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16 February 2017 — A key contribution by Wang et al. [1] is noticing that any smoothness energy with affine functions in its null space will produce
a deformation subspace fulfilling the “affine precision” property boasted by generalized barycentric coordinates.

In our paper, we construct a discrete smoothness energy by squaring a modified discrete Laplace operator. For a given mesh with  vertices, to
measure the smoothness of a scalar function , we minimize:

where  is the discrete quadratic smoothness form (as described in the paper),  is a typical mass matrix (e.g., lumped
barycentric areas), and  is constructed as the addition of the usual per-vertex discrete cotangent Laplacian  and the sparse
matrix computing normal derivatives at boundary vertices :

This modified Laplacian  can be derived many different ways. This is not so surprising, as there are many ways of deriving the cotangent matrix .
It is well known, that the vertex-based discrete Laplacian  can be constructed as a projection of the edge-based Crouzeix-Raviart discrete Laplacian 

 for a mesh with  edges (see, e.g., [2]):

where  is the incidence matrix that averages values on vertices to values on edges (  if edge  is incident on vertex , otherwise 
). Similarly, the normal derivative matrix  is a projection of the Crouzeix-Raviart normal derivative matrix for edges :

Using these, we can expand the energy described in the paper:

where the parenthetical grouping suggests a possible interpretation of this energy as the integration of an edge-based quantity  via
a non-standard “integration matrix” .

Via experimentation and confirmation with the original code, it is now clear that  was replaced with the (simpler, diagonal) inverse Crouzeix-
Raviart mass matrix .

The figures and results in [1] were created with code using a seemingly subtly different smoothness energy, constructed as:

This disparity is sometimes not noticeable qualitatively: on some meshes the resulting weights—and thus deformations—are very similar. However,
on other meshes  has a strictly larger null space than just affine functions. This leads to sporadic behavior and failure to fulfill the “affine
precision” property. Lacking a proof,  on the other hand appears to be far more stable and only contains affine functions in its null space.

Since the behavior of  is superior, the paper erroneously describes a different energy than used in the code.
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