
adapting to both operators, yields low energies measured by (the weak form of) both operators: take
the Hamiltonian operator as an example, the Laplacian, or the Dirichlet energy, favors eigenfunctions
that are smooth, while the potential energy

∫
M

1
2V (x)u(x)2 encourages eigenfunctions to avoid regions

with large V (x), so the blended Hamiltonian operator has eigenfunctions that are smooth except in areas
with very large V (x). To sum up, operator blending provides a means of balancing the considerations
of both operators.

Extrinsic or Intrinsic We already discuss the pros and cons of being an extrinsic or intrinsic operator
in §1. Table 1 summarizes this key property of geometric operators.
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Laplacian [Pinkall and Polthier, 1993] ∆M Intrinsic

Scale-invariant [Aflalo et al., 2013] ∆
(si)
M Intrinsic

Anisotropic Laplacian [Andreux et al., 2014] ∆A
M Either

Modified Dirichlet [Hildebrandt et al., 2012] ∆κ
M Extrinsic

Relative Dirac [Liu et al., 2017] DR Extrinsic
Extrinsic Dirac [Ye et al., 2018] DE Extrinsic
Intrinsic Dirac [Ye et al., 2018] DI Intrinsic
DtN / Steklov [Wang et al., 2018b] S Extrinsic
Volumetric Laplacian ∆R3 Extrinsic

Table 1: Summary of intrinsic and extrinsic operators.

6.1 Experiments

In the rest of this section, we provide experiments comparing the spectral properties of a few represen-
tative operators. First, we show the eigenfunctions of these operators, which can reveal rich informa-
tion about geometry. As eigenfunctions are not unique due to sign ambiguities and rotations within
eigenspaces formed by repeating eigenvalues, we then visualize quantities derived from eigenfunctions
including heat kernel signatures and spectral distances, which remain invariant w.r.t. rotations within
eigenspaces.

6.2 Eigenfunctions

First, we show the eigenfunctions computed on a cube with an outward bump in Figure 9, comparing
them with those computed on a cube with an inward bump in Figure 10. Conforming with theoretical
predictions, we see all intrinsic operators demonstrate identical patterns on both cubes, while the extrinsic
operators behave differently on the two cubes. It is also interesting to see distinguishing behaviors
among these operators. All intrinsic eigenfunctions, as well as extrinsic ones, are aware of corners of
the cube, which are singularities of the Gaussian curvature. This is particularly the case for the scale
invariant Laplacian: since the Gaussian curvature approaches infinity at the corners, the corresponding
eigenfunctions also have singular patterns at these corners. The anisotropic Laplacian demonstrates
“vortious patterns” in its eigenfunctions, thanks to the explicit use of an anisotropic kernel.

In addition to corners, all extrinsic operators are sensitive to edges, where the mean curvature becomes
large. For the modified Dirichlet energy, the additional term

∫
M

1
2 (κ2

1(x)+κ2
2(x))u(x)2 penalizes function

u(·) at edges and corners where (κ2
1(x) + κ2

2(x)) becomes very large, making eigenfunctions vanish at
edges and effectively decomposing the cube into six disconnected pieces separated by edges. Similarly,
the extrinsic Dirac operator, as the sum of the intrinsic Dirac operator with the mean curvature, also has
eigenfunctions whose patterns are separated by edges. The eigenfunctions of the DtN operator also put
a particular emphasis on edges of the cube. The relative Dirac operator resonates most in extrinsically
flat regions on the shape.
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Figure 9: First few eigenfunctions computed on the cube with an outward bump. For the Dirac operators,
norms of the (quaternion valued) eigenfunctions are visualized.
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Figure 10: First few eigenfunctions computed on the cube with an inward bump. For the Dirac operators,
norms of the (quaternion valued) eigenfunctions are visualized.

Additional exemplar shapes are provided in Figure 11 and 12, in which we illustrate eigenfunctions
on a bowl with an inward or outward bumps. Compared to the cube in which the mean curvature
changes in an extreme fashion, the bowls have smooth curvature varying to a lesser extent across the
shape. Consequently, the bowl’s Laplacian eigenfunctions become more similar to eigenfunctions of the
modified Dirichlet and the scale invariant Laplacian. The relative Dirac operator vanishes on purely flat
regions in the cubes, obstructing a visual comparison; the bowls provide examples that do not contain
such regions, and hence we see the relative Dirac eigenfunctions have patterns aligning to ridges of the
bumps, resonating most at nearly-flat plateaus.
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Figure 11: Eigenfunctions computed on a bowl with an inward bump.
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Figure 12: Eigenfunctions computed on a bowl with an outward bump.

Figure 13 visualizes eigenfunctions computed on the gargoyle model, at a few representative frequen-
cies. For all operators, eigenfunctions with larger eigenvalues have denser nodal sets. The gargoyle
model also has a relative flat region at the bottom, making relative Dirac eigenfunctions concentrate in
the bottom.
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Figure 13: The 5th, 10th, 20th, 40th, 80th, 100th, 120th eigenfunctions computed on the gargoyle model.

Since visually interpreting and extracting information from the eigenfunctions may not always be
easy, we now start to look at quantities derived from eigenfunctions and eigenvalues.

6.3 Heat Kernel Signatures

We compute heat kernel signatures (HKS) using the definition in Eq. 23, using either a small time
parameter t = 4 log 10

10λ120
, or a large time parameter t = 4 log 10

λ5
. We set k = 120, i.e., using the first 120

eigenfunctions and eigenvalues. The resulting heat kernel signatures are shown in Figure 14. For HKS
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with a small time parameter, the operators commonly put emphasis on regions where there is large
Gaussian curvature, such as the horns in the gargoyle model or the fingertips in the hand model. The
effect of adding the principal curvature term in the modified Dirichlet energy ∆κ

M is most visible in
the gargoyle model: the HKS has a large value at edges of wings in the model, which are places with
large mean curvatures. Such places with large mean curvatures are also promoted by the Steklov and
volumetric Laplacian HKS with a small time parameter, but less significantly as in the modified Dirichlet
HKS.

Figure 14: Heat kernel signatures in log scale, computed using either a small time (odd rows) or a large
time (even rows) parameter.
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6.4 Segmentation

We evaluate the results of spectral segmentation on the Princeton segmentation dataset [Chen et al.,
2009] and provide visual comparisons of the results obtained by different operators. We first compute

the harmonic embedding
(
φ1(x)√
λ1
, φ2(x)√

λ2
, · · · , φk(x)√

λk

)
, as introduced in Eq. 21, and then apply standard

clustering algorithms to the points embedding in Rk. We simply run k-means clustering, with a user-
specified number of clusters. For the Dirac operators with quaternion-valued eigenfunctions, we use(
|φ1(x)|√

λ1
, |φ2(x)|√

λ2
, · · · , |φk(x)|√

λk

)
following [Ye et al., 2018]. We choose k = 100 in all experiments.

Figure 15 shows results of segmentation obtained by following this simple approach. We see that the
Laplacian tends to produce segmentation avoiding regions with large Gaussian curvatures, such as ears
in the teddy bear model. Volume-based operators tend to decompose shapes into volumetric parts, and
the other extrinsic operators including modified Dirichlet energy and Dirac operators cut flat regions
from the rest of the shape. An interesting example is the intrinsic Dirac operator, which tends to gather
regions with similar geometry (e.g., all fingertips in the hand model) into the same component, different
from other intrinsic operators. The relative Dirac operator segments the nearly-flat plateaus from other
regions; in [Liu et al., 2017] a more sophisticated clustering algorithm other than the k-means is used to
extract a segmentation.
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Figure 15: A comparison of segmentation results based on different operators.

6.5 Distance or Dissimilarity

In Figure 16 and 17, we show the diffusion distance and the “bi-operator” distance, which are general-
izations of the diffusion and bi-harmonic distance for the Laplacian [Coifman and Lafon, 2006, Lipman
et al., 2010] to other operators. Though the generalizations may not make perfect sense as distance
measures for other operators, these distances can always be interpreted as dissimilarities of spectral
embeddings between points on the surface. Indeed we see that distances in the same category, i.e.,
Laplacian-like operators (the Laplacian and the scale invariant Laplacian) or volumetric operators (the
volumetric Laplacian and the Steklov) etc., tend to have similar patterns. In terms of differences, we
can see that the scale invariant bi-distance is less evenly distributed in the geodesic sense, compared
to the one for Laplacian, as a consequence of using a modified metric. For the anisotropic diffusion
distance, as expected the resulting distances copy the anisotropic nature induced by the eigenfunctions.
For the volumetric distances like ones based on the volumetric Laplacian or the DtN/Steklov operator,
we see eigenfunctions can have local minimum on the surface. This is the correct behavior due to the
volume-geodesic nature of the distances.
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Figure 16: Diffusion distances computed on a variety of operators.
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Figure 17: Bi-“operator” distances computed on a variety of operators.
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7 Conclusion and Future Work

7.1 Summary

We have seen a few key distinguishing features among these geometric operators, either theoretically or
empirically:

• Laplacian and relatives. Beyond the Laplacian, the scale invariant Laplacian, the equi-affine and
affine invariant Laplacians, and the conformal Laplacian can be thought as the (regular) Laplacian
on a “ghost manifold.” That is, given an input surface, we first create an abstract manifold that
is not necessarily embeddable by deforming the input surface, and then we compute the Laplacian
on that manifold. Eigenfunctions of the new Laplacian, are pull backs of the regular Laplacian
eigenfunctions, computed on the abstract manifold, onto the original surface.

• Volumetric operators. The DtN and volumetric Laplacian are defined on the volumetric domains.
Although [Wang et al., 2018b] also propose a generalization of DtN to open surfaces, all experi-
ments in this survey are performed on closed surface with a volumetric interior. Accordingly, the
eigenfunctions have similar volume-aware patterns.

• Dirac operators. The definitions of Dirac operators involve the spin structure of a surface,
making them unique from other operators. The spin structure allows the intrinsic Dirac to detect
topological information to which Laplacians are insensitive [Ye et al., 2018].

• Anisotropic operators. Most operators we survey implicitly use the isotropic assumption. The
anisotropic operator is uniquely characterized by an alternative choice, and its eigenfunctions,
descriptors, and segmentation all demonstrate direction-sensitive patterns.

7.2 Future Work

The diverse and versatile set of operators discussed in this paper suggests possible directions for future
work, presenting mathematical, algorithmic, and application-oriented challenges.

Better understanding of existing operators Most known theoretical results in spectral geome-
try are for the Laplacian operator and relatives, and theoretical results on other operators are not as
prevalently available. While the Laplacian may be simply replaced by other operators, identifying most
relevant substitutions for certain applications with theoretical justification provides many promising
opportunities for future work.

Synthesizing new operators We have seen that different operators capture varying aspects of in-
trinsic and extrinsic geometry. Additively blending operators and multiplicatively composing operators
provide a means of constructing new operators from existing ones. It would be interesting to create
new operators by combining existing ones inside or outside this survey, and to better characterize the
various means of composition. Some techniques used in one operator potentially can be applied to other
operators, such as introducing scale invariant metrics, to derive an even larger collection of operators.

Task-dependent and learnable operators Identifying the most relevant operator for a certain task
is another promising direction. While this may not be easy, in practice it is also possible to take a “bag-
of-operators” approach, similar to the bag of descriptors method proposed in [Bronstein et al., 2011] to
further improve the performance of shape analysis algorithms.

When exemplar data or outputs are available, the most effective operators can be learned. We have
seen multiple algorithms that add learnable degrees of freedom to operators, and the emerging field of
geometric deep learning has inspired considerable attention in this direction [Bronstein et al., 2017].
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[Barbič and James, 2005] Barbič, J. and James, D. L. (2005). Real-time subspace integration for st.
venant-kirchhoff deformable models. In ACM transactions on graphics (TOG), volume 24, pages
982–990. ACM.

[Belkin and Niyogi, 2003] Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation, 15(6):1373–1396.

[Belkin and Niyogi, 2005] Belkin, M. and Niyogi, P. (2005). Towards a theoretical foundation for
laplacian-based manifold methods. In International Conference on Computational Learning Theory,
pages 486–500. Springer.

[Belkin et al., 2006] Belkin, M., Niyogi, P., and Sindhwani, V. (2006). Manifold regularization: A ge-
ometric framework for learning from labeled and unlabeled examples. Journal of machine learning
research, 7(Nov):2399–2434.

[Belkin et al., 2008] Belkin, M., Sun, J., and Wang, Y. (2008). Discrete Laplace operator on meshed
surfaces. In Proc. SODA, pages 278–287.

46

http://www.google.com/search?q=On+the+optimality+of+shape+and+data+representation+in+the+spectral+domain
http://www.google.com/search?q=On+the+optimality+of+shape+and+data+representation+in+the+spectral+domain
http://www.google.com/search?q=Deformable+shape+retrieval+by+learning+diffusion+kernels
http://www.google.com/search?q=Deformable+shape+retrieval+by+learning+diffusion+kernels
http://www.google.com/search?q=Scale+invariant+geometry+for+nonrigid+shapes
http://www.google.com/search?q=Scale+invariant+geometry+for+nonrigid+shapes
http://www.google.com/search?q=Representing+animations+by+principal+components
http://www.google.com/search?q=Representing+animations+by+principal+components
http://www.google.com/search?q=The+dirac+operator+on+nilmanifolds+and+collapsing+circle+bundles
http://www.google.com/search?q=The+dirac+operator+on+nilmanifolds+and+collapsing+circle+bundles
http://www.google.com/search?q=Anisotropic+laplace-beltrami+operators+for+shape+analysis
http://www.google.com/search?q=Anisotropic+laplace-beltrami+operators+for+shape+analysis
http://www.google.com/search?q=Theoretical+numerical+analysis
http://www.google.com/search?q=Mesh+segmentation+with+concavity-aware+fields
http://www.google.com/search?q=Mesh+segmentation+with+concavity-aware+fields
http://www.google.com/search?q=The+wave+kernel+signature:+A+quantum+mechanical+approach+to+shape+analysis
http://www.google.com/search?q=The+wave+kernel+signature:+A+quantum+mechanical+approach+to+shape+analysis
http://www.google.com/search?q=Consistent+functional+cross+field+design+for+mesh+quadrangulation
http://www.google.com/search?q=Consistent+functional+cross+field+design+for+mesh+quadrangulation
http://www.google.com/search?q=Discrete+derivatives+of+vector+fields+on+surfaces--an+operator+approach
http://www.google.com/search?q=Discrete+derivatives+of+vector+fields+on+surfaces--an+operator+approach
http://www.google.com/search?q=Real-time+subspace+integration+for+st.+venant-kirchhoff+deformable+models
http://www.google.com/search?q=Real-time+subspace+integration+for+st.+venant-kirchhoff+deformable+models
http://www.google.com/search?q=Laplacian+eigenmaps+for+dimensionality+reduction+and+data+representation
http://www.google.com/search?q=Laplacian+eigenmaps+for+dimensionality+reduction+and+data+representation
http://www.google.com/search?q=Towards+a+theoretical+foundation+for+laplacian-based+manifold+methods
http://www.google.com/search?q=Towards+a+theoretical+foundation+for+laplacian-based+manifold+methods
http://www.google.com/search?q=Manifold+regularization:+A+geometric+framework+for+learning+from+labeled+and+unlabeled+examples
http://www.google.com/search?q=Manifold+regularization:+A+geometric+framework+for+learning+from+labeled+and+unlabeled+examples
http://www.google.com/search?q=Discrete+Laplace+operator+on+meshed+surfaces
http://www.google.com/search?q=Discrete+Laplace+operator+on+meshed+surfaces


[Belkin et al., 2009] Belkin, M., Sun, J., and Wang, Y. (2009). Constructing Laplace operator from point
clouds in Rd. In Proc. SODA, pages 1031–1040.

[Ben-Chen and Gotsman, 2005] Ben-Chen, M. and Gotsman, C. (2005). On the optimality of spectral
compression of mesh data. ACM Transactions on Graphics (TOG), 24(1):60–80.

[Bharaj et al., 2015] Bharaj, G., Levin, D. I., Tompkin, J., Fei, Y., Pfister, H., Matusik, W., and Zheng,
C. (2015). Computational design of metallophone contact sounds. ACM Transactions on Graphics
(TOG), 34(6):223.
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surfaces. In ACM Transactions on Graphics (TOG), volume 30, page 104. ACM.

[Crane et al., 2013a] Crane, K., Pinkall, U., and Schröder, P. (2013a). Robust fairing via conformal
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L., Chazal, F., and Bronstein, A. (2016). Computing and processing correspondences with functional
maps. In SIGGRAPH ASIA 2016 Courses, page 9. ACM.
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(2004). Laplacian surface editing. In Proc. SGP, pages 175–184.

[Spagnuolo et al., 2012] Spagnuolo, M., Bronstein, M., Bronstein, A., and Ferreira, A. (2012). Affine-
invariant photometric heat kernel signatures. The Eurographics Association, pages 39–46.

[Spielman and Teng, 1996] Spielman, D. A. and Teng, S.-H. (1996). Spectral partitioning works: Planar
graphs and finite element meshes. In Proceedings of 37th Conference on Foundations of Computer
Science, pages 96–105. IEEE.

[Spielman and Teng, 2004] Spielman, D. A. and Teng, S.-H. (2004). Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems. In Proceedings of the STOC,
volume 4.

[Stein et al., 2018] Stein, O., Grinspun, E., Wardetzky, M., and Jacobson, A. (2018). Natural boundary
conditions for smoothing in geometry processing. ACM Transactions on Graphics (TOG), 37(2):23.

[Stein et al., 2019] Stein, O., Jacobson, A., Wardetzky, M., and Grinspun, E. (2019). A smoothness
energy without boundary distortion for curved surfaces. arXiv preprint arXiv:1905.09777.

[Steinbach, 2007] Steinbach, O. (2007). Numerical approximation methods for elliptic boundary value
problems: finite and boundary elements. Springer.

[Sun et al., 2009] Sun, J., Ovsjanikov, M., and Guibas, L. (2009). A concise and provably informative
multi-scale signature based on heat diffusion. In Computer Graphics Forum, volume 28, pages 1383–
1392.

[Sun and Zhou, 2016] Sun, J. and Zhou, A. (2016). Finite element methods for eigenvalue problems.
Chapman and Hall/CRC.

[Taubin, 1995] Taubin, G. (1995). A signal processing approach to fair surface design. In Proceedings of
the 22nd annual conference on Computer graphics and interactive techniques, pages 351–358. ACM.

[Taylor, 2013] Taylor, M. (2013). Partial differential equations ii: Qualitative studies of linear equations,
volume 116. Springer Science & Business Media.

[Taylor, 2011] Taylor, M. E. (2011). Partial differential equations i: Basic theory (applied mathematical
sciences).

[Tenenbaum et al., 2000] Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000). A global geometric
framework for nonlinear dimensionality reduction. science, 290(5500):2319–2323.

[Thomas and Natarajan, 2014] Thomas, D. M. and Natarajan, V. (2014). Multiscale symmetry detection
in scalar fields by clustering contours. IEEE transactions on visualization and computer graphics,
20(12):2427–2436.

[Tombari et al., 2010] Tombari, F., Salti, S., and Di Stefano, L. (2010). Unique signatures of histograms
for local surface description. In Proc. ECCV, pages 356–369.

[Tong et al., 2003] Tong, Y., Lombeyda, S., Hirani, A. N., and Desbrun, M. (2003). Discrete multiscale
vector field decomposition. In ACM transactions on graphics (TOG), volume 22, pages 445–452. ACM.
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