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To recognize an object in an image, we must determine the best-fit
transformation which maps an object model into the image data.
In this paper, we propose a new alignment approach to recovering
those parameters, based on centroid alignment of corresponding fea-
ture groups built in the model and data. To derive such groups of
features, we exploit a clustering technique that minimizes intraclass
scatter in coordinates that have been normalized up to rotations us-
ing invariant properties of planar patches. The present method uses
only a single pair of 2D model and data pictures even though the
object is 3D. Experimental results both through computer simula-
tions and tests on natural pictures show that the proposed method
can tolerate considerable perturbations of features including even
partial occlusions of the surface. c© 1998 Academic Press

1. INTRODUCTION

A central problem in object recognition is finding the best
transformation that maps an object model into the image data.
Alignment approaches to object recognition [12] find this trans-
formation by first searching over possible matches between im-
age and model features, but only until sufficiently many matches
are found to explicitly solve for the transformation. Given such
a hypothesized transformation, it is applied directly to the other
model features to align them with the image. Each such hy-
pothesis can then be verified by search near each aligned model
feature for supporting or refuting evidence in the image (see, for
example, [1] for a method to use the pose to focus the search for
other matching features).

One of the advantages of Alignment approaches to recognition
[12] is that they are guaranteed to have a worst case polynomial
complexity. This is an improvement, for example, over corre-
spondence space search methods such as Interpretation Trees
[11], which in general can have an exponential expected case
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complexity. At the same time, the worst case complexity for
alignment can still be expensive in practical terms. For exam-
ple, to recognize an object withm features from an image with
n features, where the projection model is weak perspective, we
must search on the order ofm3n3 possible correspondences [12],
wherem andn can easily be on the order of several hundred.
Of course, there are also some other prevalent algorithms for
object recognition, such as the Linear Combination method [26]
or the Geometrical Hashing method [16], however, all of those
are basically in the exhaustive search framework, thus suffering
more or less from a similar practical computational problem.

One way to control this cost is to replace simple local features
(such as vertices) used for defining the alignment, with larger
groups (thereby effectively reducing the size ofmandn). In this
paper, we examine one such method by using an invariant de-
scription of features from planar surfaces which undergo linear
transformations in space. This invariant description is derived
using the second order statistics of the features extracted from
the planar patches. We employ this invariant representation in
generating potentially corresponding partitions of the features in
the model and the image data. This grouping of features allows
us to derive a new alignment approach to object recognition
based on centroid alignment of corresponding feature groups
built on these invariant projections of the planar surface.

This method uses only a single pair of 2D model and data
pictures even though the object is 3D. It is also quite fast; in
our testing, it took around 30 ms (0.03 s) per sample model and
data pair, each with 50 features. It is also demonstrated that our
method can handle the considerable perturbations of the images
caused even by occlusions of the surface. This is surprising,
when we consider that our method solely relies on the (global)
statistical information of the features extracted from the entire
planar patches.

A work related to our method, in that it uses the whole image
(moments of the image) as the feature instead of local features,
is that of Cyganskiet al. [7] based on tensor analysis. They
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developed an efficient method to identify a planar object in 3D
space and to recover the affine transformation which yielded the
image data from the model. The basis of their method is the con-
traction operation of the tensors [17, 14] formed by the products
of the contravariant moment tensors of the image with a covari-
ant permutation tensor that produces unit rank tensors. Then,
further combining those with zero-order tensors to remove the
weight, they derived linear equations of the affine parameters
to be solved. This method is quite elegant, but it needs at least
fourth-order moments of the image (though it appears their up-
dated version suffices with third-order moments [8]). Then, since
the higher order moments are notorious for sensitivity to noise
[20], it may be very fragile against the perturbations contained
in the image data.

2. PROBLEM DEFINITION

Our problem is to recognize an object which has planar por-
tions on its surface, using a single pairing of 2D views of the
model and data as features. Thus, we assume that at least one
corresponding region (which is from a planar surface of the ob-
ject) including a sufficient number of features exists in both the
model and data 2D views. Although we do not explicitly address
the issue of extracting such regions from the data, we note that
several techniques exist for accomplishing this, including the
use of color and texture cues [22, 24], as well as motion cues
(e.g., [25, 19]). Rather, we demonstrate in the experiments on
natural pictures that our method can tolerate considerable devi-
ations in such regions, including occlusions of the surface, and
thus show that it does not require exact extraction of regions. We
devise a method for finding an alignment between features of
these planar regions. It is important to stress that our method is
not restricted to 2D objects. Rather it assumes that objects have
planar sections and that we are provided with 2D views of the
object model that include such planar sections. Once we have
solved for the transformation between model and image, we can
apply it to all the features on a 3D object, either by using a full
3D model [12] or by using the Linear Combinations method on
2D views of the object [26].

It is known that under the weak perspective projection model
[12, 21, 15], corresponding image features{X} and{X′} in re-
spective 2D views from the same planar surface are related by
an affine transformation,

X′ = L X +W, (1)

whereL is a 2× 2 matrix andW is a 2D vector. Thus, the trans-
formations we have to find are these affine parameters, which
can be recovered by matching a small number of points across
images. The direct use of 2D affine transformations in object
recognition was made earlier by Huttenlocher [12]. The issue
in which we are interested is whether there are properties of
the affine transformation which we can use to efficiently and
reliably find the parameters of that transformation.

3. A CLASS OF 2D PROJECTIONS OF PLANAR
SURFACES INVARIANT TO LINEAR

TRANSFORMATIONS

In this section, we introduce a class of transformations of 2D
image features from 3D planar surfaces which yield a unique
projection up to rotations in the image field, regardless of the
pose of the surface in space. Our intention is to use this to intro-
duce contraints on the affine relationship between a model and
data defined as the sets of 2D image features.

When we are given potentially corresponding model and data
feature sets, then because the translational terms can be removed
using the centroid (first-order statistics) correspondences of the
feature sets, we are only concerned with recovering the param-
etersLi j , unless otherwise stated. The property of this affine
transformation that we exploit for this objective is derived using
up to second-order statistics, i.e., covariances, of the features,
which is described in the following [5] results. Note that the
basic idea is to apply an affine transformation to a point set so
that the two major axes of the point set are equal. This involves
a scaling along the direction of one of the principal axes of the
point set, putting the point set into canonical form. If this is done
to two point sets, then all that remains to align the two sets is a
single rotation, which can be solved for.

LEMMA 1. Suppose we applywhitening transformationsA,
A′ to feature sets{X }, {X ′} that are related by an affine trans-
formation L, such that A6X AT = c2I , A′6X′A′T = c2I , to
yield{Y }, {Y ′}. Then, the resulting distributions{Y }, {Y ′} are
related by an orthogonal transformation T as illustrated in Fig.1,

X′ = L X (2)

Y = AX (3)

Y′ = A′X′ (4)

Y′ = T Y, (5)

where

A = cV3−
1
28T (6)

A′ = cV′3′−
1
28′T , (7)

FIG. 1. Commutative diagram of transformations. Given model featureX and
corresponding data featuresX′, we seek conditions on the transformationsA, A′
such that this diagram commutes.
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where8 and8′ are eigenvector matrices and3 and3′ are
eigenvalue matrices of the covariance matrices of X and X′,
respectively,[·]− 1

2 denotes the square root matrix of a positive
definite matrix [13] and[·]T is the matrix transpose,V and V′

are arbitrary orthogonal matrices, and c is an arbitrary scalar
constant.

Since we can control the selection ofA′, A such thatT =
A′L A−1 satisfiesdet[T ] > 0 (ordet[T ] < 0), wheredet[L] >
0, it can always represent a rotation (reflection) matrix.
Therefore, the property stated in Lemma 1 implies that if we
have a set of model features and data features related by an
affine transformation (either due to a weak perspective projec-
tion of the object into the image, or due to a linear motion of the
object image between two image frames), then if we transform
both sets of features linearly in a well defined way (via (6) and
(7)), we derive two distributions of features that are identical
up to a rotation in the image field. This implies that the trans-
formed distributions are unique up to their shapes. More impor-
tantly, it also provides an easy method for finding the related
transformation.

A physical explanation of this property for the rigid object
case is given using Fig. 2 as follows. Suppose the upper pictures
show the surfaces in space at the model and the data poses as
well as the respective orthographic projections. Looking at the
major and minor axes of the 2D model and the data, we can
change the pose of the planes so that the major and minor axes
have the same length in both the model and data, as depicted
in the lower pictures. This is nothing but a normalization of
the feature distributions, and the normalized distributions are
unique up to a rotation, regardless of the pose of the plane, i.e.,
no matter whether it is from the pose for the model or for the
data.

FIG. 2. Physical explanation of the invariant projection. The upper pictures
show the surfaces in space at the model and the data poses, as well as their
orthographic projections to the image field. The lower pictures show the surfaces
and their projections at the poses yielding normalized distributions.

The value of the invariant description introduced above is fur-
ther recognized by observing the following property regarding
the availability of other invariant representations.

PROPOSITION1. As long as we are provided only up to second-
order statistics of the image feature sets, the only available class
of linear transformations that can perform invariance up to or-
thogonal transformation is the one described above that decor-
relates the given distributions.

A proof of this proposition is given in the Appendix. The con-
tent of this propostion well coincides with the following intu-
itive observation: Since the constraint by second-order statistics
6X′ = L6X LT provides only three equations for four unknowns
Li j , (i, j ∈ 1, 2) because of its symmetry, we can never solve
for all of these parameters by only using the covariances. In this
context, the orothogonal matrixT accounts for the remaining
one degree of freedom. If we could generate an invariant dis-
tribution up to rotations using only second-order moments and
yet without whitening the distribution, we would be able to de-
termine the matrixT, e.g., the rotation angle, from the principal
axes of the thus normalized distribution, thereby solving for the
affine parameters. This is apparently a contradiction.

4. ALIGNMENT USING A SINGLE 2D MODEL VIEW

In this section, we show how we can align the 2D model view
of the planar surface with its 2D images using the affine invariant
description of the features described in the last section.

4.1. Using the Centroid of Corresponding Feature Groups

If the model and data features can be extracted with no er-
rors, and if the surface is completely planar, then applying the
presented transformation to model and data features will yield
new feature sets with identical shapes (up to an image plane
rotation). Thus, in this case, our problem, i.e., recovering the
affine parameters which generated the data from the model, is
quite straightforward. One way to do this is simply to take the
most distant features from the centroid of the distribution both
in the model and data and then to do an alignment by rotating
the normalized model to yield a complete coincidence between
each model and data feature. Then, we can compute the affine
parameters which result in that correspondence.

However, the real world is not so cooperative. Errors will
probably be introduced in extracting features from the raw im-
age data, and, in general, the object surfaces may not be as
planar as we expect. Further, the target object region may be
partially occluded by other surfaces. To overcome these com-
plications, we propose a robust alignment algorithm that makes
use of the correspondences of the centroids of corresponding
feature groups in the model and data. Here we have a popular
convenient property [7]:

LEMMA 2. When the motion of the object in space is lim-
ited to linear transformations, the centroid of its orthographic
projection to a 2D image field, i.e., centroids of image feature
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positions, is transformed by the same transformation as that by
which each image feature is transformed.

We further note the following useful property regarding the
stability of the centroid.

LEMMA 3. When the perturbations of the features (due to in-
accuracies of the feature positions, missing features, occlusions,
or deviations from coplanarity of the features) are zero-mean,
the centroid is still transformed by the same linear transforma-
tion, although each feature point is no longer guaranteed to be
aligned by the same transformation.

Note that these properties are generally true for any object
surface and its motions. The planarity of the surface does not
matter. In the case when the object happens to be planar, as
the motion of the 2D image feature is described by a 2D affine
transformation, the centroid of the features is also transformed
by the same affine transformation.

In [23], the use of region centroids was proposed in the recog-
nition of planar surfaces. Unlike our approach for using feature
group centroids, however, their method can only be applied to
planar objects, as described in the paper.

4.2. Grouping by Clustering of Features

Since affine parameters can be determined from three point
correspondences, our problem becomes one of obtaining at least
three corresponding positions in model and data, in the presence
of perturbations. Based on the observations made in the preced-
ing sections, we propose to group the model and data features
using their normalized coordinates, so that we can extract a sin-
gle feature from each of a small number of groups. The goal is
to use such groups to drastically reduce the complexity of align-
ment based approaches to recognition, by finding groups whose
structure is reproducible in both the model and the data and then
only matching distinctive features of such groups.

One way to group features is to employ clustering techniques.
In the selection of a clustering algorithm, taking into account the
use of the property described in the last section, that is, the nor-
malized model and data features are unique up to rotations and
translations, we set the following two criteria: (a) invariance of
the clustering criterion to rotations and translations of thex, y
coordinate system and (b) low computational cost. The criterion
(b) is critical, because if the computational cost of clustering
is similar to those of conventional feature correspondence ap-
proaches, the merit of our method will be greatly decreased.

As the basic principle of the clustering algorithm, we have
adopted thenearest-mean iteration procedure, which is also
the basis of the well knownKmean or ISODATAprocedure
[9, 10, 18]. It is a realization of minimizing the intraclass covari-
ances of the features given below, which is apparently invariant
to rotations, by an iterative procedure.

Specifically, let the criterion be

J = trace[Kw], (8)

where

Kw =
M∑

i=1

Q(ωi )Ki , (9)

whereQ(ωi ) is the probability density function of theith cluster,
M is the number of clusters, andKi is the intraclass covariance
of the ith cluster. Therefore, the clustering algorithm attempts
to reduce the sizes of clusters, i.e., the variances of the features
contained. In other words, it tries to find chunks of features
concentrated in a small area. We use this clustering mechanism
in the normalized coordinate space of the features produced by
using the transformations described in the last section, where
the model and the data feature distributions have the same shape
up to a rotation (for the detailed description of this algorithm,
see Fukunaga [9]).

For the reasons described above, when the feature distribu-
tions are concentrated in some local parts, since the model and
the data feature distributions should have the same or at least
similar shape, the algorithm can yield the corresponding parti-
tion of the features quite stably even under some collapse of the
data. In fact, this is demonstrated in the experiments on natural
pictures with considerable partial occlusions. Of course, even in
cases where the feature distributions do not have local concen-
trations, as long as the damage of the correspondences of the
extracted features between the model and the data are not seri-
ous, e.g., without occlusion, the clustering algorithm can yield
similar segmentations of the features by devising the way of
giving initial clusters.

Since the nearest-mean iteration procedure, starting from the
initial clustering, proceeds like a steepest descent method for or-
dered data, it is computationally very fast. It runs inO(N) time in
terms of the number of featuresN to be classified, when we set
the upper limit on the number of iteration. We should also note
that, although it is not guaranteed that it will reach the real min-
imum of J, we know that our aim is not to minimize/maximize
some criterion exactly, but simply to yield the same cluster con-
figuration both in model and data clustering. Minimization of a
criterion is nothing more than one attempt to do this.

4.3. Aligning a Model View with the Data

Now we can describe a basic algorithm for aligning a 2D view
of a 3D model object with its novel view, which is assumed to
be nearly planar. Note that to determine the best affine transfor-
mation, we must examine all the feature parts isolated from the
image data, as we do not know which group in the data actually
corresponds to the planar surface which has been extracted to
form the model.

• Step 0: For a feature set from a 2D view of a model, com-
pute the matrices given in (6) whereVmay be set toI and generate
the normalized distribution. Cluster based on nearest-mean it-
eration to yield at least three clusters. Compute the centroid of
each cluster reproduced in the original coordinates. This process
can be done off-line.
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• Step 1: Given a 2D image data feature set, do the same
thing as step 0 for the data features.
• Step 2: Compute the affine transformation for each of the

possible combinations of triples of the cluster centroids in model
and data.
• Step 3: Do the alignment on the original coordinates and

select the best-fit affine transformation.

Step 1 isO(N). In Step 2, computation of affine parameters
must be done for only a small number of combinations of clusters
of model and data features. So, it runs in constant time. Step 3
is, like all other alignment approaches, on the order of the im-
age size. Thus, this alignment algorithm is computationally an
improvement over the conventional ones for object recognition.

We stress again that our method is not restricted to planar
objects. We simply require a nearly planar surface on an object
to extract the alignment transformation. This transform can then
be applied to a full 3D model or used as part of a Linear Combi-
nations approach to sets of views of a 3D model to execute 3D
recognition.

As another way of using the clustering technique, one might
consider that it may suffice to generate only two clusters for
model and data. Then, we can rotate the model so that the cen-
troid of the model cluster coincides with that of the data clus-
ter, recovering the rotation matrixT and thus affine parame-
ters byL = A′−1T A. In some situations, this may work fine,
but in others this may become errorneous. Since the proposed
transformation that normalizes a distribution is computed solely
from the covariance matrix of the given feature distribution, it
is affected by the errors included in the given feature set. In
other words, when a feature set includes some errors the nor-
malized distribution of it is distorted. For example, when data
feature sets have some missing features from the model data
set, the normalized distributions of the model and the data are
distorted with respect to each other in addition to the missing
features and no longer coincide by a rotation. In particular, this
becomes serious when some portions of the planar patch are
dropped due to unstable region extraction or simply because of
occlusion.

It might also be possible, after generating two clusters and
recovering the rotation angle, to find correspondences of the fea-
tures in the normalized coordinate space and then recover the
affine parameters using the established correspondences on the
original coordinates of the features. This may work fine as long
as the contamination of the data feature is small enough with
respect to the density of the feature distributions, so that the
unique and correct correspondences are obtainable by aligning
the model with the data using the recovered rotation angle. How-
ever, when the collapse of the data becomes large and the distor-
tion of the shapes of the normalized model and data features is
unignorable, we will have to pay some additional computational
cost for finding the feature correspondences. For example, as a
possible algorithm: First, we try to recover the rotation angle
between the normalized model and data features, then, aligning
the model with the data using the computed rotation angle, we

can just limit the possible match between the model and data
features by setting some allowable distance between them in
the normalized space. Finally, we apply some conventional ex-
haustive search procedure to find the best match in the limited
candidates. Thus, this may be interpreted as a coarse-to-fine ap-
proach to finding the best-fit transformation from the model to
the data. If the collapse of the data features get even more seri-
ous such that, as described, the transformed (for normalization)
model and the data features no longer correspond by rotations,
computing the rotation angle might have very little effect for
finding correspondences between the model and data features.

In contrast to those other candidate methods, since in the
proposed algorithm the cluster centroids are used in the orig-
inal coordinates to directly recover the affine parameters, it is
not disturbed by the distortion of the normalized distributions
described above in recovering the parameters, as long as the
generated model and the data clusters are still correspondent.
This is the strong merit of our clustering plus centroid align-
ment based method in dealing with the inaccuracy of the earlier
feature extraction process.

5. EXPERIMENTAL RESULTS

In this section, experimental results on both computer simu-
lated data and real natural pictures show the effectiveness of the
proposed algorithm for recognizing planar surfaces. In the com-
puter simulation and the following first part of the tests on real
data, we deal with perturbations of the data due to inaccuracies
of feature location, missing features, and surface deviation from
planarity. Then, in the second part of the tests on real pictures,
we demonstrate the case in which, in addition to these kinds of
perturbations, the data is also partially occluded.

5.1. Computer Simulations

Analyses are made using canonical statistical tools, that is,
random patterns for model features, random values for affine
parameters by which to yield data features, and Gaussian per-
turbations. Gaussian perturbations simulate the feature extrac-
tion errors and the depth perturbations of the object surface in
space from planarity. We also study the case in which missing
of features happens randomly.

As the model features were generated simply randomly, the
distributions tended to be fairly regular. Thus, this simulates the
case where perturbations are included in the relatively regularly
distributed feature data. As argued in the last section, this is a
slightly hard situation, so we had to devise an implementation of
the algorithm to recover the affine parameters stably. After all,
by using some different initial clusters in conjunction with the
alignment framework, it has turned out that generating three or
four clusters for each given initial cluster provides sufficiently
good performance.

Algorithm Implementation. To obtain this minimum num-
ber of clusters in model and data, we adopted a hierarchical
application of the nearest-mean procedure, each separating the
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given whole features into two clusters. This is because in testing
the nearest-mean procedure, we found that the accuracies for
generating three clusters at once severely declined from those
for generating two clusters. Therefore, the actual method we took
for feature clustering was: (1) first do clustering on the original
complete feature set to yield two clusters for model and data, and
(2) then, do clustering again for each of the clusters generated
in the first clustering to yield two subclusters from each cluster.
As we do not know which clusters correspond with each other in
model and data, all the possible combinations of the correspon-
dences between the centroids of model and data cluster and sub-
clusters were examined, which counted 8 matches. In addition,
as we found in the course of the experiments that the nearest-
mean procedure is slightly sensitive to the variation of initial
clusterings, we used several different initial clusters generated as
described below and selected the best-fit affine parametersLi j :
we first compute the line, sayl0, that passes through the centroid
of the distributions to be classified and is perpendicular to the line
passing through the centroid and the most distant feature position
from the centroid, then rotatel0 around the centroid by 45◦, 90◦,
135◦, respectively, to yieldl i , {i = 1, 2, 3}. Then, each feature is
classified according to which side of the line it is located, produc-
ing two initial clusters. This was done for eachl i . Although this
clearly gives 4 times as many combinations, that is 32 matches,
requiring additional computation, the accuracy in recovering the
affine parameters is drastically improved as examined by the
comparison with the results by a single pair of initial clusters.

In Fig. 3, intermediate results of the hierarchical procedures
described above are shown. Note how there is a clear match, up to
a rotation in the image plane, between the clusters of the bottom
two figures in both the left and right column. In each of the fol-
lowing experiments, 100 sample model and data sets each with
50 features were used, and the average of their results were taken.

With errors in extracting features.In Fig. 4, errors in re-
covering the affine parametersLi j both of single pair of initial
clusters and of 4 of them are plotted versus the rate of the Gaus-
sian deviation to the average distance between closest features
of the data. Errors are measured based on the formula

error=
√√√√∑

i, j (L̂ i, j − Li j )2∑
i, j L2

i j

, (10)

whereL̂ i j is the recovered values for affine parameters.
The average distance between closest feature points was es-

timated by

average distance=
√

det[L] A

πN
, (11)

whereA is the area occupied by the model distribution andN
is the number of the features included. The perturbation rate
used to generate Gaussian deviations was taken to be the same
in both thex andy coordinates to simulate the errors in feature

extraction. In Fig. 4 we note that errors are almost proportional
to the perturbation rate. In Fig. 5, examples of the reconstructed
data distributions, with different errors in recovering the affine
parameters, were superimposed on the data with no perturba-
tions. The effect of using 4 pairs of initial clusters are drastic in
terms of the accuracy in recovering affine parameters. Although,
in the case with a single pair of initial clusters the average errors
increased as perturbations in the data features grew larger, errors
are still small for most samples as we can see in Table 1. In almost
all cases when the recovery ofLi j results in large errors, the first
clustering failed due to the distortion of the normalized feature
configurations caused by the perturbations. The ratio of this kind
of failure increased as the perturbation percentage grew, so this
is the main reason for the error elevations. When we attempted
the first level clustering with 4 pairs of initial clusters, the error
ratio was drastically reduced as we see in Fig. 4 and Table 2.
Presumably, this trend will continue as we increase the number
of the pairs of initial clusters.

From Figs. 4 and 5, our algorithm, especially with the mul-
tiple pairs of initial clusters, is found to be quite robust against
considerable perturbations caused by the errors in feature ex-
traction.

Depth perturbation from planarity. In the same way, Fig. 6
shows estimation errors for the simulated case where the surface
has depth perturbations from planarity. As described previously,
perturbations in the image field caused by depth variation occur
in the direction of the translational component of the affine trans-
formation. Therefore, the perturbation was taken only for thex
coordinate. Similar results were obtained for other directions of
perturbation.

From Fig. 6, again, we can see that the accuracy was dras-
tically improved by using multiple pairs of initial clusters and
this accuracy ensures the stability of our algorithm against per-
turbations caused by the depth variations of the points from
planarity. Thus, our method can be used to obtain approximate

TABLE 1
Number of Samples with Errors vs Perturbation by Single

Initial Clustering

Percentage of missing features

Recovery rates 5 10 15 20 25 30 35

–0.01 73 52 30 21 7 3 0
0.01–0.05 12 17 27 31 36 37 31
0.05–0.1 8 10 14 16 15 14 14
0.1–0.2 2 3 5 4 8 10 11
0.2–0.3 2 2 3 6 7 5 7
0.3–0.4 0 2 3 5 3 5 5
0.4– 3 14 18 17 24 26 32

Note.The number of the samples with errors out of 100 model and data pairs
are shown versus perturbation rate. The first column shows the recovery errors,
and the first row shows the perturbation percentages included in the data features.
Clustering was done with onlyl0 for generating the initial clusters.
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FIG. 3. An example of hierarchical clustering. Upper left: results of the first clustering of the transformed model features. Upper right: results of the first clustering
of the transformed data features. Middle: subclusters yielded by the second clustering of the first clustering results of the model. Lower: subclusters yielded by the
second clustering of the first clustering results of the data.

affine parameters for object surfaces with small perturbations
from planarity.

Involving missing features.In Fig. 7 and Tables 3 and 4, the
errors in recovering affine parameters are shown versus the rate

TABLE 2
Number of Samples with Errors vs Perturbation with 4

Initial Clusterings

Percentage of missing features

Recovery rates 5 10 15 20 25 30 35

–0.01 98 94 82 52 26 15 5
0.01–0.05 2 2 12 39 59 66 71
0.05–0.1 0 0 0 1 0 1 3
0.1–0.2 0 0 1 0 1 1 2
0.2–0.3 0 0 0 1 3 4 4
0.3–0.4 0 2 2 2 4 4 6
0.4– 0 2 3 5 7 9 9

Note.The number of the samples with errors out 100 model and data pairs are
shown versus perturbation rate. The first column shows the recovery errors, and
the first row shows the perturbation percentages included in the data features.
The first clusterings were tried using 4 different pairs of initial clusters produced
by using linesl i {i = 0, 1, 2, 3}.

of the number of the missing features in the data, which is to sim-
ulated the unstable input from the feature extraction as well as
cases involving occlusions. Although the errors increased as the
missing features increased, again, we could drastically improve
the accuracy by introducing multiple pairs of initial clusters.

TABLE 3
Number of Samples with Errors vs Rate of Missing Features

using 1 Initial Clustering

Percentage of missing features

Recovery rates 5 10 15 20 25

–0.01 7 0 0 0 0
0.01–0.05 24 29 21 15 1
0.05–0.1 19 24 34 33 28
0.1–0.2 4 17 2 8 18
0.2–0.3 6 17 8 11 8
0.3–0.4 11 4 1 14 10
0.4– 29 9 34 19 35

Note.The number of the samples with errors out of 100 model and data pairs
are shown versus the rate of missing features in the data. Each model has 50
features. The first column shows the recovery errors, and the first row shows the
percentages of missing features. Clustering was done with onlyl0 for producing
the initial clusters.
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FIG. 4. Recovery error versus the rate of perturbation. Errors in recovering affine parametersLi j from the data extracted with errors. The horizontal axis shows
the percentage of the Gaussian deviation to the average distance between closest features and the vertical axis shows the error in recoveringLi j . One hundred model
and data pairs were used for each of the perturbation ratios, and 50 features were included in the model and data. The results by a single pair of initial clusters and
those by multiple pairs are plotted respectively with the box and the star. Errors are almost proportional to the perturbation rate.

Computational cost. The computational cost for recovering
affine parameters when we used a single pair of initial clusters
in the first level clustering and that of four pairs were on average
10 and 30 ms, respectively, on a SPARCstation IPX. Compared

TABLE 4
Number of Samples with Errors vs Rate of Missing Features

using 4 Initial Clusterings

Percentage of missing features

Recovery rates 5 10 15 20 25

–0.01 11 5 0 0 0
0.01–0.05 72 84 57 47 14
0.05–0.1 2 6 23 39 55
0.1–0.2 3 0 4 4 3
0.2–0.3 2 0 1 10 3
0.3–0.4 0 0 0 0 5
0.4– 10 5 15 0 20

Note.The number of the samples with errors out of 100 model and data pairs
are shown versus the rate of missing features in the data. Each model has 50
features. The first column shows the recovery errors, and the first row shows
the percentages of missing features. The first level clusterings were tried using
4 different pairs of initial clusters produced by linesl i {i = 0, 1, 2, 3}.

with conventional approaches to object recognition, this is a
noticeable improvement.

5.2. Tests on Natural Pictures: Without Occlusions

The proposed algorithm was tested on real pictures taken un-
der natural lighting conditions. As you will note in the following,
the objects to be recognized here all have more or less planar
portions on their surfaces. The actual extraction of such planar
patches was done manually although we expect that this could
be done using color/motion cues within some error range. There-
fore, the given input image data does not any local occlusions,
although some perturbations due to other factors are included
in the extracted features. We used the same implementation of
the algorithm as that used for the computer simulation, in which
four pairs of initial clusters were applied. The feature extrac-
tions from the given gray level images were performed by the
following process:

• (Step 1) Use an edge detector [6] after preliminary smooth-
ing to obtain edge points from the original gray level images.
• (Step 2) Link individual edge points to form edge curve

contours.
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FIG. 5. Reconstructed data features by the recovered affine parameters. Reconstructed data features are superimposed on the data generated with no errors: with
the error in recoveringLi j , upper left, 0.0027; upper right, 0.069; lower left, 0.11; lower right, 0.27. White boxes show the data features without errors while the
black boxes show the reconstructed features.

• (Step 3) Using local curvatures along the contours, iden-
tify features as corners and inflection points, respectively, by
detecting high curvature points and zero crossings based on the
method described in [12]. Before actually detecting such fea-
tures, we smoothed the curvatures along the curves [4].

The following first three examples test the proposed algo-
rithm on objects with almost planar surfaces, then in the last two
examples we also examine it on nonplanar surfaces.

Figure 8 show the results on pictures containing a Towelette
container which has a planar front surface that we could exploit.
The upper figures show the edge map of the pictures of it taken
from two different views, with detected features out of the front
surface superimposed on them as closed circles. The number of
extracted features were respectively 141 and 125. Though the
difference in the number of extracted features is 16, by our count

about 30 features were missed between the two images. The mid-
dle figures show the respective normalized feature distributions
using the proposed transformation. Despite the missing features
and possible errors in locating the features, the normalized fea-
ture distributions look quite similar as expected: they appear to
coincide by about 180◦ rotation around the centroid. In the lower
figure, the reconstructed views from the right picture using the
recovered affine transformation (from left to right) as described
in Section 4.3 are superimposed with the right edge map. The
error in the recovered affine parameters measured by the formula
(10) was 0.0365.

Similarly, the results on the Beer-Box picture are shown in
Fig. 9, which has again a planar front surface that we could use
for the input to our algorithm. In the upper pictures, detected
features are superimposed on the input edge maps. The number
of features extracted from the two views were respectively 312
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FIG. 6. Recovery error versus the rate of perturbation. Errors in recovering affine parametersLi j from data with depth perturbations. The horizontal axis shows
the percentage of the Gaussian deviation to the average distance between closest features and the vertical axis shows the error in recoveringLi j . One hundred
model and data pairs were used for each of the perturbation ratios, and 50 features were included in each model and data. The results for a single pair of initial
clusters and those for multiple pairs are plotted respectively with the box and the star. For small depth perturbations, the recovered affine parameters can work as a
good approximation estimate.

and 348. About 90 features were missed between the two im-
ages. Despite the unstable results of the feature extraction, both
of the normalized feature distributions as shown in the middle
figures are quite similar in shape, thus allowing a good align-
ment between the two views as we can see in the lower figure.
The error in the recovered affine parameters measured by the
formula (10) was 0.109.

In Fig. 10, results on the Cocoa-Box pictures are shown, in
which the right view was taken under much brighter light condi-
tions, thus giving a quite noisy edge picture. In the upper pictures,
detected features are superimposed on the input edge maps. The
number of features extracted from the two views were respec-
tively 282 and 262. About 90 features were missed between the
two images. Despite this scene clutter in addition to the unstable
feature extraction results, both of the normalized feature distri-
butions as shown in the middle figures again have similar shape,
bringing a good alignment between two views as shown in lower
figure. The error in the recovered affine parameters was 0.078.
On the other hand, Fig. 11 shows the results using a high thresh-
olding value for edge detection on the right view. While a lot of

meaningless intensity edges were removed this time, many use-
ful features disappeared as well, resulting in only 205 features.
Despite these conditions, the alignment of two views shows a
fairly good match, though not perfect, as we can see in the figure.
The error in the recovered affine parameters was 0.103.

In the following two experiments, we test the proposed method
on surfaces with depth perturbation from planarity. In Fig. 12,
results on Paper-Cup pictures are shown, where we used the tex-
ture drawn on the curved surface on the cup as the input to our
method. The number of features extracted from the left and the
right views, which are shown in the upper pictures, are respec-
tively 160 and 196. About 50 features were missed between the
two images. Despite the distortion of the curved surface from
planarity, the normalized features still look similar, as found in
the middle pictures. We obtain a good approximate alignment
between the two views as we can see in the lower figure. Two
error in the recovered affine parameters was 0.128.

A case of an object with a rough surface rather than a smooth
curved surface is demonstrated in Fig. 13. The number of ex-
tracted features in the left and right views are respectively 151



      

AFFINE MATCHING OF PLANAR SETS 11

FIG. 7. Recovery error versus the rate of missing features. Errors in recovering affine parametersLi j in case with occlusion. The horizontal axis shows the
percentages of the missing features and the vertical axis shows the error in recoveringLi j . The number of model features was 50. One hundred model and data
pairs were used for each of the rate of missing features in the data. The results by a single pair of initial clusters and those by multiple pairs are plotted respectively
with the box and the star.

and 167. In our count 60 features were missed between the two
images. As will be noted in the upper figure, the regions of the
telephone pad used for the input to our algorithm have keys
and buttons, causing self-occlusions in their surrounding small
area. However, we still can recognize strong similarity in their
normalized feature distributions as shown in the middle pic-
tures. Actually, a good approximate alignment was performed
as shown in the lower picture. The error in the recovered affine
parameters was 0.164.

In the examples presented above, for the number of features
around 120–350, the running time for computing affine param-
eters ranged from 40 to 70 ms.

5.3. Tests on Images with Occlusions

The tolerance of the proposed algorithm against occlusions of
local parts caused in the region extraction process was also exam-
ined. Since the implementation of nearest-mean clustering used
for the last two experiments was tuned for feature sets without
such significant defects, (providing only 4 clusters), we needed
a different method to deal with this case. The difference in the

new implementation, which is based on the Kmean algorithm,
is that it could produce more clusters than the previous one.
Other steps of the procedure for recovering affine parameters
described in Section 4.3 are the same. Our expectation is that by
deriving more clusters than those of (nearly) minimum numbers
we saw for the previous experiments, we can still obtain some
correspondent clusters in the remaining regions in the given data
which allows us to recover affine parameters even under drops
of local parts.

As argued in the previous section, for the kind of data with
considerable occlusion that we see below, the nearest-mean clus-
tering approach that detects concentrations of features should
still work well. This is because if the incomplete patches cut
out from the image still have feature concentrations correspond-
ing those of the model, there is still a good chance that those
concentrations will be detected, enabling recovery of the pa-
rameters. Apart from this, we should note, however, that when
the occlusion of the image data becomes large, we can no longer
ignore the deviation of the correspondences of the centroids of
the whole features between the model and the data, raising the
problem of how to deal with the translational components of the
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FIG. 8. Results on the Towelette pictures. Upper pictures show the edge map of the front part of the Towelette container taken from two different views, with
detected features superimposed on it with closed circles. The middle figures show the respective normalized feature distributions obtained using the proposed
transformation. Despite the missing features and possible errors in locating the features, the normalized feature distributions appear to coincide by 180◦ rotation.
In the lower figure, the reconstructed view from the right picture using the recovered affine transformation (from left to right) as described in Section 4.3 is
superimposed with the right edge map. The error in the recovered affine parameters measured by the formula (10) was 0.0365.

transformation. In this case, however, we can use other detected
centroids to remove or to recover translational terms. In the first
example that follows, we do not consider this in aligning the
model with the image, and thus we actually see some transla-
tional deviation in the results when the area dropped occupied
a large portion of the object. In the second example, we deal
with this by using one of the cluster centroids generated. To test
this effect of occlusion in our experiments, we removed nearly
one quarter or one half of the planar regions manually from the
almost complete patches in the images we used earlier. As the
initial seed points (cluster centroids) for Kmean clustering, we
used 5% of the total number of features, and we picked cen-

troids of clusters containing more than 3% of the total number
of features (these ratios were fixed throughout the following
experiments).

Figure 14 shows the results of a test using the same Towelette
container pictures as those used in the last experiments. The top
left picture is the planar patch for the model, and top right is the
corresponding almost complete image patch to be recognized,
where produced cluster centroids are depicted by large crosses:
10 clusters for the model, 6 for the data. The left picture in the
second row shows the results on data for which the lower left
quarter is dropped, while in the right of second row almost one
half of the region is removed: 6 clusters for the left, 7 clusters
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FIG. 9. Results on the Beer-Box pictures. In the upper pictures, detected features are superimposed on the input edge maps. Despite the unstable results of the
feature extraction, both of the normalized feature distributions as shown in the middle figures are similar in shape, thus allowing a good alignment between the two
views as we can see in the lower figure. The error in the recovered affine parameters measured by the formula (10) was 0.109.

for the right were produced. Looking at those pictures carefully,
we note that some cluster centroids are still correspondent. In
the third row, results superimposing the reconstracted data from
the model with the image data are shown, where for the middle
picture, nearly one quarter of the region was dropped which lost
nearly 10% of the features, while for the right figure almost half

was dropped which lost 35% of the features. The left image
shows the results on almost complete data; thus we still obtain
fairly good alignment, except for the translational gap due to
the move of the centroid of the whole features which became
unignorable when we dropped half of the patch. The errors in
the recovered affine parameters measured by the formula (10)
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FIG. 10. Results on the Cocoa-Box pictures under different lighting conditions. In the upper pictures, detected features are superimposed on the input edge maps.
The right picture was taken under a extremely bright lighting conditions, bringing a quite noisy edge map. Despite this scene clutter in addition to the unstable
feature extraction results, both of the normalized feature distributions as shown in the middle figures have again pretty similar shape, bringing a good alignment
between two views as shown in the lower figure. The error in the recovered affine parameters was 0.078.

were for the figure in the third row 0.124, for the bottom left
0.188, and for the bottom right 0.124. As demonstrated in the
next example, this problem can be fixed using a centroid of one
of the produced clusters.

In Fig. 15, results of clustering using the Kmean procedure
are presented in the normalized coordinates, where top left is

for the model, top right is for almost complete corresponding
data patch, bottom left is for the data with a drop of the quarter
of the patch, and bottom right is for the data with half of patch
dropped. It shows how the nearest-mean procedure on the nor-
malized coordinates finds corresponding concentrations of the
features between the model and the data even with considerable
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FIG. 11. Results on the Cocoa-Box pictures with different thresholds for edge detection. A different thresholding value was used for detecting edges in the right
picture. Despite of these conditions, the alignment of two views resulted in a fairly good match, though not perfect. The error in the recovered affine parameters
was 0.103.

occlusions of the patches, providing a fairly good recovery of
affine parameters. Note that in case of the larger occlusion of
the patch, the distortion of the normalized distributions becomes
serious, such that individual corresponding features never come
close by any rotation.

In Fig. 16, results on similar tests using the Beer-Box pictures
are presented. The top figure shows the model with extracted

cluster centroids superimposed with large crosses; the first from
the left in the middle row is the results of almost complete data
to be recognized; the second is the data for which one quarter of
the patch in lower left corner is dropped that included 22% of the
original whole features; the third is the data where the upper right
corner part is dropped, leading to 35% loss of features; in the
fourth the results on the data for which upper half of the patch was
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FIG. 12. Results on the Paper-Cup pictures. In the upper pictures, detected features are superimposed on the input edge maps. Despite the distortion of the curved
surface from planarity, both of the normalized feature distributions as found in the middle figures are similar in shape, thus yielding a good approximate alignment
between two views, in the lower figure. The error in the recovered affine parameters was 0.128.

totally lost is given, which amounted to 56% loss of the features.
The number of generated clusters were: top (model) 12, in the
second row (data), first from the left 13, second 12, third 11,
fourth 6. It should be noted that even if the rate of the dropped
area increases up to more than 50%, the clustering procedure
still generates correspondent clusters. In the reconstructed data
in the third row (ordered in the same order as the second row),
we see quite accurate alignment between the model and the data.
The errors in the recovered affine parameters were: for the first

from the left 0.048, second 0.059, third 0.092, and for the fourth
0.191. Here, the translational component was also considered as
the parameters of affine matching and was handled using one of
produced cluster centroids.

Figure 17 shows the results of the clustering, wherein we
confirm that aligning the model features with the data features
using the rotation angle would never bring satisfactory results
for recovering affine parameters, as the area of the dropped parts
increases.
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FIG. 13. Results on the Phone pictures. In the upper figure, features extracted out of the telephone pad part are superimposed on their edge pictures. As the
telephone pad has keys and buttons, the pictures are self occluded in their surrounding small area. However, in the middle pictures we can still recognize some
similarity in their normalized feature distributions. The alignment resulted in a good approximation, though not so accurate as those presented above. The error in
the recovered affine parameters was 0.164.

5.4. Discussions

Through the experimental results obtained by the computer
simulation and tests on the natural pictures, the following are
noted.

• The proposed algorithm is quite stable against errors in
locating features, perturbations of the surface from planarity,
and missing features happening randomly in natural pictures, as
demonstrated using point features extracted by standard edge
detection plus feature extraction algorithms.
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FIG. 14. Tests on occluded image of the Towelette. The top left picture is the planar patch for the model, and top right is the corresponding almost complete
image patch to be recognized, where produced cluster centroids are depicted by large crosses. The left picture in the second row shows the results when the lower
left quarter is dropped, while in the right of second row almost half part of the region is removed. Note that some the cluster centroids are still correspondent. The
third row shows results superimposing the reconstructed data from the model with the image data, where for the middle picture, nearly one quarter of the region
was dropped which lost nearly 10% of the features, and for the right figure almost half was dropped which lost 35% of the features. The first image of the third
row shows results on almost complete data. The errors in the recovered affine parameters measured by the formula (10) were for the figure in the third row 0.124,
for the bottom left 0.188, and for the bottom right 0.124.

• It can also tolerate drops/occlusions of local parts of the
patch to some extent. As far as we have examined, it can cope
with natural pictures sufficiently accurately which have consid-
erable collapses of image data: even in the case of more than
50% of the area being dropped, it could perform still usable
accuracy of recovering parameters.
• The proposed algorithm is computationally extremely fast

as compared with conventional algorithms.
• For the cases where no significant drops of patch happened,

as we increase the number of different initial clusterings, the ac-
curacy of recovering affine parameters is considerably improved.
This trend will also hold true for the case of using Kmean imple-
mentation, although it was not included in the experiments. How-
ever, this imposes the greater computational cost. Clearly there
is a trade-off between the accuracy and the computational cost.
• In the results on the natural pictures, readers might no-

tice small slide-offs in the point to point matches between the
original data and the reconstructed data. Note that, however, as
the output of an alignment operation we do not need the com-
plete coincidence between those feature positions. Once we have
obtained a good alignment, if not perfect, and found the corre-
spondences of each feature in the model and the data, we can
employ other methods such as least square errors to minimize

the errors in recovering affine parameters, which is performed
by a direct computation. We should also point out that not every
application of object recognition does require a perfect align-
ment. There will be cases in which the accuracy demonstrated
in this section suffice.
• In case the feature extractions result in a quite unstable

output, either due to some significant change of the imaging
condition, or, simply because the surface is occluded, since the
computational cost of our algorithm is negligibly small, it can
still be used to realize a coarse-to-fine approach: first by applying
our algorithm to the planar portions on the objects to obtain an
approximate alignment, thereby trimming needless combinatory
spaces of the search, and then by using conventional exhaustive
search method within the limited search space to recover the
precise parameters.

6. CONCLUSION

We have proposed a quite stable and efficient algorithm for
recognizing 3D objects by combining an affine invariant prop-
erty of the planar surface with the centroid alignment approach.
The basic strategy is the following: By decorrelating the gi-
ven feature distributions we obtain normalized shape of the
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FIG. 15. Results of clustering by Kmean on the Towelette pictures. Top left is for the model, top right is for almost complete corresponding data patch, bottom
left is for the data with a drop of the quarter of the patch, and bottom right is for the data with half of patch dropped. It shows how the nearest-mean procedure on the
normalized coordinate find corresponding concentrations of the features between the model and the data even with considerable drops/occlusions of the patches,
providing a fairly good recovery of affine parameters. Note that in case of the larger drop of the patch, the distortion of the normalized distributions becomes
serious, so that individual corresponding features never come close by any rotation.

distributions up to rotations for the model and the data, regard-
less of the pose of the surface in 3D space. Then, we produced
potentially correspondent clusters of the features, via clustering
minimizing the size of each cluster in the normalized coordi-
nate. Instead of using the rotation angle between thus normal-
ized model and data, we directly used the coordinate of the
cluster centroids in the original (image) coordinate space to re-
cover affine parameters that produced the data from the model,
through the alignment framework. This brought a quite robust
recognition of planar surfaces. We demonstrated that even under
significant damage of the given image data, the proposed algo-
rithm could perform a fairly good recovery of the parameters.
Also, the algorithm was found to be quite efficient: it took at
most only 100 ms for matching an object with more than 300
features on SPARCstationIPX.

APPENDIX

In the Appendix, we show the proof of the Proposition 1.

LEMMA 4. A necessary and sufficient condition for the linear
transformations presented in (2)–(5) to commute (i.e., to arrive
at the same values for Y′) for all X, X′, where T is a general
matrix (see Fig. 1) is

H ′
1
2 U H−

1
2 = T (12)

for some orthogonal matrix U, where,

H ′ = A′6X′A
′T (13)

H = A6X AT , (14)
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FIG. 16. Tests on occluded image of the Beer-Box. Top figure shows the model with extracted cluster centroids superimposed with large crosses. Middle row
shows results using complete data, data for which one quarter of the lower left corner is dropped (22% of the original features), the data where the upper right
corner part is dropped (35% loss of features), and data for which the upper half of the patch was totally lost (56% loss of the features). The third row shows the
reconstructed data, ordered in the same order as the second row. The errors in the recovered affine parameters were: for the first from the left 0.048, second 0.059,
third 0.092, and for the fourth 0.191. Here, the translational component was also considered as the parameters of affine matching, and was handled using one of
produced cluster centroids.

where6X and6X′ represent the covariance matrices of X and
X′, respectively.

Proof.

6X′ = L6X LT . (15)

Substituting (15) into (13) yields

A′L6X LT A′T = H ′. (16)

On the other hand from (14) we have

6X = A−1H (AT )−1 = A−1H (A−1)T . (17)

Then, substituting (17) into (16) yields

(A′L A−1)H (A′L A−1)T = H ′. (18)

SinceH and H ′ are positive definite symmetric matrices, (18)
can be rewritten as

(A′L A−1H
1
2 )(A′L A−1H

1
2 )T = H ′

1
2 (H ′

1
2 )T , (19)

whereH
1
2 , H ′

1
2 are again positive definite symmetric matrices.
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FIG. 17. Results of clustering by Kmean on the Beer-Box pictures. Top left is for the model, top right is for almost complete corresponding data patch, middle
left is for the data with a drop of the quarter of the patch in its lower left corner, middle right is for the data for which the upper right corner is dropped, and bottom
is for the data with almost upper half being dropped. It shows how the nearest-mean procedure on the normalized coordinate find corresponding concentrations of
the features between the model and the data even with considerable drops/occlusions of the patches, providing a quite accurate recovery of affine parameters.

Then, from (19)

A′L A−1H
1
2 = H ′

1
2 U, (20)

for some orthogonalU . Thus, we get

A′L A−1 = H ′
1
2 U H−

1
2 , (21)

whereU is an orthogonal matrix.

Then, combining (21) withA′L = T A, finally we reach (12).
Clearly, (12) is also a sufficient condition.

Now, if we limit T to orthogonal transformations, the follow-
ing Lemma completes the proof of the proposition.

LEMMA 5. As long as we are allowed to use only up to second-
order statistics of the feature set, a necessary and sufficient
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condition that T in (12) is an orthogonal matrix is

H ′ = H = c2I , (22)

where I is the identity matrix and c is an arbitrary scalar con-
stant.

Proof. Using the assumption thatT is an orthogonal matrix,
from (12), we have

I = T TT (23)

= {H ′ 12 U H−
1
2 }{H ′ 12 U H−

1
2 }T (24)

= H ′
1
2 U H−1U T H ′

1
2 . (25)

Rearranging this we get

U T H ′ = HU T . (26)

Since as described we have no way to determine the matrixU ,
Eq. (26) must hold true for any orthogonal matrixU . Then, as
H andH ′ are positive definite,

H = H ′ = c2I , (27)

wherec is an arbitrary scalar constant.
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