Error in "Linear Subspace Design for Real-Time Shape Deformation"

Yu Wang¹ Alec Jacobson² Jernej Barbič³ Ladislav Kavan⁴

¹MIT ²University of Toronto ³University of Southern California ⁴University of Utah

16 February 2017 — A key contribution by Wang et al. [1] is noticing that *any* smoothness energy with affine functions in its null space will produce a deformation subspace fulfilling the "affine precision" property boasted by generalized barycentric coordinates.

In our *paper*, we construct a discrete smoothness energy by *squaring* a modified discrete Laplace operator. For a given mesh with n vertices, to measure the smoothness of a scalar function $\mathbf{x} \in \mathbb{R}^n$, we minimize:

$$E(\mathbf{x}) = \operatorname{tr}(\mathbf{x}^{\mathsf{T}} \underbrace{\mathbf{K}^{\mathsf{T}} \mathbf{M}^{-1} \mathbf{K}}_{\mathbf{Q}_{\text{paper}}} \mathbf{x})$$
(1)

where $\mathbf{Q}_{\text{paper}} \in \mathbb{R}^{n \times n}$ is the discrete quadratic smoothness form (as described in the paper), $\mathbf{M} \in \mathbb{R}^{n \times n}$ is a typical mass matrix (e.g., lumped barycentric areas), and $\mathbf{K} \in \mathbb{R}^{n \times n}$ is constructed as the addition of the *usual* per-vertex discrete cotangent Laplacian $\mathbf{L} \in \mathbb{R}^{n \times n}$ and the sparse matrix computing normal derivatives at boundary vertices $\mathbf{N} \in \mathbb{R}^{n \times n}$:

$$\mathbf{K} := \mathbf{L} + \mathbf{N}.\tag{2}$$

This modified Laplacian **K** can be derived many different ways. This is not so surprising, as there are many ways of deriving the cotangent matrix **L**. It is well known, that the vertex-based discrete Laplacian **L** can be constructed as a *projection* of the *edge-based* Crouzeix-Raviart discrete Laplacian $\mathbf{L}_{cr} \in \mathbb{R}^{k \times k}$ for a mesh with k edges (see, e.g., [2]):

$$\mathbf{L} = \mathbf{A}^{\mathsf{T}} \mathbf{L}_{\mathrm{cr}} \mathbf{A},\tag{3}$$

where $\mathbf{A} \in \mathbb{R}^{k \times n}$ is the incidence matrix that averages values on vertices to values on edges ($A_{ev} = \frac{1}{2}$ if edge e is incident on vertex v, otherwise $A_{ev} = 0$). Similarly, the normal derivative matrix \mathbf{N} is a projection of the Crouzeix-Raviart normal derivative matrix for edges $\mathbf{N}_{cr} \in \mathbb{R}^{k \times k}$:

$$\mathbf{N} = \mathbf{A}^{\mathsf{T}} \mathbf{N}_{\mathrm{cr}} \mathbf{A}. \tag{4}$$

Using these, we can expand the energy described in the paper:

$$\mathbf{Q}_{\text{paper}} = \mathbf{A}^{\mathsf{T}} (\mathbf{L}_{\text{cr}} + \mathbf{N}_{\text{cr}})^{\mathsf{T}} \underbrace{\left(\mathbf{A} \mathbf{M}^{-1} \mathbf{A}^{\mathsf{T}} \right)}_{\mathbf{B}_{\text{paper}}} (\mathbf{L}_{\text{cr}} + \mathbf{N}_{\text{cr}}) \mathbf{A},$$
(5)

where the parenthetical grouping suggests a possible *interpretation* of this energy as the integration of an edge-based *quantity* $((\mathbf{L}_{cr} + \mathbf{N}_{cr})\mathbf{A}\mathbf{x})$ via a non-standard "integration matrix" $(\mathbf{A}\mathbf{M}^{-1}\mathbf{A}^{\mathsf{T}}) =: \mathbf{B}_{paper} \in \mathbb{R}^{k \times k}$.

Via experimentation and confirmation with the original *code*, it is now clear that \mathbf{B}_{paper} was replaced with the (simpler, diagonal) inverse Crouzeix-Raviart mass matrix $\mathbf{B}_{code} := \mathbf{M}_{cr}^{-1} \in \mathbb{R}^{k \times k}$.

The figures and results in [1] were created with code using a seemingly subtly *different* smoothness energy, constructed as:

$$\mathbf{Q}_{\text{code}} = \mathbf{A}^{\mathsf{T}} (\mathbf{L}_{\text{cr}} + \mathbf{N}_{\text{cr}})^{\mathsf{T}} \underbrace{(\mathbf{M}_{\text{cr}}^{-1})}_{\mathbf{B}_{\text{code}}} (\mathbf{L}_{\text{cr}} + \mathbf{N}_{\text{cr}}) \mathbf{A}.$$
(6)

This disparity is sometimes not noticeable qualitatively: on *some* meshes the resulting weights—and thus deformations—are very similar. However, on other meshes $\mathbf{Q}_{\text{paper}}$ has a strictly *larger* null space than just affine functions. This leads to sporadic behavior and failure to fulfill the "affine precision" property. Lacking a proof, \mathbf{Q}_{code} on the other hand appears to be far more stable and *only* contains affine functions in its null space.

Since the behavior of \mathbf{Q}_{code} is superior, the *paper* erroneously describes a different energy than used in the *code*.

- 1. Yu Wang, Alec Jacobson, Jernej Barbic, Ladislav Kavan. "Linear Subspace Design for Real-Time Shape Deformation", ACM SIGGRAPH, 2015.
- 2. Miklós Bergou, Max Wardetzky, David Harmon, Denis Zorin, Eitan Grinspun. "A Quadratic Bending Model for Inextensible Surfaces", Symposium on Geometry Processing, 2006.