COMPUTER VISION AND IMAGE UNDERSTANDING
Vol. 70, No. 1, April, pp. 1-22, 1998
ARTICLE NO. V970623

Affine Matching of Planar Sets

Kenji Nagad*

Multimedia Systems Research Laboratory, Matsushita Electric Industrial Co., Ltd.; and Atrtificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

W. E. L. Grimson

Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received May 8, 1995; accepted January 24, 1997

complexity. At the same time, the worst case complexity for

To recognize an object in an image, we must determine the best-fit
transformation which maps an object model into the image data.
In this paper, we propose a new alignment approach to recovering
those parameters, based on centroid alignment of corresponding fea-
ture groups built in the model and data. To derive such groups of
features, we exploit a clustering technique that minimizes intraclass
scatter in coordinates that have been normalized up to rotations us-

alignment can still be expensive in practical terms. For exam
ple, to recognize an object with features from an image with

n features, where the projection model is weak perspective, w
must search on the ordermn® possible correspondences [12],
wherem andn can easily be on the order of several hundred
Of course, there are also some other prevalent algorithms f
object recognition, such as the Linear Combination method [26

ing invariant properties of planar patches. The present method uses
only a single pair of 2D model and data pictures even though the
object is 3D. Experimental results both through computer simula-
tions and tests on natural pictures show that the proposed method
can tolerate considerable perturbations of features including even
partial occlusions of the surface. © 1998 Academic Press

or the Geometrical Hashing method [16], however, all of those
are basically in the exhaustive search framework, thus sufferin
more or less from a similar practical computational problem.

One way to control this cost is to replace simple local feature
(such as vertices) used for defining the alignment, with large
groups (thereby effectively reducing the sizeéndn). In this
paper, we examine one such method by using an invariant d
scription of features from planar surfaces which undergo linea
_ ) S transformations in space. This invariant description is derive

A central problem in object recognition is finding the begtsing the second order statistics of the features extracted fro
transformation that maps an object model into the image dafge planar patches. We employ this invariant representation |
Alignment approaches to object recognition [12] find this tranganerating potentially corresponding partitions of the features i
formation by first searching over possible matches between iffa model and the image data. This grouping of features allow
age and model features, but only until sufficiently many matchgs o derive a new alignment approach to object recognitiol
are found to explicitly solve for the transformation. Given suchssed on centroid alignment of corresponding feature groug
a hypothesized transformation, it is applied directly to the othgiit on these invariant projections of the planar surface.
model features to align them with the image. Each such hy-This method uses only a single pair of 2D model and dat:
pothesis can then be verified by search near each aligned m res even though the object is 3D. It is also quite fast; ir
feature for supporting or refuting evidence in the image (see, g, testing, it took around 30 ms (0.03 s) per sample model an
example, [1] for a method to use the pose to focus the search{i@g, pair, each with 50 features. It is also demonstrated that o
other matching features). method can handle the considerable perturbations of the imag

One ofthe advantages of Alignmentapproachestorecognitighy;sed even by occlusions of the surface. This is surprising
[12]is that they are guaranteed to have a worst case polynomidlen we consider that our method solely relies on the (global
complexity. This is an improvement, for example, over corrgqatistical information of the features extracted from the entire
spondence space search methods such as Interpretation Tﬁ?é?%r patches.

[11], which in general can have an exponential expected case, york related to our method, in that it uses the whole image

(moments of the image) as the feature instead of local feature
is that of Cygansket al. [7] based on tensor analysis. They

1. INTRODUCTION
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2 NAGAO AND GRIMSON

developed an efficient method to identify a planar objectin 3D 3. A CLASS OF 2D PROJECTIONS OF PLANAR

space and to recover the affine transformation which yielded the SURFACES INVARIANT TO LINEAR

image data from the model. The basis of their method is the con- TRANSFORMATIONS

traction operation of the tensors [17, 14] formed by the products

of the contravariant moment tensors of the image with a covari-In this section, we introduce a class of transformations of 2D
ant permutation tensor that produces unit rank tensors. ThéRage features from 3D planar surfaces which yield a unique
further combining those with zero-order tensors to remove tRgojection up to rotations in the image field, regardless of the
weight, they derived linear equations of the affine parametdt@se of the surface in space. Our intention is to use this to intro
to be solved. This method is quite elegant, but it needs at leglg€e contraints on the affine relationship between a model an
fourth-order moments of the image (though it appears their ugiata defined as the sets of 2D image features.

dated version suffices with third-order moments [8]). Then, since When we are given potentially corresponding model and dat:
the higher order moments are notorious for sensitivity to noié@ature sets, then because the translational terms can be remow

[20], it may be very fragile against the perturbations containéting the centroid (first-order statistics) correspondences of th
in the image data. feature sets, we are only concerned with recovering the paran

etersL;j, unless otherwise stated. The property of this affine
transformation that we exploit for this objective is derived using
up to second-order statistics, i.e., covariances, of the feature

Our problem is to recognize an object which has planar pd(y_hk_:h_is de_scribed in the f(_)llowing [5] res_ults. Note 'Fhat the
tions on its surface, using a single pairing of 2D views of tHg2SiC idea is to apply an affine transformation to a point set st
model and data as features. Thus, we assume that at least!Bbthe two major axes of the point set are equal. This involve:
corresponding region (which is from a planar surface of the oB-Scaling along the direction of one of the principal axes of the
ject) including a sufficient number of features exists in both tHRPINt Set, putting the point setinto canonical form. If this is done
model and data 2D views. Although we do not explicitly addred8 tWo point sets, then all that remains to align the two sets is :
the issue of extracting such regions from the data, we note t§itgle rotation, which can be solved for.

several techniques exist for accomplishing this, including the| _ = ¢ Suppose we applghitening transformations

use of color and texture cues [22, 24], as well as motion CU8S 1 feature set§ X1, { X'} that are related by an affine trans-
(e.g., [25, 19]). Rather, we demonstrate in the experiments f¥Pmation L, such that ExAT = 2|, ASy AT = ¢, to

natural pictures that our method can tolerate considerable d Sld{ Y}, {Y'}. Then, the resulting distribution&’}, { Y} are

ations in such regions, mcludmg occlusions OT the surf.’?\ce, A Yated by an orthogonal transformation T asillustrated in Fig.1,
thus show that it does not require exact extraction of regions. We

2. PROBLEM DEFINITION

devise a method for finding an alignment between features of X' — LX ?)
these planar regions. It is important to stress that our method is
not restricted to 2D objects. Rather it assumes that objects have Y =AX 3)
planar sections and that we are provided with 2D views of the Y — AX )
object model that include such planar sections. Once we have
solved for the transformation between model and image, we can Y =TY, (5)

apply it to all the features on a 3D object, either by using a full
3D model [12] or by using the Linear Combinations method onhere
2D views of the object [26]. X
It is known that under the weak perspective projection model A=cVA 20T (6)

[12, 21, 15], corresponding image featuf$ and{X'} in re- A — VA i T 7)
spective 2D views from the same planar surface are related by - ’
an affine transformation,
AX + B

X' =LX+W, Q) X— Y
whereL is a 2x 2 matrix andWis a 2D vector. Thus, the trans- LX +w TY+C
formations we have to find are these affine parameters, which
can be recovered by matching a small number of points across
images. The direct use of 2D affine transformations in object X —oY
recognition was made earlier by Huttenlocher [12]. The issue AX +B

In Whl(-:h We are mter?Sted ',S whether there are Pr‘?pe”'es Ig&l Commutative diagram of transformations. Given model feauamd
the affine transformation which we can use to efficiently angresponding data featuris, we seek conditions on the transformatiansA’

reliably find the parameters of that transformation. such that this diagram commutes.
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where® and @’ are eigenvector matrices and and A’ are The value of the invariant description introduced above is fur
eigenvalue matrices of the covariance matrices of X and Xher recognized by observing the following property regarding
respectively[-]‘% denotes the square root matrix of a positivéhe availability of other invariant representations.

definite matrix [13] and-]T is the matrix transpose,V and’'V
are arbitrary orthogonal matrices, and c is an arbitrary scala
constant.

ProprosiTionl.  Aslong as we are provided only up to second-
Torder statistics of the image feature sets, the only available clas
of linear transformations that can perform invariance up to or-
thogonal transformation is the one described above that decol
relates the given distributions.

Since we can control the selection Af, A such thatT =
AL A1 satisfieddet[T] > O (ordet[T] < 0), wheredet[L] >

0, it can always represent a rotation (reflection) matrix. A proof of this proposition is given in the Appendix. The con-
Therefore, the property stated in Lemma 1 implies that if Wan of this propostion well coincides with the following intu-

have a set of model features and data features related by;iRfa observation: Since the constraint by second-order statistic
affine transformation (either due to a weak perspective projeg;(, = LE« LT provides only three equations for four unknowns
tion of 'Fhe object into the imfige, orduetoa Iinear motion of th@ij ,(i, j e 1,2) because of its symmetry, we can never solve
object image between two image frames), then if we transforgy 5| of these parameters by only using the covariances. In thi
both sets of features linearly in a well defined way (via (6) a”tfbntext, the orothogonal matrik accounts for the remaining

(7)), we derive two distributions of features that are identicgl,g degree of freedom. If we could generate an invariant dis
up to a rotation in the image field. This implies that the trangrpytion up to rotations using only second-order moments an
formed distributions are unique up to their shapes. More impgyat without whitening the distribution, we would be able to de-
tantly, it also provides an easy method for finding the relatggimine the matrisT, e.g., the rotation angle, from the principal

transformation. axes of the thus normalized distribution, thereby solving for the

A physical explanation of this property for the rigid objeckgfine parameters. This is apparently a contradiction.
case is given using Fig. 2 as follows. Suppose the upper pictures

show the surfaces in space at the model and the data posegiag| IGNMENT USING A SINGLE 2D MODEL VIEW

well as the respective orthographic projections. Looking at the

major and minor axes of the 2D model and the data, we canin this section, we show how we can align the 2D model view
change the pose of the planes so that the major and minor agfthe planar surface with its 2D images using the affine invarian
have the same length in both the model and data, as depiatedcription of the features described in the last section.

in the lower pictures. This is nothing but a normalization of

the feature distributions, and the normalized distributions aflel. Using the Centroid of Corresponding Feature Groups

unigue up to a rotation, regardless of the pose of the plane, i.e.hc the model and data features can be extracted with no el

no matter whether it is from the pose for the model or for tr}%rsy and if the surface is completely planar, then applying th

data. presented transformation to model and data features will yiel
new feature sets with identical shapes (up to an image plar
rotation). Thus, in this case, our problem, i.e., recovering the
affine parameters which generated the data from the model,
quite straightforward. One way to do this is simply to take the
most distant features from the centroid of the distribution bott
in the model and data and then to do an alignment by rotatin

Surface in the Space

at the Orignial
Model and Data Pose

FIG. 2.
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Physical explanation of the invariant projection. The upper pictures
show the surfaces in space at the model and the data poses, as well as th

the normalized model to yield a complete coincidence betwee
each model and data feature. Then, we can compute the affi
parameters which result in that correspondence.

However, the real world is not so cooperative. Errors will
probably be introduced in extracting features from the raw im:
age data, and, in general, the object surfaces may not be
planar as we expect. Further, the target object region may
partially occluded by other surfaces. To overcome these con
plications, we propose a robust alignment algorithm that make
use of the correspondences of the centroids of correspondir
feature groups in the model and data. Here we have a popul
convenient property [7]:

JrEMMA 2. When the motion of the object in space is lim-

orthographic projections to the image field. The lower pictures show the surfaé@d t0 linear transformations, the centroid of its orthographic

and their projections at the poses yielding normalized distributions.

projection to a 2D image field, i.e., centroids of image feature
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positions, is transformed by the same transformation as that Were
which each image feature is transformed.

M
We further note the following useful property regarding the Ky = Z Q(wi)Ki, (©)
stability of the centroid. =1

whereQ(w;) is the probability density function of theh cluster,

LEMMA. 3. Whenthe pertu_rt_)atlons_of _the features (due to_'r}\7l is the number of clusters, ar( is the intraclass covariance
accuracies ofthe feature positions, missing features, OCCIUS'OB?theith cluster. Therefore, the clustering algorithm attempts
or deV|at|0_n§ f“’?“ coplanarity of the features_) are zero-meaj) o4 ce the sizes of clusters, i.e., the variances of the feature
the centroid is still transformed by the same linear tranSform%bntained In other words. it tries to find chunks of features

t|?n, aldthbout%h each f(:aturi pom:}s no longer guaranteed to %%ncentrated in a small area. We use this clustering mechanis
aligned by the same transtormation. in the normalized coordinate space of the features produced b

Note that these properties are generally true for any objéting the transformations described in the last section, wher
surface and its motions. The planarity of the surface does rib€ model and the data feature distributions have the same sha
matter. In the case when the object happens to be planarUggo a rotation (for the detailed description of this algorithm,
the motion of the 2D image feature is described by a 2D affisge Fukunaga [9]).
transformation, the centroid of the features is also transformed-or the reasons described above, when the feature distribt
by the same affine transformation. tions are concentrated in some local parts, since the model ar

In [23], the use of region centroids was proposed in the recdfje data feature distributions should have the same or at lea
nition of planar surfaces. Unlike our approach for using featugémilar shape, the algorithm can yield the corresponding parti
group centroids, however, their method can only be appliedtien of the features quite stably even under some collapse of th

planar objects, as described in the paper. data. In fact, this is demonstrated in the experiments on nature
pictures with considerable partial occlusions. Of course, even il
4.2. Grouping by Clustering of Features cases where the feature distributions do not have local concel

. i be d ined f h trations, as long as the damage of the correspondences of tl
Since affine parameters can be determined from three POt » cteq features between the model and the data are not se

correspondences, our problem becomes one of obtaining at l%"ﬁ%t, e.g., without occlusion, the clustering algorithm can yield

three corresponding positions in model and data, in the preseQpe oy segmentations of the features by devising the way o
of perturbations. Based on the observations made in the precggl-ng initial clusters

ing sections, we propose to group the model and data featu €8ince the nearest-mean iteration procedure, starting from th

using their normalized coordinates, so that we can extract a §ilijsia| clustering, proceeds like a steepest descent method for o

gle feature from each of a small number of groups. The goalg o yata, it is computationally very fast. It run€N) time in

to use such groups to drastically reduce the complexity of a“gl.ré'rms of the number of featurdéto be classified, when we set

ment based approaches to recognition, by finding groups wWhosg \ sner limit on the number of iteration. We should also note

structure |s_repr(_)dgC|b_Ie in both the model and the data and tr{ﬁﬂt, although it is not guaranteed that it will reach the real min-

only matching distinctive feat_ures of such groups. . imum of J, we know that our aim is not to minimize/maximize
One way to group features is to employ clustering teChniquegy e criterion exactly, but simply to yield the same cluster con-

Inthe selection of a clustering algorithm, taking into accounttq uration both in model and data clustering. Minimization of a
use of the property described in the last section, that is, the NQ%terion is nothing more than one attempt to do this
malized model and data features are unique up to rotations and

translations, we set the following two criteria: (a) invariance of 3. Aligning a Model View with the Data

the clustering criterion to rotations and translations ofxhe

coordinate system and (b) low computational cost. The criterionNOW we can describe a basic algorithm for aligning a 2D view

(b) is critical, because if the computational cost of clusterirf @ 3D model object with its novel view, which is assumed to

is similar to those of conventional feature correspondence &}t Nearly planar. Note that to determine the best affine transfo

proaches, the merit of our method will be greatly decreased. Mation, we must examine all the fe_ature parts isolated from the
As the basic principle of the clustering algorithm, we havéhage data, as we do not know which group in the data actuall

adopted thenearest-mean iteration procedyrevhich is also corresponds to the planar surface which has been extracted

the basis of the well knowiKmean or ISODATAprocedure form the model.

[9,10,18].Itisa realiza'tion of minimizi.ng t.he intraclass f:ovari- e Step O: For a feature set from a 2D view of a model, com-

ances c_Jf the featur_es given below, which is apparently invarighite the matrices given in (6) whevenay be set tband generate

to rotations, by an iterative procedure. the normalized distribution. Cluster based on nearest-mean i
Specifically, let the criterion be eration to yield at least three clusters. Compute the centroid a

each cluster reproduced in the original coordinates. This proces
J =tracdK,], (8) can be done off-line.
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e Step 1: Given a 2D image data feature set, do the sawsn just limit the possible match between the model and dat
thing as step 0 for the data features. features by setting some allowable distance between them

e Step 2: Compute the affine transformation for each of thke normalized space. Finally, we apply some conventional e
possible combinations of triples of the cluster centroids in modedustive search procedure to find the best match in the limite

and data. candidates. Thus, this may be interpreted as a coarse-to-fine
e Step 3: Do the alignment on the original coordinates ammoach to finding the best-fit transformation from the model tc
select the best-fit affine transformation. the data. If the collapse of the data features get even more se

. . , ous such that, as described, the transformed (for normalizatiol
Step 1 isO(N). In Step 2, computation of affine parameters .
must be done for only a small number of combinations ofclusterpodel and the data features no longer correspond by rotatior

y . . . cQmputing the rotation angle might have very little effect for
of model and data features. So, it runs in constant time. Ste

is, like all other alignment approaches, on the order of the in"n[]ding correspondences between the model and data feature
’ 9 PP ’ In contrast to those other candidate methods, since in th

age size. Thus, this alignment algorithm is computationally anoposed algorithm the cluster centroids are used in the orig

X . . 2 pr
improvement over the conventional ones for object recognmoFr)L . . X o
We stress acain that our method is not restricted to Iar%g‘rrﬂ coordinates to directly recover the affine parameters, it i
obiects. We sirg v require a nearly planar surface on an %b.gott disturbed by the distortion of the normalized distributions
) ' plyreq yp . J¥escribed above in recovering the parameters, as long as t
to extract the alignment transformation. This transform can then .
. . enerated model and the data clusters are still corresponde

be applied to a full 3D model or used as part of a Linear Comtﬁ-

) : IBis is the strong merit of our clustering plus centroid align-
nations approach to sets of views of a 3D model to execute . : : . :
ment based method in dealing with the inaccuracy of the earlie

recognition. eature extraction process
As another way of using the clustering technique, one migkt P '
consider that it may suffice to generate only two clusters for 5 EXPERIMENTAL RESULTS

model and data. Then, we can rotate the model so that the cen-

ter, recovering the rotation matrik and thus affine parame-|ated data and real natural pictures show the effectiveness of t
ters byL = AT A In some situations, this may work fine proposed algorithm for recognizing planar surfaces. In the com
but in others this may become errorneous. Since the propogggler simulation and the following first part of the tests on rea
transformation that normalizes a distribution is computed soleli¢ta, we deal with perturbations of the data due to inaccuracie
from the covariance matrix of the given feature distribution, §f feature location, missing features, and surface deviation fror
is affected by the errors included in the given feature set. hlanarity. Then, in the second part of the tests on real picture:
other words, when a feature set includes some errors the ng& demonstrate the case in which, in addition to these kinds ¢

malized distribution of it is distorted. For example, when diﬁerturbations, the data is also partially occluded.
feature sets have some missing features from the model data

set, the normalized distributions of the model and the data &d. Computer Simulations

distorted with respect to each other in addition to the missingA | d . ical statistical tools. that i
features and no longer coincide by a rotation. In particular, this halyses are made using canonical statistical tools, that i

: . random patterns for model features, random values for affin
becomes serious when some portions of the planar patch are

d . . . epa{ameters by which to yield data features, and Gaussian pe
ropped due to unstable region extraction or simply becaus€ ot " . . . .
occlusion. turbations. Gaussian perturbations simulate the feature extra

It might also be possible, after generating two clusters aH
recovering the rotation angle, to find correspondences of the fgg—
features happens randomly.

tures in the normalized coordinate space and then recover (ﬂweAS the model features were generated simply randomly, th

ffin rameter ing th tablish rr nden nthe., = . 2
affine parameters using the established correspondences o dlst%buuons tended to be fairly regular. Thus, this simulates the

original coordinates of the features. This may work fine as lon se where perturbations are included in the relatively regular]
as the contamination of the data feature is small enough with™ " P . ely reguic
istributed feature data. As argued in the last section, this is

respect to the density of the feature distributions, so that t lelr htlv hard situation. so we had to devise an implementation c
unique and correct correspondences are obtainable by align?n yhe ' X P
. . . the algorithm to recover the affine parameters stably. After all
the model with the data using the recovered rotation angle. How-" " . s ) ; : .

. by using some different initial clusters in conjunction with the
ever, when the collapse of the data becomes large and the dlsteﬁr_nment framework. it has turned out that generating three c
tion of the shapes of the normalized model and data feature$|§r clusters for each’ iven initial cluster rgvides su?ficientl
unignorable, we will have to pay some additional computationa‘ﬂO d performance 9 P y
cost for finding the feature correspondences. For example, aPRAP '
possible algorithm: First, we try to recover the rotation angle Algorithm Implementation. To obtain this minimum num-
between the normalized model and data features, then, alignibey of clusters in model and data, we adopted a hierarchic:

the model with the data using the computed rotation angle, w&pplication of the nearest-mean procedure, each separating 1

gn errors and the depth perturbations of the object surface i
ace from planarity. We also study the case in which missin
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given whole features into two clusters. This is because in testiegtraction. In Fig. 4 we note that errors are almost proportiona
the nearest-mean procedure, we found that the accuraciestéahe perturbation rate. In Fig. 5, examples of the reconstructe
generating three clusters at once severely declined from thadsea distributions, with different errors in recovering the affine
for generating two clusters. Therefore, the actual method we tqakrameters, were superimposed on the data with no perturb
for feature clustering was: (1) first do clustering on the origingions. The effect of using 4 pairs of initial clusters are drastic in
complete feature setto yield two clusters for model and data, aedms of the accuracy in recovering affine parameters. Although
(2) then, do clustering again for each of the clusters generatadhe case with a single pair of initial clusters the average error:
in the first clustering to yield two subclusters from each clusténcreased as perturbations in the data features grew larger, errc
As we do not know which clusters correspond with each otheranme still small for most samples as we can see in Table 1. In almo:
model and data, all the possible combinations of the correspati-cases when the recoverylof; results in large errors, the first
dences between the centroids of model and data cluster and silisstering failed due to the distortion of the normalized feature
clusters were examined, which counted 8 matches. In additi@onfigurations caused by the perturbations. The ratio of this kinc
as we found in the course of the experiments that the nearestfailure increased as the perturbation percentage grew, so th
mean procedure is slightly sensitive to the variation of initias the main reason for the error elevations. When we attempte
clusterings, we used several different initial clusters generatedlas first level clustering with 4 pairs of initial clusters, the error
described below and selected the best-fit affine paramktgrs ratio was drastically reduced as we see in Fig. 4 and Table Z
we first compute the line, sdy, that passes through the centroidPresumably, this trend will continue as we increase the numbe
ofthe distributions to be classified and is perpendicular to the linéthe pairs of initial clusters.
passing through the centroid and the most distant feature positiofrrom Figs. 4 and 5, our algorithm, especially with the mul-
from the centroid, then rotatgaround the centroid by 4590°, tiple pairs of initial clusters, is found to be quite robust against
135, respectively, toyieldi, {i = 1, 2, 3. Then, each feature is considerable perturbations caused by the errors in feature e
classified according to which side of the lineitis located, produtraction.
ing two initial clusters. This was done for ed¢hAlthough this
clearly gives 4 times as many combinations, that is 32 matchesPepth perturbation from planarity. In the same way, Fig. 6
requiring additional computation, the accuracy in recovering tlstows estimation errors for the simulated case where the surfac
affine parameters is drastically improved as examined by thas depth perturbations from planarity. As described previously
comparison with the results by a single pair of initial clusters.perturbations in the image field caused by depth variation occu
In Fig. 3, intermediate results of the hierarchical procedurésthe direction of the translational component of the affine trans:
described above are shown. Note how there is a clear match, ufptonation. Therefore, the perturbation was taken only fonthe
arotation in the image plane, between the clusters of the botteoordinate. Similar results were obtained for other directions of
two figures in both the left and right column. In each of the folerturbation.
lowing experiments, 100 sample model and data sets each witlirrom Fig. 6, again, we can see that the accuracy was dra:
50features were used, and the average of their results were takienlly improved by using multiple pairs of initial clusters and
this accuracy ensures the stability of our algorithm against per
turbations caused by the depth variations of the points fron
Isa_narity. Thus, our method can be used to obtain approximat

With errors in extracting features.In Fig. 4, errors in re-
covering the affine parameteks; both of single pair of initial
clusters and of 4 of them are plotted versus the rate of the Gall
sian deviation to the average distance between closest features

of the data. Errors are measured based on the formula TABLE 1
- Number of Samples with Errors vs Perturbation by Single
>o(Li — Lij)? Initial Clustering
error= | =W 07 (10)
Zi,i Lij Percentage of missing features
~ L . Recovery rates 5 10 15 20 25 30 35
whereL; is the recovered values for affine parameters.
The average distance between closest feature points was es- —0-01 73 52 30 21 7 3 0
timated by 0.01-0.05 12 17 27 31 36 37 31
0.05-0.1 8 10 14 16 15 14 14
0.1-0.2 2 3 5 4 8 10 11
. def{L]A 0.2-0.3 2 2 3 6 7 5 7
average distance [N] , (11) 0.3-0.4 0 2 3 5 3 5 5
= .3-0.
0.4- 3 14 18 17 24 26 32

where A is the area occupied by the model distribution &hd

is the number of the features included. The perturbation r Note.The number of the samples with errors out of 100 model and data pair:
: p aatr% shown versus perturbation rate. The first column shows the recovery error

_Used to generate GaUS_Sian deViat.ionS was taken to .be the SafBghe first row shows the perturbation percentages included in the data feature
in both thex andy coordinates to simulate the errors in featurelustering was done with only for generating the initial clusters.
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FIG.3. Anexample of hierarchical clustering. Upper left: results of the first clustering of the transformed model features. Upper right: results of the first clus
of the transformed data features. Middle: subclusters yielded by the second clustering of the first clustering results of the model. Lower: subclusters yielde
second clustering of the first clustering results of the data.

affine parameters for object surfaces with small perturbatioobthe number of the missing features in the data, whichis to sim

from planarity. ulated the unstable input from the feature extraction as well a

cases involving occlusions. Although the errors increased as tt

Involving missing features. In Fig. 7 and Tables 3 and 4, themissing features increased, again, we could drastically improv
errors in recovering affine parameters are shown versus the tateaccuracy by introducing multiple pairs of initial clusters.

TABLE 3
Number of Samples with Errors vs Rate of Missing Features
using 1 Initial Clustering

TABLE 2
Number of Samples with Errors vs Perturbation with 4
Initial Clusterings

Percentage of missing features Percentage of missing features

Recovery rates 5 10 15 20 25 30 35Recovery rates 5 10 15 20 25
—-0.01 98 94 82 52 26 15 5 —-0.01 7 0 0 0 0

0.01-0.05 2 2 12 39 59 66 7 0.01-0.05 24 29 21 15 1
0.05-0.1 0 0 0 1 0 1 3 0.05-0.1 19 24 34 33 28
0.1-0.2 0 0 1 0 1 1 2 0.1-0.2 4 17 2 8 18
0.2-0.3 0 0 0 1 3 4 4 0.2-0.3 6 17 8 11 8
0.3-0.4 0 2 2 2 4 4 6 0.3-0.4 11 4 1 14 10
0.4— 0 2 3 5 7 9 9 0.4- 29 9 34 19 35

Note.The number of the samples with errors out 100 model and data pairs arélote.The number of the samples with errors out of 100 model and data pair
shown versus perturbation rate. The first column shows the recovery errors, arel shown versus the rate of missing features in the data. Each model has
the first row shows the perturbation percentages included in the data featufestures. The first column shows the recovery errors, and the first row shows tt
The first clusterings were tried using 4 different pairs of initial clusters producegrcentages of missing features. Clustering was done witH @fdy producing
by using lined; {i =0, 1, 2, 3}. the initial clusters.
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FIG. 4. Recovery error versus the rate of perturbation. Errors in recovering affine paraingtisn the data extracted with errors. The horizontal axis shows
the percentage of the Gaussian deviation to the average distance between closest features and the vertical axis shows the errorlif ré@pedringired model
and data pairs were used for each of the perturbation ratios, and 50 features were included in the model and data. The results by a single pair of initial clus
those by multiple pairs are plotted respectively with the box and the star. Errors are almost proportional to the perturbation rate.

Computational cost. The computational cost for recoveringwith conventional approaches to object recognition, this is &
affine parameters when we used a single pair of initial clustareticeable improvement.
in the first level clustering and that of four pairs were on average

10 and 30 ms, respectively, on a SPARCstation IPX. Compared
5.2. Tests on Natural Pictures: Without Occlusions

~ TABLEA4 - The proposed algorithm was tested on real pictures taken ur
Number of Samples with Errors vs Rate of Missing Features der natural lighting conditions. As you will note in the following,
using 4 Initial Clusterings the objects to be recognized here all have more or less plan:

portions on their surfaces. The actual extraction of such plana

Percentage of missing features .
patches was done manually although we expect that this coul

Recovery rates 5 10 15 20 25 pe done using color/motion cues within some error range. There
_0.01 1 5 0 0 o fore, the given input image data does not any local occlusions
0.01-0.05 72 84 57 47 14 although some perturbations due to other factors are include
0.05-0.1 2 6 23 39 55 in the extracted features. We used the same implementation
0.1-0.2 3 0 4 4 3 the algorithm as that used for the computer simulation, in whick
0.2-0.3 2 0 1 10 ¢ irs of initial clust lied. The feat ;
0.3-04 0 0 0 0 5 four pairs of initial clusters were applied. The feature extrac-
0.4— 10 5 15 0 20 tions from the given gray level images were performed by the

following process:

Note.The number of the samples with errors out of 100 model and data pairs ¢ (Step 1) Use an edge detector [6] after preliminary smooth:

are shown versus the rate of missing features in the data. Each model has 50to obtain edage boints from the original arav level images
features. The first column shows the recovery errors, and the first row shol\ng gep g gray ges.

the percentages of missing features. The first level clusterings were tried using (Step 2) Link individual edge points to form edge curve
4 different pairs of initial clusters produced by linegi = 0, 1, 2, 3}. contours.
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FIG.5. Reconstructed data features by the recovered affine parameters. Reconstructed data features are superimposed on the data generated with no
the error in recoverindjj , upper left, 0.0027; upper right, 0.069; lower left, 0.11; lower right, 0.27. White boxes show the data features without errors while
black boxes show the reconstructed features.

e (Step 3) Using local curvatures along the contours, ideabout 30 features were missed betweenthe twoimages. The m
tify features as corners and inflection points, respectively, loje figures show the respective normalized feature distribution
detecting high curvature points and zero crossings based onubk#g the proposed transformation. Despite the missing featur:
method described in [12]. Before actually detecting such feand possible errors in locating the features, the normalized fe:
tures, we smoothed the curvatures along the curves [4]. ture distributions look quite similar as expected: they appear t

coincide by about 180otation around the centroid. In the lower

The following first three examples test the proposed algbgure, the reconstructed views from the right picture using the
rithm on objects with almost planar surfaces, then in the last twecovered affine transformation (from left to right) as describec
examples we also examine it on nonplanar surfaces. in Section 4.3 are superimposed with the right edge map. Th

Figure 8 show the results on pictures containing a Toweleteror in the recovered affine parameters measured by the formu
container which has a planar front surface that we could expldit0) was 0.0365.

The upper figures show the edge map of the pictures of it takerSimilarly, the results on the Beer-Box picture are shown ir
from two different views, with detected features out of the frorkig. 9, which has again a planar front surface that we could us
surface superimposed on them as closed circles. The numbefioofthe input to our algorithm. In the upper pictures, detectec
extracted features were respectively 141 and 125. Though features are superimposed on the input edge maps. The num|
difference in the number of extracted features is 16, by our cowftfeatures extracted from the two views were respectively 31.
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FIG.6. Recovery error versus the rate of perturbation. Errors in recovering affine paraingtisn data with depth perturbations. The horizontal axis shows
the percentage of the Gaussian deviation to the average distance between closest features and the vertical axis shows the error lnjreCmestingdred
model and data pairs were used for each of the perturbation ratios, and 50 features were included in each model and data. The results for a single pair
clusters and those for multiple pairs are plotted respectively with the box and the star. For small depth perturbations, the recovered affine parameters can \
good approximation estimate.

and 348. About 90 features were missed between the two imeaningless intensity edges were removed this time, many us
ages. Despite the unstable results of the feature extraction, biolifeatures disappeared as well, resulting in only 205 features
of the normalized feature distributions as shown in the middzespite these conditions, the alignment of two views shows ¢
figures are quite similar in shape, thus allowing a good aligfairly good match, though not perfect, as we can see in the figure
ment between the two views as we can see in the lower figude error in the recovered affine parameters was 0.103.
The error in the recovered affine parameters measured by thénthe following two experiments, we test the proposed methoc
formula (10) was 0.109. on surfaces with depth perturbation from planarity. In Fig. 12,
In Fig. 10, results on the Cocoa-Box pictures are shown, iasults on Paper-Cup pictures are shown, where we used the te
which the right view was taken under much brighter light condture drawn on the curved surface on the cup as the input to ot
tions, thus giving a quite noisy edge picture. Inthe upper picturesethod. The number of features extracted from the left and th
detected features are superimposed on the input edge maps.rigt views, which are shown in the upper pictures, are respec
number of features extracted from the two views were respéively 160 and 196. About 50 features were missed between th
tively 282 and 262. About 90 features were missed between tind images. Despite the distortion of the curved surface fron
two images. Despite this scene clutter in addition to the unstalplanarity, the normalized features still look similar, as found in
feature extraction results, both of the normalized feature disttite middle pictures. We obtain a good approximate alignmen
butions as shown in the middle figures again have similar shapetween the two views as we can see in the lower figure. Tw
bringing a good alignment between two views as shown in lowerror in the recovered affine parameters was 0.128.
figure. The error in the recovered affine parameters was 0.078A case of an object with a rough surface rather than a smoot|
On the other hand, Fig. 11 shows the results using a high threshrved surface is demonstrated in Fig. 13. The number of ex
olding value for edge detection on the right view. While a lot dfacted features in the left and right views are respectively 15:
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FIG. 7. Recovery error versus the rate of missing features. Errors in recovering affine paraimgiersase with occlusion. The horizontal axis shows the
percentages of the missing features and the vertical axis shows the error in rechygrifige number of model features was 50. One hundred model and da
pairs were used for each of the rate of missing features in the data. The results by a single pair of initial clusters and those by multiple pairs are plotted resj
with the box and the star.

and 167. In our count 60 features were missed between the mew implementation, which is based on the Kmean algorithm
images. As will be noted in the upper figure, the regions of tlig that it could produce more clusters than the previous one
telephone pad used for the input to our algorithm have ke¢her steps of the procedure for recovering affine paramete
and buttons, causing self-occlusions in their surrounding smdéscribed in Section 4.3 are the same. Our expectation is that |
area. However, we still can recognize strong similarity in thedteriving more clusters than those of (nearly) minimum number
normalized feature distributions as shown in the middle pigre saw for the previous experiments, we can still obtain som
tures. Actually, a good approximate alignment was performedrrespondent clusters in the remaining regions in the given da
as shown in the lower picture. The error in the recovered affiméhich allows us to recover affine parameters even under droy
parameters was 0.164. of local parts.

In the examples presented above, for the number of featureé\s argued in the previous section, for the kind of data with
around 120-350, the running time for computing affine pararoensiderable occlusion that we see below, the nearest-mean clt
eters ranged from 40 to 70 ms. tering approach that detects concentrations of features shot
still work well. This is because if the incomplete patches cuf
out from the image still have feature concentrations correspont
ing those of the model, there is still a good chance that thos

The tolerance of the proposed algorithm against occlusionsamincentrations will be detected, enabling recovery of the pa
local parts caused in the region extraction process was also exaameters. Apart from this, we should note, however, that whe|
ined. Since the implementation of nearest-mean clustering uskd occlusion of the image data becomes large, we can no long
for the last two experiments was tuned for feature sets withdghore the deviation of the correspondences of the centroids ¢
such significant defects, (providing only 4 clusters), we need#te whole features between the model and the data, raising tl
a different method to deal with this case. The difference in thgoblem of how to deal with the translational components of the

5.3. Tests on Images with Occlusions
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FIG. 8. Results on the Towelette pictures. Upper pictures show the edge map of the front part of the Towelette container taken from two different views
detected features superimposed on it with closed circles. The middle figures show the respective normalized feature distributions obtained using the p
transformation. Despite the missing features and possible errors in locating the features, the normalized feature distributions appear to coinoidation 180
In the lower figure, the reconstructed view from the right picture using the recovered affine transformation (from left to right) as described in Section
superimposed with the right edge map. The error in the recovered affine parameters measured by the formula (10) was 0.0365.

transformation. In this case, however, we can use other detedreids of clusters containing more than 3% of the total number
centroids to remove or to recover translational terms. In the fikgt features (these ratios were fixed throughout the following
example that follows, we do not consider this in aligning thexperiments).

model with the image, and thus we actually see some translaFigure 14 shows the results of a test using the same Towelett
tional deviation in the results when the area dropped occupieghtainer pictures as those used in the last experiments. The
a large portion of the object. In the second example, we déett picture is the planar patch for the model, and top right is the
with this by using one of the cluster centroids generated. To testrresponding almost complete image patch to be recognize
this effect of occlusion in our experiments, we removed neanyhere produced cluster centroids are depicted by large crosse
one quarter or one half of the planar regions manually from ti@ clusters for the model, 6 for the data. The left picture in the
almost complete patches in the images we used earlier. As ieeond row shows the results on data for which the lower lef
initial seed points (cluster centroids) for Kmean clustering, wauarter is dropped, while in the right of second row almost one
used 5% of the total number of features, and we picked cdralf of the region is removed: 6 clusters for the left, 7 clusters
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FIG. 9. Results on the Beer-Box pictures. In the upper pictures, detected features are superimposed on the input edge maps. Despite the unstable res
feature extraction, both of the normalized feature distributions as shown in the middle figures are similar in shape, thus allowing a good alignment betweer
views as we can see in the lower figure. The error in the recovered affine parameters measured by the formula (10) was 0.109.

for the right were produced. Looking at those pictures carefullgas dropped which lost 35% of the features. The left image
we note that some cluster centroids are still correspondent.simows the results on almost complete data; thus we still obtai
the third row, results superimposing the reconstracted data frémirly good alignment, except for the translational gap due tc
the model with the image data are shown, where for the middiee move of the centroid of the whole features which becam
picture, nearly one quarter of the region was dropped which lastignorable when we dropped half of the patch. The errors il
nearly 10% of the features, while for the right figure almost hathe recovered affine parameters measured by the formula (1
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FIG.10. Results onthe Cocoa-Box pictures under different lighting conditions. In the upper pictures, detected features are superimposed on the input edg
The right picture was taken under a extremely bright lighting conditions, bringing a quite noisy edge map. Despite this scene clutter in addition to the ur
feature extraction results, both of the normalized feature distributions as shown in the middle figures have again pretty similar shape, bringing a good ali
between two views as shown in the lower figure. The error in the recovered affine parameters was 0.078.

were for the figure in the third row 0.124, for the bottom leffor the model, top right is for almost complete corresponding
0.188, and for the bottom right 0.124. As demonstrated in tldata patch, bottom left is for the data with a drop of the quarte
next example, this problem can be fixed using a centroid of oo&the patch, and bottom right is for the data with half of patch
of the produced clusters. dropped. It shows how the nearest-mean procedure on the nc

In Fig. 15, results of clustering using the Kmean procedurealized coordinates finds corresponding concentrations of th
are presented in the normalized coordinates, where top lefféstures between the model and the data even with considerak
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FIG.11. Results onthe Cocoa-Box pictures with different thresholds for edge detection. A different thresholding value was used for detecting edges in tf
picture. Despite of these conditions, the alignment of two views resulted in a fairly good match, though not perfect. The error in the recovered affine par:
was 0.103.

occlusions of the patches, providing a fairly good recovery efuster centroids superimposed with large crosses; the first frol
affine parameters. Note that in case of the larger occlusionthé left in the middle row is the results of almost complete datz
the patch, the distortion of the normalized distributions becomiesbe recognized; the second is the data for which one quarter
serious, such that individual corresponding features never cothe patch in lower left corner is dropped that included 22% of the
close by any rotation. original whole features; the third is the data where the upper rigt

In Fig. 16, results on similar tests using the Beer-Box picturesrner part is dropped, leading to 35% loss of features; in th
are presented. The top figure shows the model with extracfedrth the results on the data for which upper half of the patch wa
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FIG.12. Results onthe Paper-Cup pictures. In the upper pictures, detected features are superimposed on the input edge maps. Despite the distortion of tl
surface from planarity, both of the normalized feature distributions as found in the middle figures are similar in shape, thus yielding a good approximate alic
between two views, in the lower figure. The error in the recovered affine parameters was 0.128.

totally lost is given, which amounted to 56% loss of the featurefsom the left 0.048, second 0.059, third 0.092, and for the fourth
The number of generated clusters were: top (model) 12, in thd91. Here, the translational component was also considered
second row (data), first from the left 13, second 12, third 1fhe parameters of affine matching and was handled using one
fourth 6. It should be noted that even if the rate of the droppguoduced cluster centroids.

area increases up to more than 50%, the clustering procedurEigure 17 shows the results of the clustering, wherein we
still generates correspondent clusters. In the reconstructed datafirm that aligning the model features with the data feature:
in the third row (ordered in the same order as the second row}ing the rotation angle would never bring satisfactory results
we see quite accurate alignment between the model and the datarecovering affine parameters, as the area of the dropped pat
The errors in the recovered affine parameters were: for the firstreases.
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FIG. 13. Results on the Phone pictures. In the upper figure, features extracted out of the telephone pad part are superimposed on their edge picture
telephone pad has keys and buttons, the pictures are self occluded in their surrounding small area. However, in the middle pictures we can still recogn
similarity in their normalized feature distributions. The alignment resulted in a good approximation, though not so accurate as those presented above. The

the recovered affine parameters was 0.164.

5.4. Discussions e The proposed algorithm is quite stable against errors il
locating features, perturbations of the surface from planarity

Through the experimental results obtained by the computand missing features happening randomly in natural pictures, ¢
simulation and tests on the natural pictures, the following ademonstrated using point features extracted by standard ed

noted. detection plus feature extraction algorithms.
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FIG. 14. Tests on occluded image of the Towelette. The top left picture is the planar patch for the model, and top right is the corresponding almost col
image patch to be recognized, where produced cluster centroids are depicted by large crosses. The left picture in the second row shows the results when
left quarter is dropped, while in the right of second row almost half part of the region is removed. Note that some the cluster centroids are still corresponde
third row shows results superimposing the reconstructed data from the model with the image data, where for the middle picture, nearly one quarter of the
was dropped which lost nearly 10% of the features, and for the right figure almost half was dropped which lost 35% of the features. The first image of th
row shows results on almost complete data. The errors in the recovered affine parameters measured by the formula (10) were for the figure in the third ro
for the bottom left 0.188, and for the bottom right 0.124.

e |t can also tolerate drops/occlusions of local parts of ttthe errors in recovering affine parameters, which is performec
patch to some extent. As far as we have examined, it can cdpea direct computation. We should also point out that not every
with natural pictures sufficiently accurately which have considypplication of object recognition does require a perfect align-
erable collapses of image data: even in the case of more tmaent. There will be cases in which the accuracy demonstrate
50% of the area being dropped, it could perform still usable this section suffice.

accuracy of recovering parameters. ¢ In case the feature extractions result in a quite unstabls
e The proposed algorithm is computationally extremely fastutput, either due to some significant change of the imaginc
as compared with conventional algorithms. condition, or, simply because the surface is occluded, since th

e Forthe cases where no significant drops of patch happenedimputational cost of our algorithm is negligibly small, it can
as we increase the number of different initial clusterings, the astill be used to realize a coarse-to-fine approach: first by applyin
curacy of recovering affine parameters is considerably improvexlir algorithm to the planar portions on the objects to obtain ar
This trend will also hold true for the case of using Kmean implexpproximate alignment, thereby trimming needless combinator
mentation, although it was notincluded in the experiments. Howpaces of the search, and then by using conventional exhausti
ever, this imposes the greater computational cost. Clearly theearch method within the limited search space to recover th
is a trade-off between the accuracy and the computational cgsecise parameters.

e In the results on the natural pictures, readers might no-
tice small slide-offs in the point to point matches between the 6. CONCLUSION
original data and the reconstructed data. Note that, however, as
the output of an alignment operation we do not need the com-We have proposed a quite stable and efficient algorithm fol
plete coincidence between those feature positions. Once we h@eognizing 3D objects by combining an affine invariant prop-
obtained a good alignment, if not perfect, and found the correrty of the planar surface with the centroid alignment approach
spondences of each feature in the model and the data, we Tae basic strategy is the following: By decorrelating the gi-
employ other methods such as least square errors to mininvas feature distributions we obtain normalized shape of the
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FIG. 15. Results of clustering by Kmean on the Towelette pictures. Top left is for the model, top right is for almost complete corresponding data patch, t
left is for the data with a drop of the quarter of the patch, and bottom right is for the data with half of patch dropped. It shows how the nearest-mean procedur
normalized coordinate find corresponding concentrations of the features between the model and the data even with considerable drops/occlusions of th
providing a fairly good recovery of affine parameters. Note that in case of the larger drop of the patch, the distortion of the normalized distributions be

serious, so that individual corresponding features never come close by any rotation.

distributions up to rotations for the model and the data, regard- APPENDIX
less of the pose of the surface in 3D space. Then, we produced

19

potentially correspondent clusters of the features, via clusteringn the Appendix, we show the proof of the Proposition 1.

minimizing the size of each cluster in the normalized coordi- | ..\ 4. A necessary and sufficient condition for the linear
nate. Instead of using the rotation angle between thus normgali,sormations presented in (2)(5) to commute (i.e., to arrive
where T is a general

ized model and data, we directly used the coordinate of theihe same values for'Yfor all X, X/,
cluster centroids in the original (image) coordinate space to 18z qix (see Fig. 1) is

cover affine parameters that produced the data from the model,

through the alignment framework. This brought a quite robust HAUH S =T
recognition of planar surfaces. We demonstrated that even under

significant damage of the given image data, the proposed al%nr-

. . some orthogonal matrix U, where,
rithm could perform a fairly good recovery of the parameters. 9

Also, the algorithm was found to be quite efficient: it took at H — Ay AT
most only 100 ms for matching an object with more than 300 - %
features on SPARCstationIPX. H=AZxAT,

(12)

(13)
(14)
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FIG. 16. Tests on occluded image of the Beer-Box. Top figure shows the model with extracted cluster centroids superimposed with large crosses. Midc
shows results using complete data, data for which one quarter of the lower left corner is dropped (22% of the original features), the data where the upy
corner part is dropped (35% loss of features), and data for which the upper half of the patch was totally lost (56% loss of the features). The third row shc
reconstructed data, ordered in the same order as the second row. The errors in the recovered affine parameters were: for the first from the left 0.048, secc
third 0.092, and for the fourth 0.191. Here, the translational component was also considered as the parameters of affine matching, and was handled usir
produced cluster centroids.

whereXy and Xy represent the covariance matrices of X and x = A THAD 1= A THA YT, (17)
X', respectively.
Then, substituting (17) into (16) yields

Proof.
ALAYHALA Y = H". 18
o _ ) SinceH andH’ are positive definite symmetric matrices, (18)
Substituting (15) into (13) yields can be rewritten as
ALZxLTAT =H". (16) (ALATTHE)(ALATTHE)T = H23(H'2)T,  (19)

On the other hand from (14) we have whereH 2, H'z are again positive definite symmetric matrices.
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FIG. 17. Results of clustering by Kmean on the Beer-Box pictures. Top left is for the model, top right is for almost complete corresponding data patch, r
left is for the data with a drop of the quarter of the patch in its lower left corner, middle right is for the data for which the upper right corner is dropped, and b
is for the data with almost upper half being dropped. It shows how the nearest-mean procedure on the normalized coordinate find corresponding concenti
the features between the model and the data even with considerable drops/occlusions of the patches, providing a quite accurate recovery of affine paran

Then, from (19)

ALAH? = H'2U,

for some orthogondl . Thus, we get

ALAY= H3UH3,

whereU is an orthogonal matrix.

(21)

Then, combining (21) witth'L = T A, finally we reach (12).
Clearly, (12) is also a sufficient condition. [

Now, if we limit T to orthogonal transformations, the follow-
ing Lemma completes the proof of the proposition.

Lemma 5. Aslongaswe are allowed to use only up to second
order statistics of the feature set, a necessary and sufficiel
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condition that T in (12) is an orthogonal matrix is

NAGAO AND GRIMSON

7.

H =H=¢l, (22)

D. Cyganski and J. A. Orr, Applications of tensor theory of object recogni-
tion and orientation determinatiolsEE Trans. Patt. Anal. Machine Intell.
PAMI-7 (6), November 1985.

8. D. Cyganskiand J. A. Orr, The applications of image tensors and a new de

where | is the identity matrix and c is an arbitrary scalar con-

stant.
Proof. Using the assumption tha@itis an orthogonal matrix, 9.
from (12), we have
10.
I =TT" 23) 4
— (H2UH 2}{H'ZUHz}T (24)
= HZUH 'UTHz. (25)
13.
Rearranging this we get "
UTH = HUT. (26)
15.

Since as described we have no way to determine the magrix , o

Eq. (26) must hold true for any orthogonal mattx Then, as

H andH’ are positive definite,

wherec is an arbitrary scalar constant.

. J. F. Canny, A computational approach to edge deted&®E Trans. Patt.

17.

H=H =¢c, (27) 1s.

|
19.
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