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Adaptive Segmentation of MRI Data

W. M. Wells, II,* W. E. L. Grimson, Member, IEEE, R. Kikinis, and F. A. Jolesz

Abstract— Intensity-based classification of MR images has
proven problematic, even when advanced techniques are
used. Intrascan and interscan intensity inhomogeneities are
a common source of difficulty. While reported methods have
had some success in correcting intrascan inhomogeneities,
such methods require supervision for the individual scan. This
paper describes a new method called adaptive segmentation
that uses knowledge of tissue intensity properties and intensity
inhomogeneities to correct and segment MR images. Use of the
expectation-maximization (EM) algorithm leads to a method
that allows for more accurate segmentation of tissue types as
well as better visualization of magnetic resonance imaging (MRI)
data, that has proven to be effective in a study that includes
more than 1000 brain scans. Implementation and results are
described for segmenting the brain in the following types of
images: axial (dual-echo spin-echo), coronal [three dimensional
Fourier transform (3-DFT) gradient-echo T1-weighted] all using
a conventional head coil, and a sagittal section acquired using a
surface coil. The accuracy of adaptive segmentation was found to
be comparable with manual segmentation, and closer to manual
segmentation than supervised multivariant classification while
segmenting gray and white matter.

I. INTRODUCTION

HE advantages of magnetic resonance imaging (MRI)

over other diagnostic imaging modalities are its high
spatial resolution and excellent discrimination of soft tissues.
MRI provides rich information about anatomical structure,
enabling quantitative pathological or clinical studies [1]; the
derivation of computerized anatomical atlases [2]; as well as
pre- and intra-operative guidance for therapeutic intervention
[3], [4]. Such information is also valuable as an anatomical
reference for functional modalities, such as positron emis-
sion tomography (PET) [5], single photon emission computed
tomography (SPECT), and functional MRI [6].

Advanced applications that use the morphologic contents of
MRI frequently require segmentation of the imaged volume
into tissue types. This problem has received considerable
attention—the comprehensive survey article by Bezdek et al.
[7] lists 90 citations.

Such tissue segmentation is often achieved by applying
statistical classification methods to the signal intensities [8],
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[9], in conjunction with morphological image processing op-
erations [10], [11].

Conventional intensity-based classification of MR images
has proven problematic, however, even when advanced tech-
niques such as nonparametric, multichannel methods are used.
Intrascan intensity inhomogeneities due to radio frequency
(RF) coils or acquisition sequences (e.g., susceptibility artifacts
in gradient echo images) are a common source of difficulty.
Although MRI images may appear visually uniform, such
intrascan inhomogeneities often disturb intensity-based seg-
mentation methods. In the ideal case, differentiation between
white and gray matter in the brain should be easy since
these tissue types exhibit distinct signal intensities. In practice,
spatial intensity inhomogeneities are often of sufficient magni-
tude to cause the distributions of signal intensities associated
with these tissue classes to overlap significantly. In addition,
the operating conditions and status of the MR equipment
frequently affect the observed intensities, causing significant
interscan intensity inhomogeneities that often necessitate man-
ual training on a per-scan basis.

While reported methods [12]-[17] have had some success
in correcting intrascan inhomogeneities, such methods require
supervision for the individual scan. It was our goal to develop a
fully automated segmentation algorithm for MR data that can
handle the intrascan and interscan intensity inhomogeneities
that frequently arise.

This paper describes a new method called adaptive segmen-
tation that uses knowledge of tissue properties and intensity
inhomogeneities to correct and segment MR images. Use
of the expectation-maximization (EM) algorithm leads to a
method that allows for more accurate segmentation of tissue
types as well as better visualization of MRI data. Adaptive
segmentation has proven to be an effective fully automatic
means of segmenting brain tissue in a study including more
than 1000 brain scans.

The method is described in Section II, and a selection of
segmentation results are presented in Section III. A compar-
ison of the method to manual and supervised segmentation
is described in Section IV, and the relation of adaptive seg-
mentation to other methods is discussed in Section V. Finally,
some conclusions are drawn in Section VI.

II. DESCRIPTION OF METHOD

We model intra- and interscan MRI intensity inhomo-
geneities with a spatially-varying factor called the gain field
that multiplies the intensity data. The application of a loga-
rithmic transformation to the intensities allows the artifact to
be modeled as an additive bias field.
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If the gain field is known, then it is relatively easy to
estimate tissue class by applying a conventional intensity-
based segmenter to the corrected data. Similarly, if the tissue
classes are known, then it is straightforward to estimate the
gain field by comparing predicted intensities and observed
intensities. [t may be problematic, however, to determine either
the gain or the tissue type without knowledge of the other. We
will show, however, that is possible to estimate both using
an iterative algorithm (that converges in five to ten iterations,

typically).

A. Bias Field Estimator

We use a Bayesian approach to estimating the bias field that
represents the gain artifact in log-transformed MR intensity
data. We first compute a logarithmic transformation of the
intensity data as follows:

Y =g(Xy)
=[In ([X;]1), In ([Xi]2), - -~

where X; is the observed MRI signal intensity at the 7th voxel,
and m is the dimension of the MRI signal.’

Similar to other statistical approaches to intensity-based
segmentation of MRI [10], [11], the distribution for observed
values is modeled as a normal distribution (with the incorpo-
ration of an explicit bias field)

p(Yills, Bi) = Gy, (Vi — u(Is) — 5i)

In((Xda)]T

@

where

Gyp, (z) =

is the m-dimensional Gaussian distribution with variance ¥r_,
and where

Y; observed log-transformed intensities at the ¢th voxel;

T; tissue class at the ith voxel;

w(z) mean intensity for tissue class x;

1,  covariance matrix for tissue class x;

B;  bias field at the ith voxel.

Here Y;, u(x), and §; are represented by m-dimensional
column vectors, while 1, is represented by an m X m matrix.
Note that the bias field has a separate value for each component
of the log-intensity signal at each voxel. In words, (2) states
that the probability of observing a particular image intensity,
given knowledge of the tissue class and the bias field is
given by a Gaussian distribution centered at the biased mean
intensity for the class.

A stationary prior (before the image data is seen) probability
distribution on tissue class is used, it is denoted

P(Pi)-

If this probability is uniform over tissue classes, our method
devolves to a maximum-likelihood (ML) approach to the tissue
classification component. A spatially varying prior probability

(2m) " 2lyr, |72 exp (— 3 27y )

3

'For example, m will be two for a double-echo MRI acquisition.

2For example, when segmenting brain tissue I'; € {white martter, gray
matter, cerebro-spinal fluid}.
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density on brain tissue class is described in [18]. Such a model
might profitably be used within this framework.
The entire bias field is denoted by 5 = (0o, O,
<. Bn-1)T, where n is the number of voxels of data. The
bias field is modeled by a n-dimensional zero mean Gaussian
prior probability density. This model allows us to capture the
smoothness that is apparent in these inhomogeneities

p(B) = Gy (F) “4)

where
Guyl(@) = (2m) 7 Plp| 2 exp (— 52795 2)

is the n-dimensional Gaussian distribution. The n X n covari-
ance matrix for the entire bias field is denoted 1. Although
13 will be too large to manipulate directly in practice, we will
show below that tractable estimators result when 15 is chosen
so that it is banded.

We assume that the bias field and the tissue classes are
statistically independent, this follows if the intensity inhomo-
geneities originate in the equipment. Using the definition of
conditional probability we may obtain the joint probability
on intensity and tissue class conditioned on the bias field as
follows:

p(Y;, I:16:) = p(Yi|Ts, Bi)p(Ts) (5)

and we may obtain the conditional probability of intensity
alone by computing a marginal over tissue class

p(Yil8:) = Y p(Yi, TulB:)

T
=Y p(Yi|Ts, Bi)p(Ly). (6)
I
Thus, our modeling has led to a class-independent intensity
distribution that is a mixture of Gaussian populations (one
population for each tissue class). Since this model is a Gauss-
ian mixture, rather than a purely Gaussian distribution, the
estimators that we derive below will be nonlinear.

We assume statistical independence of the voxel intensities
(in other words, the noise in the MR signal is spatially white).
We may then write the probability density for the entire image
as

p(Y18) =[] p(¥ilB:)- ©)

Bayes’ rule may then be used to obtain the posterior
probability of the bias field, given observed intensity data as
follows:

p(Y18)p(8)

p(Y)
where p(Y') is an unimportant normalizing constant.
Having obtained the posterior probability on the bias field,
we now use the maximum-a-posteriori (MAP) principle to
formulate an estimate of the bias field as the value of [ having
the largest posterior probability

p(BlY) = (8)

f = arg max p(BIY). ©
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A necessary condition for a maximum of the posterior prob-
ability of g is that its gradient with respect to 3 be zero. We
use an equivalent zero-gradient condition on the logarithm of
the posterior probability

lnp(BlY)| =0 Vi

[ 01Bilk p=p
where [§;]r is the kth component of the bias field at voxel
¢. Installing the statistical modeling of (2)—(9) yields the
following expression for the zero gradient condition:

(10)

=0 VZ ke
B=p

Since only the ¢th term of the sum depends on (3;, we have
(after differentiating the logarithms)

ilB:)

Z In p(Y;|53;) +In p(B)

d
EIAN ()
p(06)

[@]”
(Vi3

=0 vi,k-

B=4
Using (2) and (6), this may be rewritten as

}:mr> G, (¥ = () -
Zp

Bi)

) Gyr, (Yi — u(Ty) — 8i)

=0 V.

p=5
Differentiating the Gaussian expression in the first term
yields

DTG, [Yi = (1) = Bl (Ve — (L) — Bl

r;

D PTGy, [Yi = w(T) = 6]
r;

% p(B)

* p(B)

=0 Vi,k-

p=p
This expression may be written more compactly as
p(B)
p(B)

ﬁmk+?W]

D Wil (v
7

=0 Vi,k

B8=0

at)

with the following definition of W;; (which are called the
weights)

Wij = [{p(0) Gy, (Vi — M(F‘) -
Zp Glld (Fi) -

,81)] I';=tissue—class—j

Bi)

(12)

where subscripts ¢ and j refer to voxel index and tissue class,
respectively, and defining

pj = p(tissue-class-j)

as the mean intensity of tissue class j. Equation (11) may be
re-expressed as follows:

S Wl (Vi )l = Y Wil Bilk

0
- (B
+d[ﬁi]k ) RV
p(B) ’
p=p
or as
d
Rile — [0~ 18 + —5 =0 Vir (13)
i =1 =) :
B=3
with the following definitions for the mean residual:
R; Z Wi 1 (Vi = 1) (14)
and the mean inverse covariance
Z Thoiti=k
i = : (15)
0 otherwise.

The mean residuals and mean inverse covariances defined
above are averages taken over the tissue classes, weighted
according to W;;.

Equation (13) may be re-expressed in matrix notation as

Vep(B) _
pW)}#g_u

Differentiating the last term yields the following:
Ry~ -5 p=0.

Finally, the zero-gradient condition for the bias field esti-
mator may be written concisely as

L

j=HR (16)
where the linear operator H is defined by
H=[ T+, (17)

that is, the bias field estimate is derived by applying the linear
operator H to the mean residual field, and H is determined
by the mean covariance of the tissue class intensities and the
covariance of the bias field.

The bias field estimator of (16) has some resemblance to
being a linear estimator in Y of the bias field 5. It is not
a linear estimator, however, owing to the fact that the W;;
(the “weights™) that appear in the expression for R and H are
themselves nonlinear functions of Y (12).
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The result of the statistical modeling in this section has
been to formulate the problem of estimating the bias field as a
nonlinear optimization problem embodied in (16). This opti-
mization depends on the mean residual of observed intensities
and the mean intensity of each tissue class, and on the mean
covariance of the tissue class intensities and the covariance
of the bias field. In the next section an approach to obtaining
solutions (estimates) is described.

B. EM Algorithm

We use the EM algorithm to obtain bias field estimates
from the nonlinear estimator of (16). The EM algorithm was
originally described in its general form by Dempster et al.
[19]. It is often used in estimation problems where some of
the data are “missing.” In this application, the missing data
is knowledge of the tissue classes. (If they were known, then
estimating the bias field would be straightforward.)

In this application, the EM algorithm iteratively alternates
evaluations of the expressions appearing in (12) and (16)

{p(ri)GﬂJri (Yl - N(Fz) - ﬁi)P]FL: tissue—class—j
> TGy (Vi — p(T) = )
s

Wi — (18)

B — HR. (19)
In other words, (12) is used to estimate the weights given an
estimated bias field, then (19) is used to estimate the bias,
given estimates of the weights.

As frequently occurs in application of the EM algorithm, the
two components of the iteration have simple interpretations.
Equation (18) (the E-Step) is equivalent to calculating the
posterior tissue class probabilities (a good indicator of tissue
class) when the bias field is known. Equation (19) (the M-Step)
is equivalent to a MAP estimator of the bias field when the
tissue probabilities W are known.

The iteration may be started on either expression. Initial
values for the weights will be needed to start with (19), and
initial values for the bias field will be needed to start with (18).

It is shown in [19] that in many cases the EM algorithm
enjoys pleasant convergence properties—namely that iterations
will never worsen the value of the objective function. Provided
that the bias estimates are bounded, our model satisfies the
necessary conditions for guaranteed convergence (although
there is no guarantee of convergence to the global minimum).

In principle, given p(I';), 1g, and 1);, we could use the
EM algorithm to obtain the needed estimates. In practice,
we cannot directly measure g, and thus we will seek other
estimates of s (in Section II-D).

1) Tractability of the M Step: Although the covariance ma-
trix 14 that characterizes the prior on bias fields is imprac-
ticably large in general, we will demonstrate that tractable
estimation algorithms may yet be obtained.

From an engineering standpoint, /g may be chosen in the
following way:

g = LLT (20
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where L represents a “practical” lowpass filter. Then [referring
to (4)]

p(B) o exp (~3|L71B[%)

and L~* will amplify high-frequency components of 3 since
it is the inverse of a lowpass filter. It is clear that this form of
prior model on bias fields will have lower probabilities to the
extent that the bias field contains high-frequency components.
Further, 173 may be chosen to be a banded matrix, this will
occur if L represents a finite impulse-response (FIR) lowpass
filter. Equation (16) may be written in the following way:

[ +vs9=1)3 = ¥R.

In this case, calculating 1/1;3? is tractable, since g is banded,
and solving the linear system for 3 will also be tractable, since

[ + 131 ~1] is banded (note that ¢! is diagonal).

C. Equal Covariance Case

The formalism simplifies somewhat when the tissue classes

have the same covariance. In this case, 1/)]»_1 =4~ and
Yol = Z Wiﬂ/);l
J
=t
so that
1/'/}_1 = dlag (/l/"717 ’¢717 ’Z/J_—17 e ¢_1)~

In this case H will be essentially a shift-invariant linear filter,
provided that the bias model is stationary. The expression
for the mean residual simplifies to the following matrix
expression:

R=9y 1y - WU]

where W is the matrix of the weights W;;, and U is a
column vector containing the class mean intensities U =
(1, g2 - )

In the case of scalar data, ¢»~! = 1/02, and the bias
estimator may be written as

p=1+0* 1 Y - WU, @1

This expression for the bias estimator was previously reported
in [20], along with scalar formulas for the weights. The bias
estimator of (21) is particularly simple when the bias model is
stationary. It is a shift-invariant linear lowpass filter applied to
the difference between the observed intensities and a prediction
of the signal that is based on the weights (which are a good
estimator of tissue class).

D. Determination of the Linear Operator H

In this section we discuss the linear operator H, including
its relation to the prior model on bias fields. We argue that
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H will be a linear lowpass filter, and describe a particularly
efficient filter.

1) Discussion: We have taken a Bayesian approach to es-
timating the bias field and tissue classes, and a formal prior
model on bias fields has been assumed. This approach has
allowed us to derive a version of the EM algorithm for this
application. The operator H is related to the prior on the bias
field via 1/);1 and to the measurement noise via 3—1 (17).
Ideally, H would be determined by estimating the covariance
1bg, but given the size of this matrix, such an approach is
impractical.

As pointed out above, H is the MAP estimator of the bias
field when the tissue probabilities are known, (the “complete-
data” case with the EM algorithm). As such, H is an optimal
estimator (with respect to the Gaussian modeling) and is
also the optimal linear least squares estimator (LLSE) for
arbitrary zero-mean models of the bias field whose second-
order statistics are characterized by 3.

Optimal filters may often be equivalently characterized
within the related formalisms of estimation theory and ran-
dom processes. Although filters are perhaps more commonly
described within the framework of random processes, we have
used estimation theory in order to derive the EM algorithm for
this application. H is essentially equivalent to the LLSE for
discrete random processes with given second order statistics
(auto-correlation functions). Such estimators are characterized
by the Wiener-Hopf equations. Applications of Wiener fil-
tering are often approached via Fourier transform methods,
yielding a filter frequency response in terms of the power
spectra of the signal and noise. In such applications, the noise
spectra are often known, and the signal spectra are sometimes
estimated using techniques of spectral estimation.

A frequent problem that arises in filter design (the present
complete-data case included) is that of estimating a slowly
varying signal that has been contaminated with white noise.
Wiener theory indicates that the ideal filter in such situations
will be a lowpass filter since the optimal filters tend to
preserve frequency components having high signal-to-noise
ratio (SNR), while attenuating components having low SNR
(see the discussion in [21, Section IX-B]).

In practice, it is difficult to obtain the optimal linear filter. H
may be instead chosen as a good engineering approximation
of the optimal linear filter (this approach is described in more
detail below). In this case, (18) and (19) are still a useful
estimator for the missing data case, and the good convergence
properties of the EM algorithm still apply. This is the approach
we have taken in our implementations, where the filter was
selected empirically.

Examination of the bias fields displayed in Figs. 6 and 11
shows that they are slowly varying. While the lowpass filters
H we have used in practice are not the optimal filters for esti-
mating these bias fields, they are reasonable choices and may
correspond to reasonable subjective estimates of the unknown
probability law for bias fields, in the sense described by Friden
[22, ch. 16]. In the end, they are justified empirically by the
good results obtained via their use. Because 13 is required to
be positive definite, not all choices of lowpass filter H will
correspond to formally valid prior models on the bias field.
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2) Computationally Efficient Filter: As argued above, the
optimal H will be a linear lowpass filter, when tissue class
is constant. We have employed a particularly efficient filter
that is characterized as follows:

pi= B

22
[Fyp=t1], 2

where
1=(1,1,1,---, )%

The filter specified above is clearly linear in the mean residual,
and it will be a lowpass filter when the tissue class is constant,
provided that F' is a lowpass filter. It has been designed to have
unity dc gain—a spatially constant shift in ¥ induces the same
constant shift in ,@ If F'is chosen to be a computationally
efficient lowpass filter, then the filter specified by (22) will
also be computationally efficient.

E. Nonparametric Generalization

This section describes an extension of the segmentation
method that uses a form of nonparametric tissue class con-
ditional intensity models that are described in [23]. The
motivation was to bring the benefits of intensity inhomogeneity
correction to applications that were currently being processed
in the manner of [23].

The method that was described in previous sections has
two main components: tissue classification and bias field
estimation. Our approach in the extended method has been
to use the same basic iteration and to replace the tissue
classification component with the technique described in [23].
In more detail, we use the intensity probability densities
described in [23] for the calculation of the weights in the E step
and substitute approximations of the means and covariances
of the nonparametric densities for the means and covariances
that appear in (14) and (15).

The classifier described in [23] uses the Parzen Window
representation for nonparametric probability densities [24] that
are derived from training data. The tissue class conditional
models may be written as follows:

1
px(X;|T; = tissuc—class—j)— Z Gy (Xi — Xij) (23)
71,]‘ &

where X; is the MR intensity at voxel 4, Gy, () is a radially
symmetric Gaussian density, and X} are the intensities of the
n; training points for tissue class j.

The nonparametric tissue class conditional intensity models
are derived from training in the “natural” MR intensities. In
view of our logarithmic transformation of the intensity data
(1), we use the following standard formula for transforming
probability densities:

px (g~ (V)T

99 | 4 Y
AV 7

py(Yi|T:) =
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For double-echo data the resulting expression for the proba-
bility density on log-transformed data is

py (Yi|T;) = exp (Y1) exp (YV2)
“px ((exp (Y1), exp (Y2))"|T)

where px is the nonparametric density described in (23).

In the expression for the weights (18), we use the nonpara-
metric class conditional densities py (Y; — 5;|I';) in place of
the Gaussian densities Gy, [Yip(1) — Bi].

In the expressions for the average residual (14) and average
covariance (15) we approximate with the empirical tissue class
means and covariances from the log transformed training data,

as follows:
1
Wy == z Yij
Tk
and

Py =—

ny

> Veg = 1) Yoy — 123)"

k

where Yy; = g(Xy;) are the n; log-transformed intensities of
the training points for tissue class j.

The resulting iterative algorithm is a simple generalization
from the Gaussian theory developed in the previous sections.
This method was designed to be a compatible replacement
for an existing method [23] that did not address the issue of
intensity inhomogeneities. While the extended method is not
technically an instance of the EM algorithm, it has proven to
be robust in practice. Results obtained using the method are
described in Section HI-B.

F. Implementations

1) Single-Channel Implementation: The single-channel re-
sults described in Section III-A were obtained using an imple-
mentation of the adaptive segmentation method as described in
Section II-C, that was coded in the C programming language.
This single-channel, two-dimensional (2-D) implementation
accommodates two tissue classes and uses a predefined region
of interest (ROI) to limit the part of the image to be classified
and gain-corrected.

The algorithm of Section II-B has been initiated on the “E
step,” (18), with a flat initial bias field, and on the “M step,”
(19), with equal tissue class probabilities.

Iterated moving-average lowpass filters [25] have been
used for the operator H in (19). These filters have a low
computational cost that is independent of the width of their
support (amount of smoothing). The filters have been adapted
to only operate in the ROI, and to adjust the effective averaging
window at boundaries to confine influence to the ROIL These
filters are shift-invariant, except at the boundary regions.
Averaging window widths of 11-30 pixels were used. One
to four filtering passes have been used with similar results.
Usually, one pass is used for the sake of efficiency. A uniform
distribution was used for the prior on tissue class.

In a typical case, the program was run until the estimates
stabilized, typically in 5-10 iterations, requiring approximately
0.5 s per iteration (per 2562 slice) on a Sun Microsystems
Sparcstation 10 [26].
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2) Two-Channel Implementation: The double-echo results
described in Section III-B were obtained using an imple-
mentation of the nonparametric extension that is described
in Section II-E. This implementation is also coded in the C
programming language. It accommodates two-channel data
(typically registered proton-density and T2-weighted images),
and multiple (more than two) tissue classes having unequal
covariances. Because it can model the important intensities
in the imagery (including the background signal) it is able
to correct and segment brain images without the need for a
previously generated ROL. It uses the computationally efficient
filter described in Section II-D2, F' is implemented as a mov-
ing average filter. Both uniform and nonuniform distributions
have been used for the prior on tissue class.

In a typical case, the program was run until the estimates
stabilized, typically in five to ten iterations, requiring ap-
proximately 2 s per iteration (per 2562 slice pair) on a Sun
Microsystems Sparcstation 10 [26].

III. RESULTS

In this section we describe the application of adaptive
segmentation to segmentation of the human brain from spin-
echo and gradient-echo images. Examples are shown for
the following types of brain images: axial (dual-echo spin-
echo), coronal [three-dimensional Fourier transform (3-DFT)
gradient-echo T1-weighted] all using a conventional head
coil; and a sagittal section acquired using a surface coil. An
additional example is shown for a synthetic image.

All of the MR images shown in this section were obtained
using a General Electric Signa 1.5 Tesla clinical MR imager
[27]. An anisotropic diffusion filter developed by Gerig et al.
[28] was used as a preprocessing step to reduce noise.

The method has been found to be substantially insensitive
to parameter settings. For a given type of acquisition, intensity
variations across patients, scans, and equipment changes have
been accommodated in the estimated bias fields without the
need for manual intervention. In this sense, the method is fully
automatic for segmenting healthy brain tissue.

A. Single-Channel Examples

This section shows a selection of results obtained using the
single-channel implementation that is described in Sections II-
C and II-F-1). Operating parameters (tissue model parameters
and filter parameters) were selected manually.

1) Synthetic Example: Fig. 1 shows a synthetic test image.
This image contains the sum of a checkerboard pattern and
a sinusoidal pattern of slightly higher spatial frequency. The
checkerboard is intended to represent two tissue classes, while
the spatial sinusoid is meant to represent an intensity inho-
mogeneity.

This example has been constructed so that it would be
difficult to correct using homomorphic filtering approaches to
intensity correction, since the signal and contaminant are not
well separated spectrally. Homomorphic filtering is discussed
in more detail in Section V.

The initial segmentation appears on the right in Fig. 1. This
result is equivalent to that which would be obtained from a
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()

Fig. 1. Synthetic image and results of conventional segmentation.

(b)

(@)

Fig. 2. Results of adaptive segmentation and bias field.

conventional two-class Gaussian classifier operating on the
synthetic image. The sinusoidal “inhomogeneity” has clearly
disturbed the classification.

Fig. 2 shows the final segmentation and bias field that result
from running the iteration to convergence. The method has
succeeded in correcting and classifying the data.

2) Coronal Brain Slices:

a) Slice example: Fig. 3 shows the input image, a slice
from a coronal 3-DFT acquisition. The brain tissue ROI was
generated manually. Fig. 4 shows the initial white matter
probabilities and segmentation. These results are equivalent
to that which would be obtained using a conventional two-
class Gaussian classifier. Fig. 5 shows the final white matter
probabilities and segmentation resulting from adaptive seg-
mentation. Fig. 6 shows the final bias field estimate. The
largest value of the input data was 85, while the difference
between the largest and smallest values of the bias correction
was about ten.

Note the significant improvement in the right temporal area.
In the initial segmentation the white matter is completely
absent in the binarization.

Fig. 3. Original gradient-echo image.

b) 3-D example: The method was used to segment a
complete coronal data set consisting of 124 slices that are
similar to the one described above.
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(a)

(®)

Fig. 4. Results of conventional two-class Gaussian segmenter: white matter probability and segmentation.

(a)
Fig. 5.

Fig. 6. Estimated bias field.

In Fig. 7 the exterior gray matter surface of the brain is
shown for reference. This surface lies just inside the brain
ROI, which was generated semiautomatically as in [11].

Fig. 8 shows the white matter surface, as determined by
adaptive segmentation while Fig. 9 shows the result obtained

(b)

Results of adaptive segmentation: white matter probability and segmentation.

Fig. 7. Gray matter surface.

without intensity correction, which is equivalent to that of
conventional intensity-based segmentation. Note the generally
ragged appearance and the absence of the temporal white
matter structures.

The 3-D renderings were generated using the dividing cubes
algorithm [29].

3) Sagittal Slice Obtained with Surface Coil: This section
shows results obtained by using the method on a sagittal



WELLS er al.: ADAPTIVE SEGMENTATION OF MRI DATA

Fig. 8.  White matter surface determined by adaptive segmentation.

Fig. 9. White matter surface determined by conventional intensity-based
segmentation.

surface coil brain image. Surface coil images are frequently
used in functional and interventional MRI because of their high
SNR in the vicinity of the coil, however, this type of data has
severe intensity inhomogeneities. The five-inch receive-only
surface coil was positioned at the back of the head. Fig. 10
shows the intensity image in the left position, after having been
windowed for viewing the occipital area. Note that “optimal
viewing” of the image in the occipital region prevents the
visualization of the rest of the image. The right position of
Fig. 10 shows the gray matter probabilities resulting from
starting the algorithm on the “M” step and running for one
cycle. This result is equivalent to that which might be obtained
using linear methods of intensity correction, see Section V for
additional discussion. A brain ROI was generated manually.

Fig. 11 shows the final gray matter probability in the left
position and the final bias field estimate in the right image.
Fig. 12 shows the corrected intensity image. Here the gain
field estimate has been applied as a correction in the ROL
Note the dramatic improvement in “viewability”—the entire
brain area is now visible, although (inevitably) the noise level
is higher in the frontal brain tissue that is farthest from the
surface coil. Also note that despite the serious gradient in the
data the gray matter/white matter contrast is consistent in the
entire corrected image.

B. Automated Segmentation of Double-Echo
Spin-Echo MRI Data

The results shown in this section were obtained using the
nonparametric extended method described in Sections II-E and
1I-F2).
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1) Double-Echo Axial Example: This section demonstrates
results for one slice of a double-echo axial acquisition of a
normal volunteer.

Fig. 13 shows one slice of registered proton-density and
T2-weighted images. The corresponding initial and final seg-
mentations are shown in Fig. 14 in the left and right positions,
respectively. The tissues are encoded from black to white
as follows: background, subcutaneous fat, CSF, gray matter,
and white matter. The initial segmentation is substantially
erroneous because of static gain discrepancies between the
tissue intensity models and the data, in addition to spatial
inhomogeneities. This result is equivalent to that which would
be obtained with conventional nonparametric segmentation
[23]. The final segmentation shows that the method has
been able to adapt to the intensities present in the data.
We have found that the method can reliably segment such
MRI data across patients and equipment upgrades without any
adjustment or intervention.

2) Multiple Sclerosis Data: This section describes results
recently obtained for segmenting MR images from a large,
longitudinal study of several dozen patients with multiple
sclerosis (MS) [30].

A sequence of 20 dual-echo (proton-density and T2-
weighted images) scans were obtained for a single multiple-
sclerosis patient with multiple white matter lesions. The data
sets were registered (using the method described in [31],
[32]) and segmented, and the results for the time series will
displayed for a representative slice in the discussion below.

The same tissue class conditional intensity models were
used to segment all sections. The results without intensity cor-
rection are shown in Fig. 15. Tissues are encoded from black
to white as follows: background, subcutaneous fat, gray matter,
CSF, lesions, and white matter. These results are equivalent
to those which would be obtained using conventional non-
parametric intensity-based segmentation (which would more
typically be used with per-scan manual training). These re-
sults show many gross misclassifications and demonstrate that
conventional intensity-based segmentation is unfeasible in this
application, at least without per-scan training. Even with per-
scan training, significant asymmetries will remain in the results
due to the spatial intensity inhomogeneities present in the
data. Results using adaptive segmentation are shown in Fig. 16
using the same tissue encoding. Good stability and symmetry
of the cortical gray matter structures are apparent. Similar
results have been obtained in processing 23 complete scans for
each of 47 patients participating in the study mentioned above,
without the need for retraining or manually generating ROIL
This has facilitated monitoring the evolution of specific white
matter lesions over time. Thus, fully automatic segmentation
of clinical MRI data has been demonstrated in more than 1000
complete scans, without the need for per-patient or per-scan
training or adjustments. The exams occurred over a 2.5 year
period that included a major MR equipment upgrade.

IV. COMPARISON TO MANUAL
AND SUPERVISED SEGMENTATION

This section describes a comparison of adaptive segmen-
tation to manual and supervised segmentation methods in
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(a)

()

Fig. 10. Surface-coil image and initial gray matter probability (equivalent to the use of a linear method of intensity correction).

(a)
Fig. 11.

Fig. 12. Results of adaptive segmentation: corrected image.

segmenting white matter and gray matter. The single-channel
implementation that is described in Sections II-C and II-F-1)
was used. In the first test, adaptive segmentation was compared
to manual segmentations (outlining of structures performed by
experienced raters). In the second test, adaptive segmentation

(b)

Results of adaptive segmentation: gray matter probability and bias estimate.

was compared to supervised multivariate classification. The
images, manual segmentations, and supervised segmentations
are described in [23].

Adaptive segmentation was applied to a single slice of
an axial proton-density spin-echo image, using a brain-tissue
ROI. The ROI was obtained by selecting those pixels that
were labeled as brain tissue by four of the five raters in
the manual segmentations. The amount of difference between
segmentations was calculated as the percentage of pixels in
the ROI having different labels.

A. Comparison to Manual Segmentation

Table I shows the results of comparing the method to
segmentations performed manually by experienced raters. The
percentage of difference within the brain ROI is shown for
comparisons within a group consisting of the manual segmen-
tations and the segmentation resulting from adaptive segmenta-
tion. The percentage of difference between two segmentations
was calculated by dividing the number of differently labeled
pixels within the ROT by the total number of pixels within
the ROIL The lower part of the table shows the average of
the percentages of difference from the other segmentations.
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(a)

Fig. 13.  Proton-density and T2-weighted images.

(b)

(b)

Fig. 14. Results of conventional nonparametric segmentation and adaptive segmentation.

The adaptive segmentation is consistent with the manual
segmentations in the sense that it does not have the largest
average difference.

B. Comparison to Supervised Classification

Table II shows the results of comparing the method to
segmentations performed by the same expert raters using a
supervised segmentation method described in [23]. In this test,
percentages of difference within the ROI are displayed for
comparisons of the supervised segmentations and the adaptive
segmentations with the manual segmentations described above.
The average percentage of difference (calculated as above)
from the manual segmentations is also shown. The adaptive
segmentation is seen to have less average difference from the
manual segmentations than the supervised segmentations, so
in this test, its performance is better.

V. DISCUSSION

The algorithm that has been described has two components:
estimation of tissue class probability and gain field estimation.
Our contribution has been to combine them in an iterative

scheme that yields a powerful new method for estimating both
tissue class and gain field.

The use of multichannel statistical intensity classifiers was
pioneered by Vannier ez al. [8]. The classification component
of adaptive segmentation is similar to the method described
by Gerig et al. and Cline et al. [10], {11]. They used ML
classification of voxels using normal models with two-channel
MR intensity signals and a semiautomatic way of isolating the
brain using connectivity. The classification component of the
nonparametric extended method is equivalent to that described
[23].

The bias field estimation component of adaptive segmen-
tation method is somewhat similar to homomorphic filtering
(HMF) approaches that have been reported. Lufkin ez al. [12]
and Axel et al. [13] describe approaches for controlling the
dynamic range of surface-coil MR images. A lowpass-filtered
version of the image is taken as an estimate of the gain field,
and used to correct the image. Lim and Pfferbaum [14] use
a similar approach to filtering that handles the boundary in a
novel way and apply intensity-based segmentation to the result.

When started on the “M Step,” and run for one cycle,
adaptive segmentation is equivalent to HMF followed by
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Fig. 15.

conventional intensity-based segmentation. We have discov-
ered, however, that more than one iteration are frequently
needed to converge to good results—indicating that adap-
tive segmentation is more powerful than HMF followed by
intensity-based segmentation. The essential difference is that
adaptive segmentation utilizes evolving knowledge of the
tissue type to make increasingly accurate estimates of the gain
field.

Dawant et al. describe methods for correcting intensities for
tissue classification [15]. In one variant, an operator selected
points of a tissue class are used to regress an intensity
correction. In the other method, a preliminary segmentation
is used in determining an intensity correction, which is then
used for improved segmentation. This strategy is somewhat

Conventional nonparametric intensity-based segmentation results (without per-scan training).

analogous to starting adaptive segmentation on the “E step”
and running it for one and a half cycles. As in the previous
case, our results demonstrate improvement with additional
iterations.

Aylward and Coggins describe a two-stage approach that
first uses a bandpass intensity corrector. Remaining inhomo-
geneities are handled by using supervised training to obtain
spatially varying statistics for classifying the corrected MR
data [17].

Several authors have reported methods based on the use of
phantoms for intensity calibration [13], [16]. This approach has
the drawback that the geometric relationship of the coils and
the image data is not typically available with the image data
(especially with surface coils). Fiducial markers were used to
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Fig. 16. Adaptive segmentation results (without per-scan training).

TABLE 1
PERCENTAGE DIFFERENCES AMONG MANUAL AND ADAPTIVE SEGMENTATIONS:
ADAPTIVE SEGMENTATION IS CONSISTENT WITH MANUAL SEGMENTATIONS

TABLE 11
PERCENTAGES OF DIFFERENCE FROM MANUAL SEGMENTATIONS OF SUPERVISED
AND ADAPTIVE SEGMETNATIONS: ADAPTIVE SEGMENTATION SHOWS BETTER
AGREEMENT WITH MANUAL SEGMENTATION THAN SUPERVISED SEGMENTATION

address this problem in [16]. In addition, the calibration ap-
proach can become complicated because the response of tissue
to varying amounts of RF excitation is significantly nonlinear

Rater A | Rater B | Rater C | Rater D | Rater E | Adaptive

Rater A | 0.0 13.97 20.64 15.82 12.72 21.33 Manual Supervised Segmentation by

Rater B || 13.97 0.0 22.16 15.99 15.11 20.67 Segmentation by || Rater A | Rater B | Rater C | Rater D | Rater E | Adaptive

Rater C 20.64 22.16 0.0 23.25 20.14 19.45 Rater A 25.22 22.52 23.04 22.51 22.29 21.33

Rater D || 15.82 15.99 23.25 0.0 15.30 23.02 Rater B 23.86 21.43 21.45 21.32 20.92 20.67

Rater E || 12.72 15.11 20.14 15.30 0.0 20.71 Rater C 19.55 21.19 18.21 21.08 18.13 19.45

Adaptive || 21.33 20.67 19.45 23.02 20.71 0.0 Rater D 27.45 25.68 25.78 25.47 25.08 23.02

Average || 16.90 17.58 21.13 18.58 16.80 21.04 Rater E 24.61 23.15 22.75 22.87 22.11 20.71
Average 24.15 22.79 22.25 22.65 21.71 21.04

{see [33, egs. (1)~(3)] and (1)-(16)}. In addition, phantom
calibration cannot account for possible gain inhomogeneities
induced by the interaction of anatomy and the RF coils.
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A semiautomated approached to brain morphometry has
been utilized by Kennedy et al. [34]. This method is based
on the detection of tissue edges. While tissue edges may be
reliably detected in areas of good contrast, some additional
work is needed to insure that the resulting surfaces are
topologically coherent.

The present work has focused on the correction of intensity
inhomogeneities in MR. The correction of magnetic field
inhomogeneities of MR images has received considerable
attention. Such inhomogeneities can cause significant geomet-
rical distortions. An effective in vivo correction approach is
described in [35].

VI. CONCLUSIONS

We have demonstrated a new fully automatic method, called
adaptive segmentation, for segmenting and intensity-correcting
MR images.

Adaptive segmentation increases the robustness and level
of automation available for the segmentation of MR images
into tissue classes by correcting intra- and interscan intensity
inhomogeneities. Via improved segmentation, the approach
leads to improved automatic 3-D reconstruction of anatom-
ical structures, for visualization, surgical planning, disease
research, drug therapy evaluation, anatomical reference and
other purposes.

Adaptive segmentation also facilitates the post-processing
of medical MR images for improved appearance by correcting
intensity inhomogeneities present in the image. This is espe-
cially useful for images derived from surface coils, where the
large intensity variations make it difficult to accommodate the
image data on films for viewing.
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