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CURVES: Curve evolution for vessel segmentation
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Abstract

The vasculature is of utmost importance in neurosurgery. Direct visualization of images acquired with current imaging modalities,
however, cannot provide a spatial representation of small vessels. These vessels, and their branches which show considerable variations,
are most important in planning and performing neurosurgical procedures. In planning they provide information on where the lesion draws
its blood supply and where it drains. During surgery the vessels serve as landmarks and guidelines to the lesion. The more minute the
information is, the more precise the navigation and localization of computer guided procedures. Beyond neurosurgery and neurological
study, vascular information is also crucial in cardiovascular surgery, diagnosis, and research. This paper addresses the problem of
automatic segmentation of complicated curvilinear structures in three-dimensional imagery, with the primary application of segmenting
vasculature in magnetic resonance angiography (MRA) images. The method presented is based on recent curve and surface evolution
work in the computer vision community which models the object boundary as a manifold that evolves iteratively to minimize an energy
criterion. This energy criterion is based both on intensity values in the image and on local smoothness properties of the object boundary,
which is the vessel wall in this application. In particular, the method handles curves evolving in 3D, in contrast with previous work that
has dealt with curves in 2D and surfaces in 3D. Results are presented on cerebral and aortic MRA data as well as lung computed
tomography (CT) data.  2001 Elsevier Science B.V. All rights reserved.
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1. Introduction of contrast administration. All these studies cannot provide
a spatial representation of small vessels. These vessels, and

The vasculature is of utmost importance in neurosurgery their branches which exhibit much variability, are most
and neurological study. Elaborate studies with a consider- important in planning and performing neurosurgical pro-
able X-ray exposure, such as multi-planar conventional cedures. In planning, they provide information on where
angiography or spiral computed tomography (CT) with the lesion draws its blood supply and where it drains. This
thin slices, have to be carried through to achieve an is of particular interest in vascular malformations. The
accurate assessment of the vasculature. Three-dimensional surgical interest is to differentiate between the feeding
CT angiography and three-dimensional time-of flight mag- vessel and the transgressing vessel which needs to be
netic resonance angiography (TOF-MRA) yield spatial preserved. In interventional neuroradiology this knowledge
information, but lack more subtle information. Further- is utilized to selectively close the feeding vessel through
more, the three-dimensional CT needs a significant amount the artery itself. During surgery the vessels serve as

landmarks and guidelines to the lesion. The more minute
the information is, the more precise the navigation and*Corresponding author.
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sentations do not yield this kind of information. A more the centerlines of vessels (Krissian et al., 1999, 1998).
precise spatial representation of this complex anatomic Multiscale response functions are evaluated at each of
structure is needed. these voxels to determine the likelihood that the voxel is a

For these reasons, we would like an automated analysis vessel of various diameters. The maximal response over all
tool to interpret these images, with the capability to obtain choices of diameters (scales) is retained at each voxel, and
as much of the fine detail as possible. For this study, we a surface model of the entire vascular structure is recon-
consider the segmentation of volumetric vasculature im- structed from knowledge of centerlines and diameters. A
ages, such as the magnetic resonance angiography (MRA) final method which obtains segmentations by thresholding
images pictured in Section 5, with a focus on segmenting a filtered MRA image uses anisotropic diffusion to remove
the small vessels. Areas of flowing blood can appear bright noise without removing small vessels (Krissian et al.,
in this imaging modality. The MRA images are displayed 1997; Perona and Malik, 1990; Catte et al., 1992).
in maximum intensity projection in which the stack of A different multiscale approach based on medial axes
slices is collapsed into a single image for viewing by uses that assumption that the centerlines of the vessels
performing a projection through the stack that assigns to often appear brightest to detect these centerlines as intensi-
each pixel in the projection the brightest voxel over all ty ridges of the image (Aylward et al., 1996). The width of
slices. The approach of simply thresholding the raw data is a vessel is then determined by a multiscale response
commonly used for segmentation but incorrectly labels function. This algorithm has been used in conjunction with
bright noise regions as vessel and cannot recover very two-dimensional / three-dimensional registration to incorpo-
small vessels which may not appear connected in the rate information from a pair of X-ray angiograms (Bullitt
volumetric image. Instead, we have developed the et al., 1997). Other work has taken a differential geometry
CURVES system which models the vessels as three-dimen- approach in which the volumetric MRA image is treated as
sional curves with arbitrary branching and uses an active a hypersurface of 4D space whose extrema of curvature
contours approach to segment these curves from the correspond to vessel centerlines (Prinet et al., 1996), and a
medical image (Lorigo et al., 1999). statistical approach in which Gaussian (Wilson and Noble,

This paper is organized as follows. Before describing 1997) or Rician (Chung and Noble, 1999) intensity
CURVES, we review previous approaches to vessel seg- distributions are assumed for background and for vessel
mentation. We then discuss CURVES’ theoretical and intensities and the expectation maximization (EM) algo-
experimental foundations, followed by the system descrip- rithm is applied to find appropriate thresholds for classifi-
tion itself. The paper concludes with experimental results cation.
on MRA and CT datasets and a brief summary. Deformable model approaches have been applied to

three-dimensional vascular segmentation as well. In such
methods, an initial boundary estimate is deformed itera-

2. Other approaches tively to optimize an energy function which depends both
on image information and on the smoothness of the

Multiscale filtering has been proposed for the segmenta- surface. One such algorithm is called minimal surfaces.
tion of curvilinear structures in three-dimensional medical Our work follows closely from this approach, so its
images (Sato et al., 1998; Krissian et al., 1999, 1998; discussion is deferred until Section 3. Moreover, we
Frangi et al., 1998; Lorenz et al., 1997). The primary compare results obtained with our algorithm to results
application addressed is the segmentation of vasculature in obtained with a variant of the minimal surfaces approach
MRA images. This method involves convolving the image in Section 5.4. Another volumetric deformable model
with Gaussian filters at multiple scales and analyzing the approach is t-surfaces, or topologically adaptive surfaces
eigenvalues of the Hessian matrix at each voxel in the (McInerney and Terzopoulos, 2000), which are an exten-
image to determine the local shape of the structures in the sion of classical snakes (Kass et al., 1988) that can handle
image. For example, if the voxel corresponds to a linear changing topologies and are independent of parameteriza-
structure such as a bright vessel in an MRA image, the tion of the evolving surface model. An overview of the use
eigenvalues would be different than if the voxel corre- of deformable models in medical image analysis is found
sponds to a planar structure, speckle noise, or no structure. in (McInerney and Terzopoulos, 1996). The CURVES
Some methods use the output of the multiscale filter algorithm belongs to this class of approaches; the next
directly to define a new image in which curvilinear section reviews the work from mathematics and computer
structures are brightened and bright voxels corresponding vision on which it is founded.
to speckle noise and planar structures such as skin are
darkened (Sato et al., 1998; Frangi et al., 1998; Lorenz et
al., 1997). This enhanced image is visualized directly 3. Background
(Frangi et al., 1998), thresholded (Sato et al., 1998), or
segmented using an active contour method (Lorenz et al., Curve evolution schemes for segmentation, implemented
1997). Other methods use the eigenvalues so obtained to with level set methods, have become an important ap-
define a candidate set of voxels which could correspond to proach in computer vision (Caselles et al., 1997; Kich-
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enassamy et al., 1995; Malladi et al., 1994; Sethian, 1996). additional vector field induced on the space (Ambrosio and
This approach is an extension of classical active contour Soner, 1996). Subsequent work developed and analyzed a
models (Kass et al., 1988), and uses partial differential diffusion-generated motion scheme for codimension-two
equations to control the evolution of an initial boundary curves (Ruuth et al., 1998). We have developed the first
estimate toward the true object boundary. An overview of implementation of geodesic active contours in three dimen-
the superset of techniques using related partial differential sions (Lorigo et al., 1999), based on Ambrosio and Soner’s
equations can be found in (Caselles et al., 1998). The work. Our system, CURVES, uses these techniques for
fundamental concepts from mathematics from which these automatic segmentation of blood vessels in MRA images.
schemes derive were explored several years earlier when The dimension of the manifold is one, and its codimension
smooth closed curves in 2D were proven to shrink to a is two. The CURVES algorithm is an extension of
point under mean curvature motion (Gage and Hamilton, geodesic active contours research, also using a level set
1986; Grayson, 1987), which is the evolution of a mani- implementation. We next review the basic geodesic active
fold over time defined so that the temporal derivative of contour model, the level set technique employed for
the manifold is equal to the mean curvature vector (the implementation, and this more recent extension of the level
normal vector scaled by the mean curvature). Evans and set method to higher codimensional curves.
Spruck and Chen, Giga, and Goto independently framed
mean curvature flow of any hypersurface as a level set 3.1. Geodesic active contours
problem and proved existence, uniqueness, and stability of
viscosity solutions (Chen et al., 1991; Evans and Spruck, The task of finding the curve that best fits the object
1991). For application to image segmentation, a vector boundary is posed as a minimization problem over all

2field was induced on the embedding space so that the closed planar curves C( p): [0, 1] → R (Caselles et al.,
evolution could be controlled by an image gradient field or 1997, 1993; Kichenassamy et al., 1995). The objective
other image data. This model is called geodesic active function is
contours. The same results of existence, uniqueness, and 1

stability of viscosity solutions were obtained for the R g(u=I(C( p))u)uC9( p)u dp,
modified evolution equations for the case of planar curves,

0and experiments on real-world images demonstrated the
where I: [0, a] 3 [0, b] → [0, `) is the image and g: [0,effectiveness of the approach (Caselles et al., 1997, 1993;

1
`) → R is a strictly decreasing function such thatKichenassamy et al., 1995).

2g(r) → 0 as r → `, e.g., g(u=Iu) 5 1/(1 1 u=Iu ).When extended to three dimensions, curves evolving in
To minimize this objective function by steepest descent,the plane became surfaces evolving in space, called

consider C to be a function of time t as well as spatialminimal surfaces (Caselles et al., 1997). Although the
parameter p. The Euler–Lagrange equations yield thetheorem on planar curves shrinking to a point could not be
curve evolution equationextended to the case of surfaces evolving in three dimen-

sions, the existence, uniqueness, and stability results of the C 5 gkN 2 (=g ? N)N, (1)tlevel set formalism held analogously to the 2D case. Thus
where k is the Euclidean curvature and N is the unitthe method was feasible for evolving both curves in two
inward normal. In the absence of image gradients, thisdimensions and surfaces in three dimensions. Beyond
equation causes the curve to shrink according to itselegant mathematics, success on real-world data sets
curvature; the presence of image gradients causes the curveestablished the method as an important segmentation tool
to stop on the object boundary (Fig. 1(a)).in both domains. Recent work has extended and applied

the method to medical image segmentation (Zeng et al.,
3.2. Level set method for hypersurfaces1999, 1998). A related method called bubbles has also

been applied to medical imagery (Tek and Kimia, 1997).
Level set methods increase the dimensionality of theOne fundamental limitation of these schemes has been that

they describe only the flow of hypersurfaces, i.e., surfaces
of codimension one: the codimension of a manifold is the
difference between the dimension of the evolving space
and the dimension of the manifold. It is also the number of
equations that are necessary to define the manifold.

Regarding surfaces of codimension larger than one,
Altschuler and Grayson studied the problem of curve-
shortening flow for three-dimensional curves (Altschuler
and Grayson, 1992), and Ambrosio and Soner generalized
the level set technique to arbitrary manifolds in arbitrary
dimension. They provided the analogous results and ex- Fig. 1. Simple segmentation example. (a) Evolving curve. (b) Level set
tended their level set evolution equation to account for an implementation of curve evolution.
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Tproblem from the dimensionality of the evolving manifold qq
]to the dimensionality of the embedding space (Sethian, P 5 I 2q 2uqu1996). For the example of planar curves, instead of

evolving the one-dimensional curve, the method evolves a
2 as the projector onto the plane normal to q (I is the identitytwo-dimensional surface. Let u: R → R be the signed 2matrix). Further define l(=v(x, t), = v(x, t)) as the smallerdistance function to curve C as in Fig. 1(b); it is for 2nonzero eigenvalue of P = vP . The level set evolution=v =vexample positive outside the region determined by the

equation for mean curvature flow C 5 kN is then (Am-tcurve and positive inside. C is thus the zero level-set of u,
brosio and Soner, 1996)and u is an implicit representation of C. Let C be the0

initial curve. It is shown in (Chen et al., 1991; Evans and
2v 5 l(=v(x, t), = v(x, t)).Spruck, 1991) that evolving C according to t

C 5 bN,t That is, this evolution is equivalent to evolving C accord-
ing to C 5 kN in the sense that C is the zero level set of vtwith initial condition C( ? ,0) 5 C ( ? ) for any function b, is0 throughout the evolution. For intuition, let v be theequivalent to evolving u according to
distance function to C. Consider then an isolevel set

u 5 b u=uu, G 5 hxuv(x) 5 ´j of v where ´ is small and positive, so Gt ´ ´

is a thin tube around C (Fig. 2(a)). The nonzero eigen-
with initial condition u( ? ,0) 5 u ( ? ) and u (C ) 5 0 in the 20 0 0 values of P = vP are equal to the principal curvatures=v =vsense that the zero level set of u is identical to the evolving

of this tube. The larger principal curvature depends on ´
curve for all time. Choosing b 5 gk 2 (=g ? N) as in Eq.

while the smaller is related to the geometry of C. It is
(1) gives the behavior illustrated in Fig. 1(b) according to

according to C that we want the evolution to proceed; thus,
the update equation

the smaller principal curvature is chosen.
The first rows of Fig. 3 demonstrate the behavior of au 5 gk u=uu 1 =g ?=u.t

shape undergoing this motion, where the smoothing force
corresponds to the curvature of the underlying 1D curve.The extension to surfaces in three dimensions is straight-
The final row then compares this behavior to that offorward and is called minimal surfaces (Caselles et al.,
traditional (codimension-one) mean curvature flow in1997). The advantages of the level set representation are
which the regularization is based on the mean curvature ofthat it is intrinsic (independent of parameterization) and
the surface.that it is topologically flexible since different topologies of

Now assume there is an underlying vector field drivingC are represented by the constant topology of u.
the evolution, so the desired evolution equation is

3.3. Level set method for curves in higher codimension
C 5 kN 2 Pd,t

For the task of evolving one-dimensional curves in
where P is the projection operator onto the normal spacethree-dimensional space, however, the above level set
of C (which is a vector space of dimension 2) and d is arelation does not hold. It is applicable only to hyper-

3given vector field in R , (Fig. 2). The evolution equationsurfaces, that is, surfaces whose codimension is one. The
for the embedding space then becomes (Ambrosio andexamples of a planar curve and a three-dimensional surface
Soner, 1996)have codimension one, but space curves (curves in three-

dimensions) have codimension two. Intuition for why the
2level set method above no longer holds is that there is not v 5 l(=v, = v) 1 =v ? d.t

an ‘‘inside’’ and an ‘‘outside’’ to a manifold with codimen-
sion larger than one, so one cannot create the embedding
surface u in the same fashion as for planar curves; a
distance function must be everywhere positive, and thus its
gradient is singular on the curve itself. The discovery of
more general level set equations for curvature-based
evolution (Ambrosio and Soner, 1996), however, moti-
vated the development of CURVES, which uses image
information to create the auxiliary vector field used to
evolve 1D curves.

3 3Let C( p): [0, 1] → R be some curve and v: R → [0, `)
be an auxiliary function whose zero level set is identically Fig. 2. Codimension-two curve. (a) Tubular isolevel set G of C. (b) The´

C, that is smooth near C, and such that =v is non-zero tangent to C at p, the normal plane, the external vector d, and its
n

projection onto the normal plane.outside C. For a nonzero vector q [ R , define
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where H is the Hessian of the intensity function. The
auxiliary vector field in the above equation is thus

g9 =I
] ]d 5 H ,g u=Iu

so the equation for the embedding space is

g9 =I2 ] ]v 5 l(=v(x, t), = v(x, t)) 1 =v(x, t) ? H .t g u=Iu

4.2. Locality of image information

For geodesic snakes of any dimensionality and codimen-
sionality one must compute some curvature and some
external image-related term at each point on the higher-
dimensional manifold (the surface in the case of a planar
curve, the volume in the case of a space curve). For each
of these terms, one can use the values defined at the
particular location or those defined at the closest point on
the zero level set (Fig. 4). Traditional level set segmenta-Fig. 3. First three rows demonstrate the tubular object evolving to smooth
tion methods use the image term from the closest point onthe underlying curve, as in CURVES. Notice the bumps are first

smoothed out until the shape approximates a torus, then the torus shrinks the level set, but compute the curvature term locally
to a point. Fourth row demonstrates the shape evolving under codimen- (Caselles et al., 1997, 1993; Kichenassamy et al., 1995).
sion-one flow. The high curvatures corresponding to the small radius of The reason is that the curvature term is defined locally, and
the tube cause the shape to become thinner until it disappears without

the level-set-equivalence relation says that indeed oneperceptibly affecting the geometry of the underlying curve.
should use that local curvature. The image-term, converse-
ly, is not defined locally if one regards the problem as

4. CURVES evolving the curve directly. One must, then, ‘‘invent’’ an
image term at those points off the zero level set. The best

The curve evolution equation we use follows directly choice is to choose the image term at the nearest point on
from an energy-minimization problem statement. When the zero level set. This choice keeps the evolving ‘‘distance
embedding that curve evolution in the evolution of a function’’ as close to a true distance function as possible
volume, we make a non-traditional choice for incorporat- without modifying the curvature term. Alternative formula-
ing the image information. Beyond that equation, several tions keep the evolving manifold a distance function
additional features of the program are incorporated for throughout the evolution (Gomes and Faugeras, 2000;
numerical and application-specific reasons, as described Zhao et al., 1996) using image or other information from
below. the object boundary as well as curvature information from

the boundary only; no local information is used at all.
The CURVES method, however, uses the image term at4.1. Evolution equation

each location on the higher dimensional manifold instead
of propagating the image data off the current zero level set.For the case of one-dimensional structures in three-
This choice was made to enable the evolving surface to bedimensional images, we wish to minimize
attracted to edge gradients that are not on the current

1
surface. For example, if there are two neighboring tubes inR g(u=I(C( p))u)uC9( p)u dp, the image and the curve or surface is initialized near one,

0

3where C( p): [0, 1] → R is the 1D curve, I: [0, a] 3 [0,
1b] 3 [0, c] → [0, `) is the image, and g: [0, `) → R is a

strictly decreasing function such that g(r) → 0 as r → `.
For our current implementation, we use g(r) 5 exp(2r)
because it works well in practice. By computing the
Euler–Lagrange equations, we find that the curve evolu-
tion equation is

g9 =I
Fig. 4. To evolve a point on the distance function, CURVES chooses] ]C 5 kN 2 P H ,S Dt g u=Iu image information from A instead of B.
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CURVES can capture the other tube; the traditional a distance function to its zero level set. At convergence or
method cannot. However, this also means that the when desired, the zero level set is extracted from v for
CURVES method is not equivalent to explicit Lagrangian visualization of the segmentation.
evolution, which would not find the second tube. The This section discusses issues that have arisen in convert-
reason that neither an explicit evolution nor a tradition ing the theory above to practice. Initial experiments
level set evolution would find the second tube is that they required that the evolving volume be a distance function to
are stopped by the local minimum found at the outline of the underlying curve; however, it was not clear how to
the single tube. CURVES is thus less sensitive to initializa- robustly extract the zero level set or even evolve those
tion than previous level set methods are. points since the gradient of the distance function was

This choice also has implications in the need to reinitial- singular exactly there. Moreover, the projection operator Pq

ize the evolving higher-dimensional manifold to be a is defined only for non-zero vectors q, so the method is
distance function. Even in the absence of an image force, undefined at =v 5 0, which is the curve itself, and is
all of the level sets are evolving toward the same local numerically unstable near the curve. For this reason, we
minima in traditional methods; they thus become increas- developed the ´-Level Set Method which defines a thin
ingly close together so the manifold is no longer a distance tube of radius ´ around the initial curve, then evolves that
function (Gomes and Faugeras, 2000). In the case of tube instead of the curve. ´ does not denote a fixed value
CURVES, the image force is a more severe force that here, but means only that the evolving shape is a ‘‘tubular’’
invalidates the distance function constraint. It follows that surface of some unspecified and variable nonzero width.
CURVES requires far more reinitializations than the We stress that this is an approximation to evolving the
traditional method. However, if we wish the image in- underlying curve but is not equivalent. If we were to
formation off the zero level set to affect the evolution, we constrain the width of the tube to remain constant along
cannot reinitialize too frequently. For example, reinitializ- the tube, it would be equivalent; however, allowing the
ing after every step in the evolution is equivalent to using image to attract local surface areas independently causes
only the image information on the zero level set, since the the width to vary, so the tube is no longer as isolevel set of
reinitialization maintains only those values, updating all the distance function to its centerline. Thus, we are now
other values to be their distance to the zero level set. evolving surfaces similar to minimal surfaces (Caselles et

al., 1997), but that follow the motion of the underlying
4.3. System details curve so they do not regularize against the high curvatures

found in thin cylindrical structures such as blood vessels
A flowchart of the CURVES system is shown in Fig. 5. and bronchi. In addition to being more robust, this method

v is the evolving volume whose zero level set is the better captures the geometry of such structures, which have
current segmentation estimate. An initial volume v is nonzero diameter.0

generated from the image data and is passed with that data We stress that this technique is an approximation to
to the main body of the system which evolves v (v) evolving the underlying curve but is not equivalent. If we0

iteratively, according to the partial differential equation were to constrain the width of the tube to remain constant
given in Eq. (2) below. Periodically, v is reinitialized to be along the tube, it would be equivalent; however, allowing

the image to attract local surface areas independently
causes the width to vary, so the tube is no longer as
isolevel set of the distance function to its centerline.

The next implementation details relate to the volume
evolution equation. To control the trade-off between fitting
the surface to the image data and enforcing the smoothness
constraint on the surface, we incorporate an image weight-
ing term r which is set by the user or is pre-set to a default
value. In practice, since our experimental datasets vary
widely in dynamic range and noise content, segmentations
are performed separately for a few different values of r,
and the best segmentation is selected; however, if the
system were routinely run on datasets acquired with the
same parameters, the correct value would be known aFig. 5. Overview of segmentation algorithm. v is the evolving volume

whose zero level set is the current segmentation estimate. An initial priori. Second, because vessels in MRA and bronchi in CT
volume v is generated and passed to the ‘‘Evolve’’ routine along with the0 appear brighter than the background, we weight the image
raw image data, where it is evolved according to the partial differential term by the cosine of the angle between the normal to the
equation derived from the energy minimization formulation. Periodically,

surface and the gradient in the image. This cosine is givenv is reinitialized to be a distance function to its zero level set. At
by the dot product of the respective gradients of v and I, soconvergence or when desired, the zero level set is extracted from v for

visualization of the segmentation. the update equation becomes
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enable the user to focus only on the largest connectedg9 =I2 ] ]v 5 l(=v, = v) 1 r(=v ?=I) =v ? H . (2) structures.t g u=Iu A final attribute of CURVES is the inherent capability to
estimate vessel radii directly from the volumetric distanceThe last comment on the update equation deals with the l
function v. Of the two surface curvatures, the smaller isterm. For computational efficiency and because of numeri-
used in the segmentation procedure, but the larger curva-cal instability of the gradient computations near =v 5 0, we
ture can also be useful as it corresponds to the radii of theremark that the level sets of the function v flow in the
vessels. We demonstrate this observation by color-codingdirection of the normal with velocity equal to the sum of
the segmentation result according to the larger curvature attheir smaller principal curvature and the dot product of =v
each point on the surface in Section 5.2.with the image-based vector field d. Therefore, we com-

pute the smaller principal curvature l directly from v
2instead of as an eigenvalue of P = vP .=v =v

5. ResultsThe initial surface (and thereby the initial volume v ) is0

usually generated by thresholding the MRA dataset. How-
We have run CURVES on over 20 medical datasets,ever, the method does not require that the initial surface be

primarily phase contrast magnetic resonance angiographynear the target surface but may use any initial surface, so
(PC-MRA), of various resolutions and scanner types. Wearbitrary tubular surfaces have been used to explore the
provide images of several representative segmentations.behavior of the algorithm. Before running CURVES the
After an illustration on synthetic data, we show successiveimage dataset is smoothed by a small isotropic Gaussian
boundary estimates in a segmentation of a cerebral MRAsince the algorithm inherently requires some smoothness of
image to demonstrate the behavior of the algorithm overgradients. The sigma normally used is 0.75 mm in each
time, until convergence is reached. The next exampledimension, where a typical dataset has voxel dimensions of

3 illustrates performance on an aorta dataset and the capa-0.937530.937531.5 mm .
bility to estimate vessel radii. We then show CURVESInstead of evolving the entire volume, we evolve only
segmentations of more cerebral MRA images compared tothe portion of the volume within a narrow band of the zero
those obtained with a manual segmentation technique usedlevel set (the current surface). Normally, we set the band to
clinically at our institution. Finally, we illustrate theinclude voxels that are 4 to 6 voxels away from the
advantage of our system compared to codimension-onesurface. This aspect of the implementation does not have
surface evolution with an experiment involving the seg-the same meaning as ‘‘banding’’ (Adalsteinsson and
mentation of bronchi in a computed tomography (CT)Sethian, 1995; Malladi et al., 1994; Chopp, 1993) in
image of lung.previous geodesic active contour methods where the image

Qualitative comparisons are shown only due to thedata on the zero level set is propagated throughout the
difficulty of obtaining ground truth segmentations forband. We simply mean that only those points are evolved.
datasets of this level of complexity. Even the manually-Note that, unlike these other methods, CURVES is sensi-
obtained segmentations to which we compare CURVEStive to the width chosen for the band since image values
cerebral vasculature segmentations cannot be consideredtherein are indeed used in the evolution.
‘‘ground truth’’ since many vessels are not obtained andFurther, the points in the band are periodically reinitial-
bright areas not corresponding to vessel are included inized to be a distance function: the zero level set S is
some cases. The images show the thin structures thatextracted, then the value at each point is set to be its
CURVES obtains beyond those obtained by the manualdistance to S. For our implementation, this reinitialization
method, but there is not currently a quantitative measure tois itself a level set method. To obtain the positive
evaluate the segmentations in these regions.distances, the surface is propagated outward at constant

speed of 1, and the distance at each point is determined to
5.1. Example evolutionsbe the time at which the surface crossed that point. A

second step propagates the surface inward to obtain the
To illustrate the codimension-two regularization forcenegative distances analogously. We reinitialize the distance

applied to tubular shapes, we show the evolution of twofunction every 3 to 5 steps; this is much more frequently
synthetic shapes using regularization only, without anthan previous level set techniques for reasons discussed
image force. One shape was shown in the first rows of Fig.above.
3 and was discussed there. The second is shown in Fig. 6.Convergence of the algorithm is detected when the
This shape has sharp corners, and we see that although thevolume of the segmented region changes less than some
one-dimensional centerline of the shape is singular at thosespecified percentage of total volume, across a specified
corners, the evolution simply uses the smaller principalnumber of iterations. The user may then choose to omit
curvature of the surface at these points. This procedure hasfrom the resultant segmentation all structures whose
the advantage of enabling the evolution to proceed in avolume is less than some threshold. This step can remove
natural way to smooth out these corners and the dis-‘‘noise’’ that may have been incorrectly segmented or can
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Fig. 6. A tubular shape with corners under codimension-two flow.

advantage of causing the tube to become fatter at these widest vessels in red, intermediate vessels in green, and the
corners over the course of the evolution. The fattening is thinnest vessels in blue. Recall that cylinders are not fit
caused by the difference in the curvature estimates ob- globally, but only local curvature properties are used, so
tained on the inside and the outside of the corners. This the color can vary between adjacent regions where the
disadvantage exists for all tubular shapes that have non- structure is not perfectly cylindrical.
zero underlying curvature, but is especially prominent for
sharp corners because the interior curvature estimate is
very high in those cases. As expected, the tube shrinks 5.3. Cerebral vasculature: comparison to manual
according to its underlying centerline, modulo this non-
constant change in width. One specific practical motivation for our work is the use

The next example shows the use of the image force of surface models of cerebral vasculature as an aid in
derived from MRA data. In particular, Fig. 7 illustrates the neurosurgical planning and procedure, especially in the
behavior of our system over time on a PC-MRA image of context of the image-guided surgery program at our
cerebral vessels. The initial surface is obtained by thres- institution (Grimson et al., 1997). Currently the vessel
holding the raw dataset, then CURVES evolution produces models are obtained manually as follows. A neurosurgeon
the subsequent images. The results are discussed below; interactively chooses a threshold that is used to binarize
these images indicate the temporal change in the tubular the MRA dataset: all voxels brighter than that threshold are
structure. labeled as vessel, while all others are discarded. A

‘‘connectivity’’ program then partitions the set of labeled
5.2. Aorta segmentations voxels into connected components. Each connected com-

ponent appears in a distinct color on the user interface. The
Fig. 8 shows the segmentation of a contrast-enhanced surgeon looks at individual slices and clicks on colored

MRA image of an aorta. This image was acquired on a regions that correspond to vasculature. All connected
Siemens scanner at New York University, with voxel components so chosen are stored as the final manual

3resolution of 1.7531.7532.39 mm and a size of 2563 segmentation. The first drawback of this method is the
256345 voxels. The segmentation is shown from two expert user-interaction required, the second is that the
orthogonal viewpoints. For each viewpoint, the maximum thresholding step implies that all regions of image ‘‘noise’’
intensity projection of the raw data is shown first, followed which adjoin vasculature are incorrectly labeled as vessel
by the original segmentation and that segmentation color- and small thin vessels which may appear broken or
coded by local radii estimates. The colormap shows the disconnected from larger structures will often be omitted.

Fig. 7. Surface evolution over time: maximum intensity projection of raw data, initialization, then successive boundary estimates.
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Fig. 8. Segmentation of a contrast-enhanced aorta MRA image, courtesy of Siemens, acquired on a Siemens scanner at New York University. From each
viewpoint is shown the maximum intensity projection of the raw data, the CURVES segmentation, and the CURVES segmentation color-coded by local
radii, where the colorscale ranges from blue to red in order of increasing radius.

Thus, our goal is to reduce user interaction while increas- shown from three orthogonal viewpoints. For each view-
ing the ability to segment thin vessels. point, the maximum intensity projection of the raw data is

Fig. 9 shows CURVES segmentations (red) compared to shown, followed by the CURVES segmentation (red), the
segmentations acquired using the manual procedure just manual segmentation (blue), and a combination image
described (blue). The dataset shown here is PC-MRA illustrating the differences between the segmentations.
acquired on a 1.5T scanner without contrast agent, with Notice that CURVES is able to capture much more of the

3voxel resolution of 1.17187531.17187530.8 mm and a thin vessels than is the manual procedure which is based
size of 2563256384 voxels. The same MRA dataset is on simple thresholding. One negative aspect of CURVES

Fig. 9. The same cerebral MRA dataset is shown from three orthogonal viewpoints. For each viewpoint, the maximum intensity projection of the raw data
is shown, followed by the CURVES segmentation (red), the manual segmentation (blue), and a combination image showing the differences between the
segmentations.
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Fig. 10. Each row shows a different dataset. Left to right: maximum intensity projection of raw data, CURVES segmentation (red), manual segmentation
(blue), combination image showing the differences between the segmentations.

performance on this example is that some large vessels gradient. If the vessel intensity profile in MRA is assumed
such as the middle cerebral arteries and the superior to be Gaussian, then the true vessel wall should be placed
sagittal sinus appear too thin in the CURVES segmenta- farther out along the tails of the Gaussian than at the points
tion. This artifact occurs because CURVES places the of sharpest gradients. This problem does not occur in CT
vessel boundary at the location of sharpest intensity data below which does not have a Gaussian profile, and

Fig. 11. Segmentation of a volumetric subregion of a CT lung scan by CURVES (red) compared to one obtained by a codimension-one (green) method.
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future work will explore the modification of the objective algorithm, the results are more different when the regulari-
function dependent on the imaging modality used. zation term is more heavily weighted. The cerebral images

Fig. 10 shows CURVES results on three more datasets shown appeared to contain less imaging artifacts than did
for which we also have manual segmentations. Here, each the pulmonary image, so the image-force was set higher
row shows a different dataset. The first dataset was for the cerebral images, thus lessening the effect of
acquired using the same protocol as that in Fig. 9, and the changing the regularization force to be codimension-two.
second and third were acquired on a 0.5 T scanner with a Regarding the sensitivity of the CURVES algorithm to this
size of 2563256360 voxels and with the same protocol parameter, in general, similar settings are appropriate for
otherwise. Each row shows, left to right, the maximum images obtained with common settings. That is, appro-
intensity projection of raw data, the CURVES segmenta- priate defaults are possible for a particular application, but
tion, the manual segmentation, and a combination image the user must re-determine the settings if the image
showing the differences between the segmentations. The modality or acquisition parameters are changed.
first row shows an MRA image containing considerable
pulsatile flow artifacts which appears as a bright horizontal
area surrounding the middle cerebral arteries. For this
example, the thresholding-based manual method must 6. Summary
include much of this ‘‘noise’’ in order to also obtain the
thin vessels; since CURVES depends on intensity gradients This paper has presented a novel method for the
it is better able to distinguish those arteries from the segmentation of curvilinear structures in volumetric medi-
surrounding region, without losing the small vessels. cal imagery. Its primary application has been the seg-

mentation of blood vessels in MRA data, and it has also
5.4. Bronchi, comparison to codimension-one been applied to the segmentation of bronchi in lung CT

data. The method itself is an extension of geodesic active
For comparison purposes, we have created a version of contours and minimal surfaces, with the distinction that its

the CURVES program which uses the codimension-one regularizing force derives from an underlying one-dimen-
regularization force, the mean curvature of the surface, as sional curve in three dimensions, which can be considered
in previous level set segmentation schemes (Caselles et al., intuitively as the centerline of the tubular structures.
1997); otherwise, all parameter settings were identical to Experimental results have been shown for an aorta MRA
those used in the CURVES experiment. Fig. 11 shows the dataset, for several cerebral MRA datasets, and for a lung
CURVES segmentation of bronchi in a lung CT dataset CT dataset. Manual segmentations were used for validation
compared to the codimension-one segmentation, for the for the cerebral MRA datasets and a codimension-one
same parameter settings. The dataset had voxel resolution segmentation algorithm was run on the lung CT dataset for

3of 0.6430.6431 mm and a size of 51235123224 comparison.
voxels. In the figure, the first image is the maximum In summary, our goal is to replace tedious manual
intensity projection of a sub-block of the CT data, the outlining of small vessels by an automated algorithm. The
second and third are the CURVES and codimension-one comparisons shown herein show feasibility for the brain
segmentations respectively, and the fourth is a combination vessels in these cases. The automatically obtained vessel
image of the two segmentations. Notice that the codimen- models are at least as detailed as the manually editted ones.
sion-two regularization force in CURVES does indeed While MIPs are usually sufficient for purely diagnostic
allow the segmentation of more thin structures than does purposes, they do not usually provide the spatial differen-
the codimension-one force. This affect is intuitive because tiation required for navigation in the vicinity of tumors. In
the codimension-one algorithm incorporates a smoothness such scenarios, we routinely use 3D surface models in our
constraint which acts to prevent high curvatures anywhere research. One of the reasons that these models are not
on the resultant surface, which is inappropriate for the routinely used in clinical work is the amount of time
segmentation of thin tubular structures which must have required for their preparation. This issue is at the heart of
high curvatures corresponding to their small radii. Con- the research presented in this paper.
versely, the regularization force in CURVES allows this
high curvature, regularizing against only the curvature of
the underlying one-dimensional curve.
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