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Motivation Contributions Experiments
 Humans are able to utilize semantic concepts between objects of interests . Our proposed model is among the first to advance structured information and * ML-ZSL: Setup same as FastOTag[1].
for reasoning. Can machines take advantages of such structured prior knowledge graphs for multi-label zero-shot learning (ML-ZSL). — 81 labels from NUS-WIDE as unseen classes.
knowledge for recognition of multiple (or even unseen) object? — 1000 noisy labels - 75 duplicated/unseen labels as 925
seen classes.
Label Relationship Image » Our model advances a label propagation mechanism in the semantic space, which * Generalized ML-ZSL: training on 925 seen
—» wper. allows prediction of unseen labels (i.e., labels not seen during training). classes, testing on all 925 + 81 = 1006 classes.
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* With comparable performances_on standard multi-label classification tasks, our Classification Classification
method performs favorably against recent models for ML-ZSL. NUSWIDE | 1 00 0 s w7 | Cenealie
Fig. Multi-label zero-shot learning with structured knowledge graphs. WARP[2] 39.5 61.2 Fast0Tag (top-3) |  27.2 -
Logistics 43.9 66.9 FastOTag (top-10) - 21.9
FastOTag][1] 40.1 61.2 Ours w /o Prop. 28.1 23.9
Ours 45.7 69.0 Ours 30.6 24.2
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Fig. lllustration of Propagation Matrix




