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Abstract. This paper investigates and characterizes sources of variabil-
ity in MEG signals in multi-site, multi-subject studies. Understanding
these sources will help to develop efficient strategies for comparing and
pooling data across repetitions of an experiment, across subjects, and
across sites. In this work, we investigated somatosensory MEG data col-
lected at three different sites and applied variance component analysis
and nonparametric KL divergence analysis in order to characterize the
sources of variability. Our analysis showed that inter-subject differences
are the biggest factor in the signal variability. We demonstrated that the
timing of the deflections is very consistent in the early somatosensory
response, which justifies a direct comparison of deflection peak times
acquired from different visits, subjects, and systems. Compared with de-
flection peak times, deflection magnitudes have larger variation across
sites; modeling of this variability is necessary for data pooling.

1 Introduction

Magnetoencephalography (MEG) is a noninvasive technique for investigating
neuronal activity in the living human brain [4]. In contrast to functional mag-
netic resonance imaging (fMRI) which measures the hemodynamic changes asso-
ciated with neuronal activity, MEG is directly related to the electric currents in
neurons and thus has an excellent temporal resolution of milliseconds. Because
of its potential in revealing the precise dynamic of neuronal activations, MEG
is popular in neuroscience research, and it has started to move toward clinical
applications such as presurgical planning for epileptic patients [8].

Testing interesting neurophysiological hypotheses often require a large num-
ber of subjects. However, the number of subjects or patients with a particular
disease available at a certain location is often limited. Pooling data from mul-
tiple imaging centers is clearly helpful to overcome this limitation. At present,
there are three different MEG systems, employing different sensor coil geome-
tries. Therefore, it is important to assess possible variability in the data obtained
from different systems.

In this work, we examine the data collected in a multi-site MEG study ad-
ministered by the MIND institute. The goals of this study parallel the analogous
projects in fMRI [14, 15]. Before pooling the MEG data, one must study the de-
gree of consistency in the data generated from different systems and model the
system bias in the combined data set. The MIND multi-site MEG project in-
cludes a calibration program to assess inter-trial, inter-visit, inter-subject, and
inter-site variability, which are quantitatively explored in this paper.

The sources of variability can be studied either in the signal space (MEG
sensor measurement) or in the source space (after solving the inverse problem).



Hämäläinen et al. [5] focused on the inter-scanner variability in the signal space
using a minimum-norm estimate based extrapolation method. Closely matched
extrapolated and true data demonstrated excellent reproducibility of MEG data
across the three systems. On the other hand, the source estimates relate more
directly to the neuronal phenomenon of interest. Weisend et al. [13] reported
consistent source localization when using data from the same subject on differ-
ent MEG systems. These two approaches were tailored to study inter-system
variability only. Zou et al. [15] have performed an in-depth study in a multi-site
fMRI project. Framed as a detection problem, they applied an expectation-
maximization algorithm to access the sensitivity and specificity from run, sub-
ject, and scanner. Because of its excellent temporal resolution, we focus on the
timing and the magnitude of deflections when analyzing MEG data.

The main contribution of our work is the investigation of many possible
sources of variability of the estimated current sources underlying the early so-
matosensory MEG responses. Due to limitation in our current registration algo-
rithms, we defer the spatial characterization for a future study. The rich tem-
poral information in MEG data enables us to extend the comparison to the
single-trial level. Compared with the results of the prior work based on the aver-
ages of hundreds of trials [5, 13], our results reveal stronger consistency between
the systems, and within each subject. We employ two approaches in character-
izing the source of variability: the variance component analysis (VCA), which
assumes a Gaussian model, and the nonparametric Kullback-Leibler (KL) diver-
gence analysis to directly measure the differences between two sets of data. Our
results show that the inter-subject difference is the strongest cause of variance.
We also conclude that the peak time of early deflections is directly comparable
across visits, subjects, and sites, but the variation in deflection magnitude across
sites needs to be modeled for data pooling.

In the next section, we describe the multi-site MEG data and possible sources
of variability. We then present the analysis methods in Section 3 and results in
Section 4, followed by conclusions.

2 Data and Sources of Variability

In this work, we analyze MEG data acquired by the MEG Consortium supported
by the MIND Institute. Six normal subjects were scanned at three different
MEG sites with two visits to each site3. Each visit comprised experiments with
three different types of stimuli: auditory, somatosensory, and visual. The three
MEG systems employed were the 306-channel Neuromag VectorView system at
Massachusetts General Hospital (Boston, MA), the 248-channel 4D Neuroimag-
ing Magnes 3600 WH system at University of Minnesota (Minneapolis, MN), and
the 275-channel VSM MedTech Omega275 system at the MIND Imaging Center
(Albuquerque, NM). We will subsequently refer to the three MEG systems as
MGH, UMN, and MIC, respectively. Anatomical images were collected for each
subject with a Siemens Avanto 1.5 T scanner at the MGH site.

We analyze the data from somatosensory median-nerve simulation, with on
average Ntot = 300 trials per visit after rejecting trials with eye-movement and

3 Subject 2 and 4 had scans in two out of the three sites.
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Fig. 1. SI dipole timecourses in three subjects over two visits in three sites estimated from the
average timecourse for each visit. Solid line denotes visit 1 and dashed line denotes visit 2. Curves
with different colors present signals obtained from different MEG systems: MGH (black), MIC (blue),
and UNM (red).

other artifacts. It has been shown that this simple stimulus activates a complex
cortical network [6]. The first activation of the contralateral primary sensory
cortex (SI) peaks around 20 ms and continues over 100 ms; then the secondary
sensory cortex (SII) activates bilaterally around 70 ms and lasts up to 200 ms,
during which the posterior parietal cortex may also activate. Whether SI and
SII form a sequential architecture or parallel architecture is still a topic of active
debate [7, 11]. Although the SI-SII network exhibits robust activation, there is
significant variation from trial to trial especially for SII due to physiological noise.
In this initial study, we focus on two prominent and stable early deflections in
SI: N20m and P35m, illustrated in Fig. 1.

Due to the structure of the data, variation can be assessed across differ-
ent trials within a single visit, between visits at a single site, among subjects,
and among MEG systems. MEG system variation is a result of hardware dif-
ferences (number of sensors, sensor type/position, and magnetically shielded
rooms) and software differences (methods of noise cancellation and filtering pa-
rameters). Subject variation reflects differences in neuronal mechanisms [6] and
brain anatomy. Changes in environmental noise and in the relative head position
contribute to variation between data obtained from two visits. Variations in the
neuronal state and the subject’s movement often lead to variation across trials.
Assessing the contributions of these different sources of variability will help to
improve design and analysis of future multi-site studies.

As an illustration, Fig. 1 presents example SI dipole timecourses, estimated
from the averages signals of all trials, 300 on average, over a visit. We will
describe how to obtain these timecourses in the next section. The peak time and
magnitude of N20m and P35m in Subject 3 match across visits and sites. Subject
5’s responses match except for one site where the subject received stimulus of
different strength due to different stimulation electrodes used. We believe the
magnitude mismatch in Subject 6 is due to physiological variation in the signal.
Since the physiological variation has different effect in each site for this subject,
it will be summarized as site variation in VCA. Future studies are needed to
separate the physiological variation from site variation by including a control
group being scanned at the same site with a long time interval.

3 Analysis

This section describes preprocessing and two analysis methods used in this pa-
per: variance component analysis (VCA) and the nonparametric KL divergence
analysis. After registering the MEG data to the MRI scan with help of fiducial



on the scalp surface, we fitted the average signals from 18 to 35 ms after the
stimulus onset with a single equivalent current dipole (ECD) using the Nelder-
Mead simplex algorithm [10] (Fig. 1). In all data sets, the goodness of fit at major
deflections was 70∼98%, which is above the standard threshold. We chose dipole
fitting rather than distributed source estimation [3, 4, 12], because it is reasonable
to assume a single focal source, SI, in such an early response period.

Rich temporal information and consistent deflection timing in the average
dipole timecourses encouraged us to investigate the degree of consistency at the
single trial level. We extracted the SI response from each trial by projecting the
single-trial data onto the field pattern of the dipole fitted to the averaged data.

The resulting single-trial responses were similar to the mean responses shown
in Fig. 1. However, their low signal-to-noise ratio (SNR) caused ambiguity in
identifying N20m and P35m. To enable reliable automatic detection of N20m
and P35m, we employed a random sampling approach: we averaged N randomly
sampled timecourses before applying the detector. We inspected the detection
results with varying N , and found that N ≥ 4 provided sufficient SNR in the
average response for accurate detection. Only a minor distortion in timing and
amplitude was introduced from averaging of such small number of trials. In this
work, we set N = 5, and refer to the averages of randomly sampled sets of five
timecourses as “single-trial” experiments. This is in contrast to the commonly
used approach of averaging over hundreds of trials, which loses much of temporal
detail in the resulting timecources. All the analysis results presented in this paper
are based on 105 such “single-trials” per visit, subject, and site.

Our peak detection algorithm searches for extrema in the SI responses. To
improve robustness of the method, we employ high-order derivatives estimated
over a broad support. We experimented with several different robust detectors,
including wavelet decomposition, arriving at qualitatively similar conclusions.
Due to space limitation, we omit the details of the peak detection.

3.1 Model-Based Variance Component Analysis (VCA)

VCA is a common approach to quantifying sources of variability in data [2].
It models the observation as the sum of an unknown true mean µ and errors
introduced by each source. Each error term is assumed to be independently
generated by a zero-mean Gaussian distribution with an unknown variance. The
variance estimates provide a measure of how much each source contributes to
the total variance in the data. Moreover, we compute the relative variability,
by normalizing the variance estimates to sum to one, to compare results from
different characteristics, such as peak time and magnitude.

We set the observation tijkl to be the peak time or the magnitude of N20m
or P35m, corresponding to the observation from site i, subject j, visit k, and
trial l 4. Due to the structure of the data, we model tijkl as a cross-hierarchical
combination of sources of variation from trials, visits, subjects, and sites: tijkl =
µ+ai+bj +cijk +dijkl where µ is the true but unknown value of the observation,
and ai, bj , cijk, and dijkl quantify the deviations from site i, subject j, visit k,

4 Each “trial” here again refers to an average of 5 randomly selected trials.
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medians of the corresponding posterior distributions. Due to the complex cross-
hierarchy in the model, we employ Gibbs sampling, as implemented in BUGS
software [1], to perform inference for parameters of interest. We use 105 burn-in
samples, and inferences are based on another 105 samples.

3.2 Nonparametric KL Divergence Analysis

While VCA is powerful in quantifying variability, it cannot capture variation be-
yond second order statistics due to the Gaussian assumption. To overcome this
limitation, we directly compare the distributions of the extracted parameters of
the N20m and P35m deflections. We then employ the symmetrized KL diver-
gence 5 [9] to quantify differences between the two distributions directly from the
histogram. Results are presented as a distance matrix.

In this work, we construct the distributions separately for peak time and
magnitude of a deflection. We defer the nonparametric KL divergence analysis
to joint distributions of peak time and magnitude for future exploration.

To summarize, while VCA provides a generative model to quantify the vari-
ability of each source, it is limited by the Gaussian assumption. On the other
hand, the nonparametric KL divergence analysis captures differences between
distributions beyond second order statistics. However, it does not separate the
variation due to different sources. Applying both approaches better characterizes
the variability in the data set.

4 Results

This section presents results obtained from VCA and the nonparametric KL
divergence analysis.

4.1 Model-Based Variance Component Analysis

Fig. 2 presents VCA results for peak time and magnitude for N20m and P35m.
The numbers on top of the bars denote the estimated variances of the correspond-
ing sources, and the height of the bars is proportional to relative variability.

The relative variability of the peak time is similar for N20m and P35m.
While the relative variability for subject and trial are about 60% and 25%, the
relative site variability is less than 5%. This is not entirely surprising. Due to
high temporal resolution, different MEG systems can precisely capture when
the deflections occur. Therefore, peak timing is directly comparable for data

5 Dsym(p1||p2) = 1

2
(D(p1||p2) + D(p2||p1)), where p1 and p2 are two probability dis-

tributions, and D denotes the KL divergence.
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Fig. 2. Relatively variability (bar) and estimated variance (top of the bars) for N20m peak time
(a), P35m peak time (b), N20m magnitude (c) and P35m magnitude (d), respectively. The sources
of variability are trial (tr), visit (vi), subject (su), and site (si).

generated from the three systems. Little or no adjustment is required in pooling
data across different systems and visits.

Both the estimated variance and the relative variability for N20m magni-
tude suggest that the site variability is small. On the other hand, the relatively
large site variability in P35m magnitude suggests adjustment is needed for data
pooling. If the error distributions from each source closely follow a Gaussian
distribution, a simple approach is to subtract the estimated site bias bj obtained
from the current calibration study.

The variance estimates are larger in P35m than N20m for both peak time
and magnitude. This observation agrees with the general understanding that
deflections tend to vary more as they are further away from the stimulus onset
because a more complex network is often involved in their generation and several
connections can affect the signal timing and magnitude.

4.2 Nonparametric KL Divergence Analysis

To investigate components of variability that are not captured by the Gaussian
model, we applied the nonparametric KL divergence analysis. Fig. 3 presents
the normalized histograms of N20m peak time each composed of 105 random
samples for data obtained from each visit, subject, and site. The consistency of
single trial responses is reflected by the matched distributions across sites and
visits, which is a much stronger evidence than consistent deflection peak time
in the average response of hundreds of trials. For example, subject 2 exhibits
consistently skewed distributions. Due to some presently unknown experimental
problem, inconsistency occurs in subject 1’s second visit to MIC. This data is
removed from further analysis 6. There was a change in stimulus strength for
subject 5 during his/her visit to MIC. We can observe small delay in one of
the histograms, and note that further investigation is needed to understand the
relationship between stimulus strength and deflection peak time.

The symmetrized KL divergence between the histograms is depicted in Fig. 4(a).
Each row or column corresponds to one visit of a subject to a particular site.
There are four or six rows in a sui-suj block depending on whether subject i

has MEG scans in two sites or all three sites 7. Small KL divergence in the high-
lighted blocks along the diagonal further confirms that the N20m peak time is
consistent within each subject and is independent of visit days and MEG sys-
tems. By capturing higher order statistics, the KL divergence analysis conveys

6 This data was also excluded in VCA.
7 su1-suj block has five rows because subject 1’s second visit to MIC was discarded.
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Fig. 3. Normalized histograms of N20m time from 105 random subsamples of the data.

a stronger message than VCA: N20m peak time is directly comparable across
sites and visits. P35m’s peak time exhibits very similar behavior (not shown).

The site effect is much more pronounced when we consider the deflection
magnitude. Change in the stimulus strength is clearly reflected by the larger KL
divergence between subject 5’s data obtained from MIC and all other sites. In
general, there is more site variability in P35m magnitude than in N20m mag-
nitude for a single subject, with subject 1 being the most prominent example.
While these results agree with the general trend observed in VCA, they imply
site variability may be larger than that estimated by the model-based analysis.
This suggests a refined VCA that relaxes the Gaussian assumption is necessary
to accurately capture the variability in this MEG data.

5 Conclusions
Our study demonstrated that inter-subject effect is the largest contributor to
the variability of the MEG data. We analyzed variability due to site, subject,
visit, and trial effects in MEG data using variance components analysis and
nonparametric KL divergence analysis. The two analysis methods established
that we can directly compare deflection peak time across systems and visits.
However, system effects on the deflection magnitude should be modeled for data
pooling. Subject 6’s data suggests that the site effect may originate from that
subject’s physiological variability. Our random sampling approach illustrated
that the timing of deflections is highly consistent even at the single-trial level.
Hence, average across a large number of trials is not necessary. Histograms built
upon averages of a small number of single trials can better capture the inter-
subject differences. The increased sensitivity of such an approach can be helpful
in studying differences in MEG responses between normal subjects and clinical
populations.
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Fig. 4. (a) Symmetrized pairwise KL divergence of histograms in presented Fig. 3. (b) and (c)
Symmetrized KL divergence for N20m magnitude and P35m magnitude, respectively.
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