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ABSTRACT In this article, we present a novel technique for visualization of three-dimensional
(3D) surface models, as well as its implementation in a system called AnatomyBrowser. Using our
approach, visualization of 3D surface models is performed in two separate steps: a pre-rendering
step, in which the models are rendered and saved in a special format, and an actual display step, in
which the final result of rendering is generated using information from the prerendering step.
Whereas prerendering requires high-end graphics hardware, the final image generation and display
can be implemented efficiently in software. Moreover, our current implementation of Anatomy-
Browser interface uses the Java programming language and can therefore be readily run on a wide
range of systems, including low-end computers with no special graphics hardware. In addition to
visualization of 3D models and 2D slices, AnatomyBrowser provides a rich set of annotation and
cross-referencing capabilities. We demonstrate several possible applications for AnatomyBrowser,
including interactive anatomy atlases, surgery planning, and assistance in segmentation. Comp Aid
Surg 4:129–143 (1999). ©1999 Wiley-Liss, Inc.
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OBJECTIVE
With recent developments in magnetic resonance
imaging (MRI) technology, it has become possible
to obtain high-quality medical images that are ex-
tremely useful for clinical studies, surgical plan-
ning, and other applications. This has spurred the
rapid development of a family of information ex-
traction and analysis algorithms using medical im-
agery. Examples include segmentation, registra-
tion, and shape and deformation modeling. With

the introduction of such images and methods of
analysis, the importance of visualization of the
results, especially three-dimensional (3D) data, has
also become apparent.

In this article, we introduce Anatomy-
Browser, a visualization and integration package
for medical applications. A novel approach to 3D
surface model visualization has been developed
and implemented in this system. Visualization is
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performed by two separate components of the sys-
tem: the back-end component and the user-end
interface. The back-end component uses special
graphics hardware to render the models and save
both intensity and depth information in a special
representation calledmultilayer images. The user-
end interface reads the multilayer images of the
scene and generates an image to be displayed for
the user. Since multilayer images contain depth
information, the user-end interface supports 3D
model manipulation, such as partially transparent
surfaces, changes in surface color, and depth que-
ries.

The image generation process in the user-end
interface requires few computational resources and
can be run on a low-end computer. The user-end
interface is implemented as a Java applet, and as a
consequence is platform independent. It can be
readily run using any Web browser that supports
Java, and in fact is available on-line.1

Possible applications of AnatomyBrowser in-
clude interactive anatomy atlases (which was an
original inspiration for this work), assistance in
model-based segmentation, surgery planning, and
others.

Related Work
Work in digital anatomy atlases was pioneered by
Höhne et al.,6 followed by other research
groups,7,11 in an effort to develop both extensive
medical image databases and visualization software
suitable for display and manipulation of medical
data. Clinical systems for surgical planning, surgi-
cal simulation, and image guided surgery5,14 are
other examples of applications that depend greatly
on visualization tools. These systems usually pro-
vide features specific for the type of surgery,
whereas the atlas-oriented visualization systems
tend to support fairly general visualization and an-
notation capabilities. A common feature among
these systems is a need for high-end graphics hard-
ware. To the best of our knowledge, Anatomy-
Browser is the first system to provide an extensive
set of visualization and cross-referencing capabili-
ties without using specialized graphics support at
the user end of the system.

Because of its design, AnatomyBrowser is
better suited for visualization of atlases, but the
same approach to visualization can be used in a
surgical tool. A later section of this article contains
examples of AnatomyBrowser being used as a gen-
eral visualization tool as well as a reference tool for
surgical applications.

Digital atlases are commonly used for model-

driven segmentation. In this application, the atlas is
treated as a template that is to be warped by the
algorithm to match the input gray-scale data set
(McInerney and Tersopoulos10 contains a survey of
deformable model methods). Another approach to
segmentation that uses atlases is based on registra-
tion of gray-scale images. The atlas gray-scale data
set is registered to the input gray-scale data set, and
the segmentation is mapped from the atlas onto the
input data using the results of registration (see
Maintz and Viergever9 for a comprehensive survey
on registration methods). In both cases, Anatomy-
Browser can provide visualization of intermediate
results in the algorithms.

Before proceeding with the system descrip-
tion, we would like to stress that AnatomyBrowser
is a visualization tool for displaying segmentation
results combined with other types of medical infor-
mation, but it is not directly a part of a segmenta-
tion process. A segmented data set can be an output
of an automatic segmentation algorithm or a result
of manual segmentation. It is processed by Anato-
myBrowser in exactly the same manner, indepen-
dently of the way it was obtained.

This article is organized as follows. Our ap-
proach to 3D visualization is introduced and dis-
cussed in the next section, and the two subsequent
sections describe implementation of the Anatomy-
Browser back-end components and its user-end in-
terface, respectively. Next comes a section present-
ing several examples of AnatomyBrowser being
used on various data sets, followed by the system
performance evaluation and concluding remarks.

MATERIALS AND METHODS

Novel Approach to 3D Model Visualization
It has traditionally been accepted that special hard-
ware and software are required for visualization of
3D surface models. Rendering of 3D surface mod-
els is a computationally intensive operation that
requires special hardware to achieve acceptable
update rates, and since rendering is considered an
integral part of the visualization process, the visu-
alization itself is thought to be feasible only on
high-end computers with hardware graphics accel-
eration. In this article, we propose a change in this
paradigm. We separate the visualization process
into two steps. First, the models are pre-rendered
using a high-end graphics system, and the resulting
images are saved in an intermediate format called
multilayer images. Then, multilayer images are
processed by the user-end interface to produce an
image of a 3D scene. Multilayer images are orga-
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nized in such a way that the image generation by
the user-end component requires only modest com-
putational resources.

This approach can be considered a compro-
mise between dynamic rendering of a scene and a
set of static images of the same scene. Multilayer
images contain depth information, and therefore
allow partial manipulation of the scene, such as
removal of models, changing surface transparency,
changing surface color, etc., but they are not equiv-
alent to dynamic rendering, as they provide only
the views that were selected and rendered in the
pre-processing step.

The input to the pre-rendering step is a set of
surface models of the anatomical structures of in-
terest. These surface models are represented using
polygonal meshes. During the pre-rendering step,
every model is rendered in isolation with all other
models removed from the image. Two images are
computed and saved for every model: an intensity
image generated by the renderer, and a depth im-
age. To compute the depth values, every vertex of
the model mesh is projected onto the optical axis of
the imaginary camera, and the depth of the mesh
faces is obtained by interpolating between the
depth values of the vertices.

Intensity and depth images of all models are
then combined in the following way: for every
pixel, a stack of,k, I ,d. tuples is saved, wherek
is a unique index associated with a surface model
(i.e., an anatomical structure that this model repre-

sents),I is the surface intensity from the intensity
image, andd is the depth value from the corre-
sponding depth image. The tuples are sorted in
order of increasing depth (Fig. 1). To obtain the
resulting image intensity for a particular pixel, in-
tensity values in the corresponding stack are treated
as colored (and perhaps partially transparent) layers
that are piled on top of each other; hence, the name
“multilayer image.”

This approach is reminiscent of z-buffering
techniques,4 with one significant difference: For a
particular pixel, a z-buffer stores a single intensity
value which is overwritten every time a surface
with a smaller depth value is encountered, whereas
in a multilayer image the previous intensity value is
stored in a stack when a new intensity with a
smaller depth value is found for the pixel.

At rendering time, all models are assigned the
color white and are treated as fully opaque. Surface
colors and opacities are set at display time and are
used to compute the resulting image intensity.

For modeling colored surfaces, we assume
that the reflectivity properties of a surface are in-
dependent of the light wavelength.4 Consider a
white surface that produces an image of intensity
(color) Iw at a certain pixel. Strictly speaking, the
color of the image of the white surface is a three-
vector [Iw Iw Iw], but we treat it as if it were a scalar
value because its three components are always
equal under white illumination. Suppose we change
the color of the surface toC 5 [R G B] without

Fig. 1. Multilayer image. Three-dimensional scene consists of three surfaces (A, B, C). The view rays and resulting stacks
in the multilayer image are shown for six different pixels. Intensity and depth values are omitted for simplicity; only the
structure indices are shown.

Golland et al.: AnatomyBrowser 131



changing its reflectivity properties, such as diffuse
and specular reflectivity coefficients. According to
our model, the image intensity at the same pixel
will change toc 5 [r g b] such that

c 5 CIwN @r g b# 5 @RIw GIw BIw#. (1)

This implies that the color of a layer in a multilayer
image can be obtained by simply multiplying the
layer intensity, which is computed during the pre-
rendering step, by the color of the corresponding
surface, which is set by a user at display time.

To handle partially transparent surfaces, ev-
ery surface model is assigned an opacity value,a,
ranging between 0 and 1 (a 5 0 corresponds to a
fully transparent surface,a 5 1 corresponds to a
fully opaque surface). We use a premultiplied color
representation with a front-to-back compositing al-
gorithm2 for layer compositing. For a layer of color
c 5 (r, g, b) and opacitya, a premultiplied color is
defined as a four-vector

ĉ 5 @ac a# 5 @ar ag ab a# (2)

Combining with Equation (1), we obtain

ĉ 5 @aRI aGI aBI a# (3)

whereI is the intensity of the layer computed in the
prerendering step, andC 5 [R G B] is the user-
defined surface color. Premultiplied colors provide
a very efficient way to composite color layers. It
can be shown2 that a layer of (premultiplied) color
f̂ composited on top of a layer of colorb̂ is equiv-
alent to a single layer of (premultiplied) color

f̂ 1 ~1 2 a!b̂ (4)

wherea is the opacity of top layerf̂. This is a very
simple compositing rule that requires only a few
additions and multiplications and can be imple-
mented efficiently using lookup tables for surface
colors and opacities. Additional time savings come
from the fact that for many pixels, it is not neces-
sary to composite all the layers in their stacks, as
the first visible surface is usually opaque. A simple
test on the opacity of the resulting layer can be used
to detect this situation and stop the compositing
process. To summarize, our approach to visualiza-
tion of 3D surface models consists of two separate
stages. First, the models are rendered, and for every

pixel in the image a set of surface intensities and
depth values is saved in a multilayer image. This
operation requires high-end graphics hardware for
rendering. Then, at the display time, the intensity
values are multiplied by the user-defined colors and
opacities and composited using the front-to-back
compositing rule. This process can be efficiently
implemented in software, as it does not require a lot
of computation. The next two sections describe
AnatomyBrowser, a system that employs the tech-
nique presented in this section for visualization of
medical images.

AnatomyBrowser Back-End Components
AnatomyBrowser consists of two parts: the back-
end system for data preprocessing, and the user-end
interface for data visualization. Fig. 2 shows the
data flow in the system. The input to the back-end
system includes gray-scale and segmented data
sets, a list of anatomical structures with the label
values used for segmentation of the structures, and
an optional hierarchy file that defines organization
of the structures.

At the pre-processing stage, 3D surface mod-
els are generated, rendered, and saved as multilayer
images; the slice data sets are resampled and com-
pressed; and the text information is processed to
establish correspondence between different types
of information available to the system. An anatom-
ical structure can have information of a different
nature associated with it: a name, a 3D surface
model, a set of 2D slices, or text notes. To tie them
together and provide efficient cross-referencing be-
tween them, AnatomyBrowser automatically as-
signs a unique index (id) to every anatomical struc-
ture in the input data set, i.e., in the list of structures
provided by the user. The index is then used by the
back-end components for tagging the data associ-
ated with the structure and by the user-end compo-
nents for looking up information on the structure.

The current implementation of the model
generation and the model-rendering components is
based on the Visualization Toolkit (VTK), a soft-
ware package that uses available GL libraries to
take advantage of graphics resources of a particular
system.13 Any other rendering library that supports
scene manipulation (e.g., Inventor by SGI) could
also be used for this purpose.

3D Model Generation
Surface models are constructed from segmented
data sets using the Marching Cubes algorithm.8

First, every border voxel in the segmented slice set
is considered with its neighboring voxels, and a
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single patch of the surface is constructed based on
the local behavior of the boundary. Next, patches
from neighboring voxels are merged to form a
single mesh that approximates the surface of the
structure. To decrease the number of polygons (tri-
angles) in the representation and improve the sur-
face appearance, a certain amount of decimation
and smoothing is performed on the mesh under
constraints on the accuracy of representation. Each
surface model is saved in a separate file (one file
per model) to be read by the pre-rendering compo-
nent. We used an implementation of the algorithm
that is publicly available as a part of VTK.13

Note that the models are specified in the
coordinate system that is naturally defined by the
slice volume. This simplifies implementation of
cross-referencing between 3D models and cross-
sectional views.

3D Image Pre-rendering
The main difference between AnatomyBrowser
and other visualization packages lies in this com-
ponent. It is in charge of model rendering and
multilayer image generation, and is essentially an
implementation of the prerendering step described
earlier.

The current implementation of this compo-

nent is very similar to other 3D model viewers used
in the field.5,6,14 The viewer provides controls for
adjusting global scene parameters, such as a view-
point and lighting, as well as surface properties of
individual models (color, transparency, and reflec-
tivity). Fig. 3(a) shows the viewer interface with
the 3D surface models for the brain atlas data set.
The menu buttons correspond to control panels for
scene manipulation. The viewer also maintains a
list of views to be saved as multilayer images: The
default is the six standard views (front, back, left,
right, top, and bottom), but other views can be
added to the list by adjusting the scene parameters
until the image is satisfactory and clicking on the
“Add View” button on the viewer control panel.
Fig. 3(b) shows additional examples for the brain
atlas data set generated by AnatomyBrowser.

After selection of views is completed, the
rendering process is activated. For each view, a
separate multilayer image is generated and stored.

Slice Reformatting
The slice data sets undergo a set of transformations
in the back-end component. The goal of this com-
ponent is to provide the best representation of slice
data for the user-end interface.

Gray-scale slice intensities are scaled from a

Fig. 2. Data flow in AnatomyBrowser. Arrows indicate flow of data between different components of the system.
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16-bit representation to an 8-bit representation
based on the user-defined window widthw and
window levell parameters. Window levell defines
the gray-scale level that will be mapped to gray-
scale level 128, and window widthw defines the
width of the gray-scale range to be mapped to 256
gray-scale levels of the display:

Î ~I !

5 5
0, I , l 2 w/ 2

1281
256

w
~I 2 l !, l 2 w/ 2 # I # l 1 w/ 2

255, I . l 1 w/ 2

(5)

Segmented slice intensities are remapped us-

ing the set of unique indices associated with the
anatomical structures. For example, if a certain
model is segmented using the value 15 and is
assigned the index 8, all the pixels in the segmented
data set with values of 15 will be assigned the value
8. After remapping is performed, the pixel value
can be used as an index into a lookup table for the
structure name, color, transparency, etc.

Both gray-scale and segmented slice volumes
are resampled along three standard directions (ax-
ial, coronal, and sagittal) using an isotropic voxel
size. The size of the new voxels is determined by
the smallest dimension of the original voxels. This
operation is needed to speed up the display of
slices, trading storage space for performance time.
We have also implemented and tested a version that
resamples the volume online in the user-end inter-

Fig. 3. Prerendering component of AnatomyBrowser. (a) Viewer interface with the brain atlas data set. The view list contains
the six standard views. (b) Additional examples of the 3D views generated for the brain atlas data set.
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Fig. 4. AnatomyBrowser user-end interface. (a) Example of the interface for the brain data set. The cross-hair positions
correspond to the same 3D point. Some of the structures are annotated on the 3D display. The sagittal slice is slightly zoomed
in on. (b) AnatomyBrowser for the brain data set with the frontal, temporal, and parietal lobes collapsed into single nodes.
Compare to (a) for the differences in the hierarchy panel, the colors of the structures, and annotation labels.



face, but it proved to be significantly slower than
the current implementation that retrieves resampled
slices off a disk. The system can switch between
the two implementations in a manner transparent to
the user. After resampling, gray-scale slices are
stored as gif files and segmented slices are com-
pressed using run-length encoding.

Structure Hierarchy

AnatomyBrowser supports hierarchical organiza-
tion of anatomical structures. A simple text file
format is used to specify the nodes of the hierar-
chical tree. For example,

[Head]
? Brain
x Skin
x Skull

[Brain]
x Temporal lobe
x Frontal lobe
x Parietal lobe

defines a hierarchy tree with a root named “Head”
that has three children: two leaves, “Skin” and
“Skull,” and the node “Brain,” which has three
children of its own: “Temporal lobe,” “Frontal
lobe,” and “Parietal lobe.”

A name can be declared to be a single struc-
ture (x) or a group of structures (?). The group of
structures is specified by listing all the elements
(structures or subgroups) right after the declaration
of the group name ([. . .]). Hierarchy files can be as
simple as a list of structures, or as complicated as a
tree of several levels with more than a hundred
structures in it (e.g., the brain atlas in Fig. 4).

The back-end system reads the hierarchy file,
verifies that there exists a surface model for every
name that was specified as a single structure, and
attaches the structure index to the name in the
hierarchy. A new, augmented hierarchy file is then
written out for the user-end interface. In addition to
the hierarchy file, an HTML file is generated by this
component. The HTML file contains all the param-
eters required by the interface, such as file names,
slice volume size, and voxel size.

In summary, after processing the input data,
the back-end part of the system generates the fol-
lowing files:

● an HTML file that defines all the necessary
parameters for the interface

● a hierarchy file that specifies organization of
the anatomical structures

● multilayer images (one file per view) for the
3D display

● resampled and compressed slices (two files
per slice) for the slice displays.

These files are used by the user-end interface at
display time. The next section describes the inter-
face components in detail.

AnatomyBrowser User-End Interface
AnatomyBrowser integrates three main types of
information: 3D surface models, slice data sets, and
text. Accordingly, the user-end interface consists of
three main components: a 3D display, three slice
displays, and a hierarchy panel (Fig. 4(a)). In ad-
dition to visualization capabilities, Anatomy-
Browser provides cross-referencing among all
types of displayed information. The user-end inter-
face is implemented as a Java applet, and is there-
fore platform independent.

Interface Components
3D Display. The 3D display uses multilayer im-
ages to generate and display images of the 3D
models using Equations (3) and (4). It provides the
user with controls for view selection, zoom in/out,
and manipulation of surface colors and opacities.

Cross-Sectional Slices. Axial, coronal and sagittal
cross-sections are displayed on the three slice dis-
plays. The cross-sectional slices are computed from
the original slice volume by resampling it along the
three orthogonal directions. Similarly to the 3D
display, zoom in/out functionality is implemented
for the slice displays. AnatomyBrowser provides
four different ways to view the slices. A user can
choose to view just the gray-scale images, or just
the segmented set, or blend them together, or view
the gray-scale images with the outlines of the seg-
mentation. Fig. 5 demonstrates all four choices for
one slice from the brain atlas data set.

Hierarchy Panel. A hierarchy tree (graph) is a
natural, systematic way to classify and present an-
atomical structures. AnatomyBrowser uses a di-
rected acyclic graph (DAG) to model anatomical
hierarchy. The hierarchy file generated by the back-
end system is parsed by the interface and a corre-
sponding graph structure is constructed. However,
we use a tree model to display the structure hier-
archy, as it is more suitable than a DAG for visu-
alization purposes. If a particular structure (or a
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group of structures) is shared by several parents,
several instances of the corresponding node (or a
subgraph) are generated and displayed under each
of the parents. Since the internal representation
uses a DAG, and all the instances of a group or a
structure point back to the same element in the
representation, the element properties can be
changed using any of the instances.

The hierarchy panel allows the user to set a
desirable level of detail for displayed images. Any
subtree in the hierarchy panel can be collapsed into
a single node. This causes all the structures in the
subtree to be rerendered using the color of the new
collapsed node and to be treated as one structure
from that point forward (Fig. 4(b)). This feature can
be useful for studying anatomy with the help of
AnatomyBrowser. A user can start with a very
coarse hierarchy tree and expand group nodes grad-
ually, rather than try to learn the whole tree at once.
It can also be used to change properties of all
elements in a subtree in one step. For example, if
we wish to remove all muscles from the knee atlas
in Fig. 7(a), collapsing the muscle group and re-
moving it as one element is easier than removing
the muscles one by one.

Cross-Referencing between Displays
An important capability provided by Anatomy-
Browser is cross-referencing among the displays.
If a user clicks on one of the display areas
(Shift-Click), a cross-hair appears on all four
dislays at locations corresponding to the same 3D
point.

Although all four displays exhibit very sim-
ilar behavior, the cross-referencing definition and

implementation are different for the 3D display
and the slice displays. Any pixel in the slice
display is characterized by three numbers: the
slice index and the pixel coordinates in the slice
(Fig. 6(a)). These three numbers are sufficient to
compute the 3D coordinates of the corresponding
physical point in the volume defined by the slice
set. Therefore, the mapping between pixels in the
slice set and physical points in the 3D volume is
well-defined and can be readily computed from
the physical dimensions of the voxel. This is not
true for the 3D display. Each pixel in the 3D
display is described by only two coordinates, and
a user has no means to specify or obtain depth
values directly in the 3D display. A natural one-
to-one correspondence between pixels in the 3D
display and entities in the 3D space is the one
from pixels to view rays, and vice versa (Fig.
6(b)). This construction provides us with a useful
interpretation of the cross-referencing for the 3D
display.

If a cross-reference is initiated from the slice
display, the corresponding 3D point can be
uniquely computed. For the 3D display, we place
the cross-hair on the pixel corresponding to the
selected 3D point, but we might not see the point
itself on the display. Instead, we will see a surface
that occludes the selected 3D point. The cross-hair
on the 3D display should be interpreted as a view
ray along which the selected 3D point lies.

In a similar way, by clicking on the 3D dis-
play, a user specifies a view ray rather than a single
3D point. AnatomyBrowser uses depth information
available to it from the multilayer image to disam-
biguate this point referenced by the ray. The as-

Fig. 5. Slice display. The same coronal slice from the brain data set is displayed using four different ways of combining
gray-scale and segmented images: (a) gray-scale, (b) segmented, (c) blended, (d) outline.
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sumption used by the system is that the point of
interest lies on the intersection of the view ray with
the closest visible surface (Fig. 6(b,c)). This deci-
sion is justified by a natural notion of pointing:
when interpreting somebody’s pointing, an ob-
server follows an imaginary ray defined by the
pointer, until it meets an object that is not fully
transparent.

Text and Annotation
AnatomyBrowser also provides annotation capabil-
ities, which can be considered as cross-referencing
between text and images. This feature can be in-
voked from any of the main components of the
AnatomyBrowser interface.

To use the hierarchy panel for annotation of a
particular structure, a user clicks on the name of the
structure on the panel. If the structure is visible on
the 3D display, a pointer to the structure will appear
in the 3D image. The name of the structure will be
displayed on the title bar between the 3D display
and the slice displays. The implementation of this
feature is fairly straightforward: A multilayer im-
age contains information on the structures currently
visible on the 3D display.

If a user clicks on any of the displays, the
structure index is extracted from the corresponding
segmented slice for the slice displays, or from the
multilayer image for the 3D display. Again, the
name of the structure is located in the hierarchy
graph and a pointer with the structure name is
displayed on the 3D image.

As mentioned before, AnatomyBrowser al-
lows text notes to be attached to a particular struc-
ture. The text notes are saved in a file with the
structure name, which is used by the interface to

locate the notes. We use a title bar with the name of
the structure as a hypertext link to a collection of
text notes. Clicking on it brings up a text window
with all the text information available on the struc-
ture.

Both annotation and text documentation can
be invoked for all leaves in the hierarchy panel,
whether they represent real structures or groups of
structures that have been collapsed into a single
node.

RESULTS AND DISCUSSION

Example Applications
AnatomyBrowser provides a framework for visu-
alization of medical images and their integration
with other information. Anatomy studies are the
most obvious application for such a system. Anato-
myBrowser can effectively replace a conventional
anatomical atlas book, as it provides at least as
much information as the book. Students can see
anatomical structures, view an MR or computed
tomographic (CT) scan of those structures, read an
attached description, and study their hierarchy. Vi-
sualization and full cross-referencing make Anato-
myBrowser a useful interactive teaching tool, and
the fact that the user-end interface can run essen-
tially on any computer makes AnatomyBrowser
particularly well-suited for this purpose.

We have generated interactive atlases using
AnatomyBrowser for brain (Fig. 4), knee (Fig.
7(a)), abdomen, inner ear, and other areas. Building
digital atlases is an ongoing effort in our group, and
they become available on-line1 as new data sets are
segmented. All the atlas cases are based on scans of
individual healthy subjects, but the system can po-

Fig. 6. Coordinate correspondence between the volumes and the physical world: (a) A point in the slice display defines a
3D point in the physical volume. (b) A point in the 3D display defines a view ray in the physical world; the depth value can
be determined by identifying the intersection point of the view ray with the nearest surface. (c) The depth value can be looked
up in the multilayer image of the scene.
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Fig. 7. Additional examples of AnatomyBrowser. Both examples demonstrate cross-reference and label correspondence. (a)
Atlas example: knee atlas. (b) Clinical case example: pelvic tumor.
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tentially be used on phantom data as well as on
atlases derived from a group of subjects. Most of
the cases are based on a single segmented scan, but
some examples were generated by merging several
different modalities using registration. These in-
clude the brain atlas that was generated from two
different MRI scans that covered overlapping but
different parts of the subject head and were merged
together using rigid registration techniques, and the
inner ear atlas that was generated by merging bone
segmentation from a CT scan and vessel segmen-
tation from an MR angiogram. Once on the Web
site, the brain atlas has been extensively used as a
reference tool by the researchers in our laborato-
ries.

In addition to anatomy studies, digital atlases
can also be used for model-driven segmentation.
We can view the process of model-based segmen-
tation as a loop in which the results of the segmen-
tation of the previous scans are used in segmenta-
tion of the view data sets. The digital atlas is an
intermediate step in this loop, where knowledge
about anatomy is accumulated in a particular rep-
resentation, visualized for the user, and possibly
processed for future use by the segmentation algo-
rithm. In a way, its purpose is to “close the loop”
from one stage of the segmentation to the next one,
which uses the result of the first stage. Anatomy-
Browser can be helpful for visualization of both the
atlas and the intermediate results in this process.

As we pointed out in the Introduction, Anato-
myBrowser is different from a digital atlas. It is a
visualization system that can be used on any scan,
not necessarily the reference (atlas) data. This nat-
urally brings up another application for Anatomy-
Browser. It can be employed as a visualization and
annotation tool for clinical cases, when the analysis
must be performed on a per-case basis. We have
used AnatomyBrowser for visualization of several
tumor cases in different anatomical areas: pelvis
(Fig. 7(b)), sacrum, brain, and kidney. These cases
are also available on-line.1

The tool was tested for both surgical planning
and as a reference tool during surgery. Before the
surgery, an MRI (or/and CT) scan of a patient was
taken and segmented in the Surgical Planning Lab-
oratory at Brigham and Women’s Hospital. Then,
the 3D surface models were generated and pre-
sented to the surgeons in the back-end viewer. The
surgeons used the viewer to familiarize themselves
with the 3D shape and location of a tumor and
structures around it and to plan the surgery. They
were also asked to select about a dozen views that
would be useful during surgery. During surgery,

the user-end interface with the selected views and
the slice data were made available to the surgeons
for general reference on a personal computer (a
laptop) in the operating room.

The surgeons’ response to the system was
positive in all cases. It provided them with much
greater visualization capabilities than they had had
before, while establishing clear correspondences
between the 3D models and the more commonly
used cross-sectional slice sets. We would like to
mention two cases in which AnatomyBrowser al-
lowed the surgeons to improve their performance
significantly. In a case involving a sacral tumor, the
visualization system made it obvious that certain
vertebrae were covered by the tumor on the right
side of the sacrum, but not on the left, which was of
great help in planning the surgery. More informa-
tion on this case can be found in Richolt.12 In the
case of a pelvic tumor, an initial surgery plan was
changed after the analysis of the 3D models using
AnatomyBrowser had demonstrated that the cuts
originally planned would not be feasible. Then, in
the operating room, the surgeons consulted the
user-end interface to establish correspondence be-
tween different structures on the slices and on the
3D display. The surgeons reported that the infor-
mation on spatial relationships between different
structures provided by AnatomyBrowser allowed
them to reduce the time of surgery substantially.

Although AnatomyBrowser cannot provide
as much functionality as the specialized surgical
systems,5,14 it can definitely be useful for surgeons
who do not have access to high-level computational
resources and specialized surgical systems. In par-
ticular, AnatomyBrowser can be considered a test-
ing tool, allowing the surgeons to assess the value
of 3D image visualization before committing to a
certain surgical system.

Another interesting (future) application in
which AnatomyBrowser can be helpful is in remote
data processing. Consider an imaging center that
receives medical scans from other hospitals or im-
aging facilities that are not equipped to perform
segmentation and visualization onsite. The scans
are processed in the imaging center and sent back
to the users, who can then employ Anatomy-
Browser interface on a workstation or personal
computer to visualize the data. This model of med-
ical image processing follows the same principle of
uneven distribution of computational resources be-
tween the processing site and visualization site that
was used in AnatomyBrowser design and imple-
mentation, so it can naturally provide visualization
services in such a scenario.
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Current Implementation Evaluation
In this section, we report statistics collected on 12
cases that were processed and visualized using
AnatomyBrowser. They range from tumor cases
with a small number of structures to atlas cases
with over 100 structures. We note that the current
system was implemented as a proof of concept for
the new visualization approach we presented in the
report. It can be improved to decrease significantly
the size of the intermediate data used by Anatomy-
Browser, as well as the running time of all the
components.

Table 1 compares the sizes of slice data sets
generated in the preprocessing step and the original
data sets. In most cases, the output size is compa-
rable to the input size, but for some cases (for
example, case 5), the size of the output is signifi-
cantly higher than that of the input data set. These
are statistics reported for the implementation that
resamples a slice volume off-line and stores all
resampled slices. In this implementation, if an as-
pect ratio between slice thickness and slice resolu-
tion is high, the number of slices in the output data
set is significantly higher than the number of slices
in the input data set. In the future, when it becomes
feasible to resample slices online, the intermediate
data sets will be significantly smaller than the input
data sets.

Table 2 reports the average size of a multi-
layer image generated and stored by the back-end
system. There is some correlation between the
number of models and the size of a multilayer
image, but it is obvious that this is not the only
factor affecting the size of the images.

Another important parameter (that is difficult
to quantify) is the “density” of a scene—i.e., an
average number of models per pixel in the image—

but since the size of the multilayer images is two
orders of magnitude smaller than the size of the
slice data set, it is clearly not a bottleneck of the
system.

The amount of time required by the back-end
system to process the data varies significantly de-
pending on the number, size, and complexity of
surface models. Table 3 summarizes our experience
with the system. In general, it takes under two
hours to process the data on a Sun Ultra Sparc10
workstation with graphics acceleration. Most of the
time is taken up by rendering and file I/O. Although
the processing time for the slice data sets does not
change as the number of models increases, the time
for surface mode generation and model rendering
has a high correlation with the number of models in
the system.

In the process of system development and
use, several different modes of running the user-
end interface emerged. The first and the simplest
one is when the data files and the user-interface
reside in the same file system, and the files are
accessed through that file system. In this case, the
update speed is sufficient for most applications.
Once the applet is loaded, the interface reacts to
user commands almost instantaneously. Later in the
project, we put a few sample cases on our Web site,
and users started accessing the system through an
http connection. The system performance dropped,
but was still acceptable if the access was through
the local network (within the same domain). How-
ever, it proved too slow for remote access from
other sites. Analysis of the data size above provides
an important insight into this problem: The amount
of data that needs to be transferred over the net-
work makes remote use difficult. That is why we

Table 1. Comparison Between the Original Data Set Size and the Size of the Data Set Produced
By the Back-End Component for 12 Different Cases
Case number 1 2 3 4 5 6 7 8 9 10 11 12

Input size (MB) 30.7 52.5 10.0 40.0 8.7 12.7 13.7 70.0 30.0 28.5 30.7 40.0
New size (MB) 25.3 40.9 10.2 8.2 20.9 10.7 24.1 23.3 41.3 20.3 18.5 21.8

Table 2. Number of Surface Models (Anatomical Structures) and an Average Size of Multi-Layer
Images Generated by the Pre-Rendering Component for 12 Different Cases
Case number 1 2 3 4 5 6 7 8 9 10 11 12

Num. of models 6 8 10 13 14 15 29 45 48 56 120 120
Image size (MB) 0.22 0.07 0.19 0.09 0.38 0.26 0.18 0.09 0.74 0.60 0.55 0.44
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encourage our users to obtain a local copy of the
data and the interface.

Improving the system performance for re-
mote access is an exciting and promising direction
for future work for this project. The current imple-
mentation, however, is not suited for remote use, as
it is not optimized with respect to the amount of
transmitted data, which is known to be a bottleneck
for many distributed applications.

CONCLUSIONS
We have presented a novel framework for visual-
ization of 3D models of anatomical structures. In
this framework, the visualization process is divided
between the back-end system that renders the im-
ages and saves them in a special format, and the
user-end interface that reads prerendered images
and displays 3D models, while providing a set of
3D scene manipulation capabilities similar to visu-
alization packages based on true dynamic rendering.

The main advantage of this method is that the
computational resources can be allocated unevenly
in the system. In particular, the back-end compo-
nents require graphics acceleration hardware, but
the user-end interface does not need special hard-
ware or software support.

We demonstrated an implementation of this
approach in a system called AnatomyBrowser. The
user-end interface of AnatomyBrowser is imple-
mented in Java and can run on any platform. The
current implementation proved to be efficient if the
data resided in the same file system with the inter-
face. Remote access through an http connection
does not yield sufficient update speed for the sys-
tem to be used over the network. Future optimiza-
tions of the interface implementation can help re-
duce the amount of information transmitted over
the network and thus make remote use of the sys-
tem feasible.

We demonstrated several example applications
for AnatomyBrowser as a visualization system. They
included studies of anatomy, or visualization of ana-

tomical atlases in general, as well as visualization of
clinical cases for medical research or surgery.
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