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' MAGE UNDERSTANDING RESEARCH
traditionally has focused on problems in
areas such as aerial photo-interpretation, in-
dustrial automation, and autonomous navi-
gation. These applications range from au-
tomatic target recognition and robotic
hand-eye coordination, to landmark recog-
nition and free-space detection. Researchers
designed these IU methods to work with
electro-optical sensors—such as standard
visible-light cameras—and geometric ob-
jects that are rigid and easily articulated,
such as polyhedra and simple quadric sur-
faces.

Medical imaging, on the other hand, pre-
sents a different set of challenges. Medical
imaging problems typically use sensing
methods with very different underlying
physics: magnetic resonance imaging
(MR1) or computed tomography (CT).
These problems often deal with geometri-
cally intricate objects, such as the surface
of the cortex or the bronchial structure of
the lungs. Medical problems also deal with
flexible, deformable objects, as for exam-
ple the nonrigid motion of the beating heart.
Despite the apparent differences in under-
lying bases, developments over the past few
decades in computer vision, especially
through ARPA’s Image Understanding Pro-

gram, are beginning to revolutionize the use

MAaNY SURGICAL PROCEDURES REQUIRE HIGHLY PRECISE
3D LOCALIZATION TO EXTRACT DEEPLY BURIED TARGETED
TISSUE WHILE MINIMIZING COLLATERAL DAMAGE. THE
AUTHOR DESCRIBES A SYSTEM THAT BUILDS ON A WIDE
RANGE OF IU METHODS TO ACHIEVE THIS END.

of medical imagery: in surgery, in diagnosis,
and in therapy evaluation.

This applicability of IU techniques to
medical problems holds for many of the cen-
tral problems in traditional IU: extracting key
features from the imagery, registering data
sets, predicting images of object models from
arbitrary viewpoints, and fitting parameter-
ized surface models to data. By tailoring IU
techniques designed for traditional vision to
the special circumstances of medical im-
agery, systems are emerging that support ef-
fective use of medical image data.' To
demonstrate the range of roles that TU meth-
ods play in medical image utilization, we de-
scribe an end-to-end system for image-
guided surgery. This system directly builds
on a wide range of IU methods to provide
surgeons with visualization and guidance
during surgical procedures.

Applications of

A demonstration: image
guided surgery

Many surgical procedures require highly
precise 3D localization to extract deeply
buried targeted tissue while minimizing col-
lateral damage to adjacent structures. Image-
guided surgery emerged to meet this need.
While MRIs and CTs image and display the

" body’s 3D structure, the surgeon must still
relate what he or she sees in the 3D display
with the patient’s anatomy.

Surgeons usually examine 2D slices of
MRI or CT imagery and then mentally trans-
fer that information to the patient. Thus, there
is a clear need for registered visualization
techniques in which 3D reconstructions of
internal anatomy are exactly overlaid with
the surgeon’s view of the patient. This allows
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An example sconario

We describe a scenario that demonstrates the use of our image
guided methods here.

First, the staff scan a patient requiring surgical therapy with a three-
imensional, high-resolution, internal anatomy scanner, such as MRI or
" CT. Qur system automatically segments the scan into different tissue
types, and generates graphical models of desired structures, such as tu-
mors, ventricles, skin surface, bone, and white matter.

The patient relocates to the operating room, which is equipped with
the following:

e asystem for obtaining 3D positional information from the patient’s
skin surface at the locus of surgery;

e enhanced reality visualization equipment, such as a video or digital
camera, mixer, and display monitor; or a head-mounted display
with trackable landmarks;

e medical instrument holders containing trackable landmarks:
an operating table that may contain fixed raised landmarks that will
remain viewable and in the same position relative to the patient
during surgery;

s landmark tracking equipment.

Prior to draping, the staff scans the patient with the 3D sensor. This

~sensor could be, for example, a laser range scanner or a passive stereo
system. The system calculates the 3D locations of any-table landmarks
to identify their location relative to the patient.

The system then automatically registers the MRI or CT scan to the
patient skin surface depth data that the range scanner obtained. This
provides a transformation from MRI/CT to patient. Matching the video
images of the range points on an object to the actual 3D data determines

the position and orientation of a video camera relative to the patient.
This provides a transformation from patient to video camera.

The enhanced reality visualization displays the registered internal
anatomy to “see” inside the patient. In particular, the system uses the
two previously computed transformations to transform the 3D model
into the same view as the video image of the patient, so that video
mixing allows the surgeon to see both images simultaneously. The
staff drapes the patient and performs the surgery. The enhanced reality
visualization neither interferes with the surgeon, nor requires him or
her to do anything out of the ordinary. Rather, the system provides ad-
ditional visualization information that greatly expands her limited
field of view.

The system can continually track the location of the table landmarks
to identify changes in the position of the patient’s attitude, relative 1o
the visualization camera. Visualization updates occur after updaling
the MRI/CT to patient transformation. The system can also continually
track the viewer location to identify any changes in the position of the
viewer. In the case of a stationary video camera, this is straightforward.
In the case of head-mounted displays, such tracking is both more rele-
vant and more challenging. Visualization updates take place when the
system updates the patient-to-viewer transformation. The system may
track the medical instruments as well to align them with predetermined
locations as displayed in the enhanced reality visualization.

In general, the surgical procedure is executed with an accurately
registered enhanced visualization of the entire relevant anatomy of the
patient. By providing this information, the surgeon will be able to exe-
cute the procedures more efficiently and effectively, with reduced side
effects to the patient.

the surgeon to directly visualize important
structures and plan accordingly, with the im-
ages guiding the surgeon’s execution of the
procedures. This method requires that we au-
tomatically extract relevant image informa-
tion, convert it to a form most useful to the
surgeon, and present that information seam-
lessly to the surgeon by registering it to the
patient. See Figure 1 for an example of what
our system can deliver.

An enhanced reality surgical visualization
system. Using a range of IU methods from
visual object recognition, we have created a
system that registers the clinical image data
with the patient’s position on the operating
table at the time of surgery. We have com-
bined the method with an enhanced reality vi-
sualization technique, in which we display a
composite image of the 3D anatomical struc-
tures with a view of the patient (see Figure
1). After the surgeon analyzes the segmented
3D preoperative data, this registration enables
the transfer of preoperative surgical plans to
the operating room. The surgeon then graph-
ically overlays the plans onto video images
of the patient. This method allows the sur-
geon to apply carefully considered surgical
plans and to make internal landmarks that
guide the surgery’s progression.

iy

The following input are the conditions of
the specific problem that the system solves:
Given a video view of the patient, together
with an MRI or CT model of the anatomy
of the patient, each defined in its own coor-
dinate system. We want the system to pro-

Figure 1. Example of combining the registration of MRI to de

duce the following output: Segment the
MRI/CT model into - distinct, relevant
anatomical structures; find a transformation
aligning the model with the patient, and a
transformation describing the position and
orientation of the video camera relative to

data and the cnlib ofa vin tomera v

the depth data to provide an enhanced reafity visualization of a patient. The fumor and the venricles are disployed in
exact registration with a live view of the potient. Using this registered data, the surgeon can mark the key struciure
positions, phn procedures, and check progress at intermediate stages of the procedure.
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Figure 2. Results of EM Segmentation (Reproduced with permission of W. Wells H1). Results of the EM segmenter on

sagitiat section obtained using a surface coil. In the fop row, on the left is the input image and on the right is the initial
groy matter probability. In the second row, on the left s the final probahility for gray matter obtained using EM seg-
mentation, and on the right is the bias estimate. In the third row, on the left s the resultant dlassification of the input
image, and on the right is the final intensity corrected image obtained from EM segmentation.

the patient; use these components to regis-
ter and overlay the segmented model with
the video image.

Once we have these transformations, we
can present visualizations of internal struc-
tures to the surgeon. Extensions of the method
also allow us to adaptively re-register the
patient’s video image to the 3D anatomical
data as the patient moves or as the video
source moves.

How IU is essential to this problem. In
the following sections I discuss how well-
developed IU techniques critically support
most stages of this end-to-end system.
Segmenting the volume into tissue tvpes.
The first stage of our scenario is standard
practice. The results of the scan are a sct of
3D voxels, each with some associated inten-
sity information, that reflects the interaction
of the sensor with the tissue type. MRI and

CT scans are often displayed as images.
However, the underlying physics by which
tissue type generates a signal that can be con-
verted to a brightness value for display is
quite different than in conventional visible
spectrum sensors. Nonetheless, it is easy to
adjust the IU techniques developed for the
latter case to handle such sensing modalities.

The next step is the first stage in dealing
with the volumetric medical image. Here it is
necessary to convert signal values at voxels
into tissue labels, a problem known in the vi-
sion community as segmentation. Under
ideal conditions, this is a straightforward
problem. We simply need to train a classifier,
by identifying a small number of points in
the imagery whose tissue type is known from
anatomy. We can use the extracted set of in-
tensity values associated with each tissue
type as a basis for classification; all other el-
ements in the volume are assigned a tissue
label based on the cluster of known labels to
which they are closest.

Unfortunately, things are not quite so nice
in practice. First, the sensors can often have
large gain effects, in which the underlying
signal is corrupted and thus can take on a
value inconsistent with its actual tissue clus-
ter. Second, many tissue types can have very
similar intensity values, thereby defeating
the purpose of the classifier.

To overcome these problems, we can use
a suite of methods from the IU community.
First, consider the gain artifact. If we know
the gain artifact, we could correct the signal
and then use our classifiers to identify tissue
type. Conversely, if we know the tissue type,
we could predict the ideal signal and use that
to solve for the gain artifact. But we don’t
know either. The solution is to use a tech-
nique that researchers have successfully used
in IU problems, based on the Expectation/
Maximization algorithm.? In short, we as-
sume some initial value for the gain field and
fix that value while solving for the best esti-
mate of the tissue types. We then use those
estimates to re-estimate the gain field, and it-
erate this process to convergence. The result
is a highly reliable tissue classifier that has
proven to be at least as good as highly trained
expert segmenters. See Figures 2 and 3 for
examples of EM segmentation.

This technique gives us a tissue labeling
on a voxel by voxel basis. To turn this into
structures of more direct utility, we need to
extract connected structures with distinctive
anatomical significance. Employing [U

- methods once again,* we can use morpho-
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logical operators to isolate the common tis-
sue type’s connected volumetric compo-
nents.

Image morphology provides a way to in-
corporate neighborhood and distance infor-
mation into algorithms. The basic idea in
morphology is to convolve an image with a
given mask (known as the structuring ele-
ment) and to binarize the result of the con-
volution using a given function. The choice
of convolution mask and binarization func-
tion depends on the particular morphologi-
cal operator being used. Standard morpho-
logical operations include:

e Erosion: An erosion operation on an
image / containing labels 0 and 1, with a
structuring element S, changes the value
of pixel i in { from 1 to 0. This occurs if
the result of convolving S with J, centered
at i, is less than some predetermined
value. The structuring element (also
known as the erosion kernel) determines
the details of how a particular erosion
thins boundaries.

¢ Dilation: Similar to erosion, a dilation
operation on an image / containing labels
0 and [, with a structuring element §,
changes the value of pixel / in / from O to
1. This occurs in dilation if the result of
convolving § with /, centered at i, is more
than some predetermined value. The
structuring element (also known as the
dilation kernel) determines the details of
how a particular dilation increases bound-
aries in an image.

¢ Conditional dilation: This is a dilation
operation with an added condition. Only
pixels that are | in a second binary image,
1., (the image on which the dilation is
conditioned}, will be changed to | by the
dilation process. This operation is equiv-
alent to masking the results of the dila-
tion by the image /..

e Opening: An opening operation consists
of an erosion followed by a dilation with
the same structuring element.

¢ Closing: A closing operation consists of

a dilation followed by an erosion with the |

same structuring element.

For example, to extract the intercranial
cavity of the brain, we can use the following
combination of morphological operations:

e Perform an erosion operation on the out-
put of the EM segmenter—in other

words, find and mark all the voxels with

Figure 3. Results of EM Segmentation (Reproduced with permission of W. Wells Ill). Results of the EM segmenter on o
double-echo axial MRI. Tp left is a proton-density image, top right is a T2-weighted image. Segmentofion on the bot-
tom left is using a conventional statistical classifier. The EM segmentation on the bottom right is significantly better.
Here, white is white matter, blue is cerebro-spinal fluid, and erange is other head tissue.

a particular tissue label. Perform this op-
eration with a spherical structuring ele-
ment with radius corresponding to the
thickness of the connectors between brain
and the cranium. The use of this radius
eliminates connections from the brain to
any misclassified nonbrain structure.

e Find the largest 3D connected component
with tissue labels corresponding to the
brain.

e Dilate the brain component obtained in
the previous step by a structuring element
comparable in size to the one used in the
erosion, conditioned on the brain labels
in the input image. This corresponds ap-
proximately to restoring the boundaries
of the brain component that were dis-
torted in the erosion step.

The result of this process is a set of seg-
mented structures. The process, however,
often blurs out fine geometric detail on the
surface of the extracted structures. To refine
this extracted set of structures, we use an-
other very common U tool: deformable
models (also known as snakes or balloons)?

Snakes, for example, are a common IU tech-
nique; they help to fit contours or surfaces to
image data. Snakes operate by emulating a
controllable elastic material, much like a
thin, flexible sheet. We can initially position
the model by using information from ana-
tomical atlases; the model is then allowed to
relax to a stationary position. This minimum
energy position seeks to find the best posi-
tion in which to trade off internal and exter-
nal forces. The internal forces are due to the

* elastic nature of the material and the exter-

nal forces stem from sharp boundaries in
image intensities.

A deformable contour is a planar curve
which has an initial position and an associ-
ated objective function. Witkin, Kass, and
Terzopoulos? introduced the special class of
deformable contours called snakes in which
the user interactively specifies the initial po-
sition. This deformable contour’s objective
function is referred to as the energy of the
snake. The energy of the snake (E ,,, ;) 1S €x-
pressed as:

E.\'nukc' = Einremal + EF.’(I(’I‘H(I[' (] )
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Figure 4. Top to bottom, left o right: Input image and fissue classification generated by successive iterations of the EM segmenter (white matter is brightest, gray matter is medium
gray, and csf and air are black). (Courtesy of Tina Kapur.)

Figure 5. Top to bottom, left to right: EM segmentation from Figure 4, binarized image, eroded image, largest connected component in eroded image, dilated connected component,
conditionally dilated labeled connected component. (Courtesy of Tina Kapur.)
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Figure 6. Top to bottom, left to right: Result at the end of the morphology siep,

model. {Courtesy of Tina Kapur.)

The internal energy term imposes a regu-
larization constraint on the contour as fol-
lows

Emat = J, (W I+ off Jas. (2)

where s is arclength, derivatives are with re-
spect to s, and v(s) stands for the ordered pair
(x(s),¥(s)), which denotes a point along the
contour. The choice of w| and w,, reflects the
penalty associated with first and second de-
rivatives along the contour respectively.
The external energy term in Equation | is
responsible for attracting the snake to inter-
esting features in the image. The exact ex-

pression for £,,,,,,.; depends on the charac- *

teristics of the features of interest.

Finding a local minima for E,,;, from
Equation 1 corresponds to solving the fol-
lowing Euler-Lagrange equation for v:

_(Wl V’)’ + (WZV,,)” +, Ep,x‘!emal( "’) = 09 (3)

In this equation we need to use boundary
conditions specifying whether the snake is a
closed contour or the derivatives are discon-
tinuous at the end points. This equation is
then written in matrix form as Av = F, where

banded matrix, v is the position vector of the
snake, and F'is gradient of the external en-

I ergy of the snake, or the external force acting

on it. We solve the evolution equation s —
Av = F'to obtain the v that is closest to the ini-
tial position. As % tends to zero, we get a
solution to the system Av = F.

Formulating this evolution problem using
finite differences with time step 7, we obtain
a system of the form:®

I+ TAWV = vl TRy, (4)
where V' denotes the position vector of the
snake at time 7, and / is the identity matrix.
The system reaches equilibrium when the
difference between v/ and v*"! is below some
threshold.

The balloon model for deformable con-
tours introduces improvements on the snake
model.S It modifies the snake energy to in-
clude a “balloon™ force, which can either be
an inflation force, or a deflation force. The
external force F'is changed to

VEexrernaI

F=kn(s)+k (5)

’
” external I

F(v} = =, E,qoma- Here A is a pentadiagonal | Where n(s) is a unit vector normal to the con-

interactively specified initial position of snake (in white), first fow iterations of a customized balloon

tour at point v(s), and k| is the amplitude of
this normal force. See Figures 4-7 for ex-
amples of this segmentation.

Extracting depth information. The next stage
in our process is to extract information about
the position of the patient in the operating
room. This will allow us to obtain an accurate
reconstruction of points from the skin sur-
face of the patient. Researchers have used
two standard IU methods to get this data. In
one method we apply stereo matching tech-
niques to a pair of views of the patient. In the
second, we use a laser striping device.
Stereo vision is a well-developed IU tech-
nique that has been used in a range of appli-
cations, especially the automated construc-
tion of terrain from aerial photography and
the navigation of autonomous vehicles.
Stereo, in brief, consists of taking two views
of a scene from a pair of cameras, then de-
termining the correspondence between these
views. This means for each pixel in one
image. the viewer finds the pixel (if any) in
the other image that represents the projection
of the same scene point in the first image.
Finally, drawing on the relative orientation
of the two cameras, the difference in projec-
tion between corresponding pairs of points
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MRI skin point, we estimate the surface nor-
| mal to the skin by a local fit of the neighbor-
i ing data. To find an initial transformation, we
select any two depth data points; we ensure
| stability by selecting two widely separated
points. Using the distance between these two
depth points, we access the hash table to find
possible matching MRI points. For each such
pair in the hash table, we consider the hy-
pothesis that the depth points match the MRI
points (there are two such matches).

This then determines 5 of the 6 degrees of
freedom associated with the coordinate
frame transformation. The missing parame-
ter is the rotation about the axis connecting
the two points. To solve for this parameter,
we can estimate the normal to the skin sur-
face at the depth point by fitting a plane to
the neighboring data. We then need the rota-
tion about the axis between the points that
will rotate the depth normal to align with the
MRI normal. Such a rotation may not exist,
in which case we can discard this pair. Sim-

‘ ilarly, after solving for the rotation, we can
i confirm that the application of this rotation to
the normal at the other point also causes it to
‘ L agree with its matching normal. If not, the
Figure 7. Exomples of segmentation. By combining the E/M stochastic segmenter, followed by morphological extrac- pdl!; s dlslc.arded' all the possible pairines
tion and deformable models, the system can automatically extract intricate structures, such as the surfuce of the brain, Y cycling over aft the po‘%" © pairngs
from the volumetric data. Top case is normal brain. Bottom case highlights a fumor. of MRI points to depth points, as defined by
the entries in the hash table, we can collect
the set of feasible initial transformations. We
[ rank these transformations on the basis of the
root mean square (RMS) fit of the trans-
functions to determine the actual distance of | Registration. This stage of our process re- | formed depth data to the MRI data. We can
the scene point from the cameras. quires that we match or register our depth data | further process the resulting rank-ordered list
Researchers have developed and success- | from the live view of the patient to the skin | of hypotheses using the methods I describe in
fully applied a wide range of stereo algo- | surface of the previously segmented MRI | following sections, stopping when we find a
rithms to problems such as accurate terrain , scan. To solve this problem, we can use u se- | sufficiently accurate fit.
reconstruction. In the domain of registration | ries of IU algorithms originally designed for We can also use a related approach, inter-
in medical imagery, Figure 8 shows the re- | problems such as target recognition problems.  pretation tree search, to match triples of vis-
constructed depth map of a patient’s face ible sampled model points to the three se-
from a pair of stereo views” that is then reg- | Matching data sets. When finding the trans- | lected depth points. This method basically
istered to an MR model.® formation between the two data sets, we first | searches over all possible ways of matching
A laser striper is an alternative to stereo ' separate the depth data of the patient’s head | three depth points that are intentionally
for extracting depth information. This sys- . from background data. This is a traditional spread out to three points selected from the
tem projects a tightly collimated beam of | 1U problem known as the figure/ground | sample MRI model. For each pairing of
laser light through a cylindrical lens and onto | problem, and requires separating datacorre-  model and data points triples, the method
an object. By controlling the orientation of | sponding to one object from data corre- ; tests whether the pairwise distances between
this plane of light, and by recording the po- | sponding to all other objects. In this case, rel- | model points and depth points are roughly
sition of the reflected laser light in a carefully | atively straightforward techniques will | the same. If all such tests are valid, the match
calibrated camera, one can again deduce the  suffice to separate out the patient data from | is kept. We then compute the coordinate
3D position of points in a scene, relative to | background data. frame transformation that maps the three
the laser system. To getan initial alignment of the two data | depth points into their corresponding model
; In either case, the result of this stage isa | sets, we execute the following technique  points. These transformations form a set of
i set of 3D data points from the skin surface | from the IU field. As a preprocessing siep, | hypotheses. Note that due to the sampling of |
of the patient, measured in some coordinate | we hash all pairs of MRI points based on the | the model data, the actual object points cor- ‘
| systemrelative to the sensor. distance between them. Furthermore, at each | responding to the selected depth points may :
|
t |
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not exist. Therefore these hypothesized trans-
formations are at best approximations to the
actual transformation. For efficiency, we
hash pairs of points on distance, and only re-
trieve likely candidates for testing.

In either case, these U methods giveus a
set of hypotheses as to the transformation
needed to align the MRI model with the ac-
tual patient.

We can use another IU registration algo-
rithm, called the Alignment Method, to fil-
ter these hypotheses. For each hypothesis,
we transform all the depth points by the hy-
pothesized transformation. We then verify
that the fraction of the transformed depth
points that do not have a corresponding
model point within some predefined distance
are less than some predefined bound. We dis-
card those hypotheses that do not satisfy this
verification.

For each verified hypothesis, we refine the
alignment of the two data sets by minimiz-
ing an evaluation function that measures the
amount of mismatch between the two data
sets.

For all transformed depth points, the first
stage sums a term that is itself a sum of the
distances from the transformed point to all
nearby model points, where the distance is
weighted by a Gaussian distribution. This
Gaussian weighted distribution is a method
for roughly interpolating between the sam-
pled model points to estimate the nearest
point on the underlying surface to the trans-

formed depth point. More precisely, if /;isa

vector representing a depth point, m;is a vec-
tor representing a model point. Furthermore,
if T'is a coordinate frame transformation,
then the evaluation function for a particular
pose (or transtormation) is

’l ’77/\‘2

EM=-YYe 2
]

(6)

This objective function is similar to a pos-
terior marginal pose estimation (PMPE)

method, and to the use of elastic net con- -

straints. One can visualize this objective
function as if we placed a Gaussian distrib-
ution of some spread o at each model point,
then summed the contributions from each
such distribution at each point in the volume.
Then the contribution of each transformed
depth point towards the evaluation function
is simply the summed value at that point. Be-
cause of its formulation, the objective func-
tion is generally quite smooth. and thus fa-
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Figure 8. Example of stereo processing. Top left shows a segmented MR image, and top right shows o stereo
reconstruction of the patient. The registration problem is to match these two data sefs. Bottom left shows the result of
such a regstration, with the registered stereo surface overlaid on the MRI model. Bottom right shows o fusion of the
underlying image texture onto the reconstructed depth, together with the segmented MRI. (Figure courtesy of Nicholas

Ayache.)

cilitates “pulling in” solutions from moder-
ately removed locations in parameter spacc.
Moreover, it bears some similarity to the ra-
dial basis approximation schemes used for
learning and recognition in other parts of

| computer vision.

To minimize this evaluation function, we
use standard numerical methods. For exam-
ple, we can use the Davidon-Fletcher-Powell
quasi-Newton method to find the best trans-
formation. The DFP method iteratively
builds up a good approximation to the in-
verse Hessian matrix. We then apply this ap-
proximation to the data to solve for the pa-
rameters yielding a minimum of evaluation
function. Solving this minimization problem
yields an estimate for the pose of the depti

| points in model coordinates.

We execute this refinement and evaluation
process using a multiresolution set of Gaus-
sians. We initially use a broad-based Gauss-
ian to allow influence over large areas. This
results in a coarse initial alignment, but one
which can be reached from a wide range ol

starting positions. Subsequently, we can use
more narrowly tuned Gaussian distributions
to refine the pose, while focusing on only
nearby model points to derive the pose.
Using the resulting pose of this refine-
ment, we repeat the pose evaluation process,
now using a rectified least-squares distance
measure. In particular, we evaluate each pose
by measuring the distance from each trans-
formed depth point to the nearest model
point, (with a cutoff at some predefined max-
imum distance). We evaluate the pose by
summing the squared distances of each point.
We minimize using the DFP method to find
the least-squares pose solution. Here the

" evaluation function is

[

2
ExD)=|1¥ min{dﬁm,m;njnf -m,| }
J
(N

where d,,, is some preset maximum dis-
tance, and where » is the number of depth
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five to the full model.

points /;. This objective function is essen-
tially the same as a maximum a posteriori
model-matching scheme. It acts much like
a robust chamfer-matching scheme, or an
iterative closest point-matching scheme. We
expect this second objective function to be
more accurate locally, since it is composed
of saturated quadratic forms. However, this
function also tends to get stuck in local min-
ima. Hence, we add one more stage.

While the preceding method always gets
very close to the best solution, it can get
trapped into local minima in the minimiza-
tion of £,. To improve upon this, we take
the pose returned by the preceding step,
perturb it randomly, and then repeat the
minimization. We continue to do this, keep-
ing the new pose if its associated RMS
error is better than our current best. We ter-
minate this process when the number of tri-
als that have passed since last improving
the RMS value becomes larger than some
threshold.

The best found solution is a pose and a
measure of the residual deviation of the fit
to the model surface. Once we find the final
solution, we can measure the residual error

at each point and remove the depth points -

with large residual errors from the data set.
This automatically deletes possible outliers.
We can then rerun the final stages of the reg-
istration process using the remaining data,
to obtain a tighter fit to the surface.

Figure 9. Example of tracking a registered instrument. The fip has heen placed inside a plastic skull. Here we see three cross-sectional views
of the position of the fip relative to a full T model of the skul, us well os a 3 graphical ilustration of the position of the instrument fip rela-

We collect such solutions for each verified
hypothesis, over all legal-view samples, and
rank-order them by smallest RMS measure.
The result is a highly accurate transforma-
tion of the MRI data into the depth sensor’s
coordinate frame.

Camera calibration. Once we have a regis-
tration, we need to relate it to a view of the

patient. A video camera can approximate the !

surgeon’s viewpoint, as though it were look-
ing over her shoulder. By calibrating the po-
sition and orientation of this camera relative
to the depth coordinate system, we can ren-
der the aligned MRI or CT data relative to
the camera’s view. Mixing this rendering
with the live video signal gives the surgeon
an enhanced reality view of the patient’s
anatomy. The surgeon may use this method
to plan a craniotomy or a biopsy, or to define
the margins of an exposed tumor for mini-
mal excision.

Camera calibration, especially solving for
the camera’s orientation and position relative
to a set of known world points, is a well
known IU problem. Several techniques will
suffice to handle this part of the problem. A
straightforward method is to solve for the
camera model by minimizing the error be-
tween a set of known fiducial marks’ image
coordinates and the predicted positions of
those known fiducials under the camera
model’s current estimate.

Visualization. By combin-
ing the camera calibration
and the registration of the
data sets, we can visualize
the data. In particular, ap-
plying the data set trans-
formations brings the MRI
or CT model into align-
ment with the patient in
the coordinate frame of the
depth system. We can then
project that model into the
video camera’s coordinate
frame by applying the
computed camera model.
This gives us a virtual
view of the MRI model, as
seen by that camera. We
then mix the virtual view
with an actual video view
of the camera, thus allow-
ing the surgeon to use it as
a visualization tool.

Tracking. The foregoing
method registers an MRI or CT data set
against a static view of a patient, providing
a visualization of the patient’s internal
anatomy. In many surgeries, a static view
serves the surgeon’s needs. More generally,
however, surgery calls for movement be-
tween the viewpoint and the patient, either
because the patient moves, or because the
viewpoint of the surgeon changes. The latter
situation is critical for visualization displays
using goggles or other display devices that
are worn by the surgeon. These devices
change viewpoint as the surgeon does.

Thus we need a method for tracking the
patient and visualization system position
changes. Fortunately, there are a wide range
of IU methods specifically devoted to mea-
suring motion. Some methods track known
fiducial marks, while others use imagery
variation to measure optical flow and, there-
fore, changes in viewpoint. In our system,
we place a small number of fiducial mark-
ers on the frame supporting the patient and
then track changes in the position of those
fiducials relative to the visualization cam-
era. By tracking these changes, we can
rapidly update the camera model and rereg-
ister the visualization of the MRI model to
the current view.

Once we have registered a segmented
model to a patient, we can track other objects
relative to that model. For example, suppose
that we consider a rigid surgical instrument,
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Figure 10. Examples of combining the registration of MRI to depth data and the calibration of a video camera relative to the depth fo provide an enhanced reality visualization of
patients. In the left case, the tumor and brain are displayed, in the right case, the tumor and the venricles are displayed in registration with the patient.

one end of which we mark with a set of vis-
ible marks, such as infrared light-emitting
diodes. There are standard systems that vi-
sually track markers and determine the in-
strument’s position and orientation relative

to some coordinate frame. If we register the |

instrument to the 3D scanner used in the op-
erating room, then we can track the position
of that instrument, both relative to the pa-
tient, and relative to the full 3D scanned
model of the patient. This allows the surgeon
to see imagery of the position of instrument’s
tip, even if it is buried inside the patient.

Using this visualization, the surgeon can '

track the instrument’s tip relative to the de-
sired target areas deep inside the body. See
Figure 9 for an example of tracking a regis-
tered instrument.

Application of the
visualization method

We have run a series of trials of this regis- |

tration and visualization system with actual
neurosurgery patients. Figure 10 displays a
registration of the depth data against a pa-
tient’s MRI model. We have highlighted the
tumor and ventricles.

We have been using this registration and
visualization method to transfer presurgical
plans to the patient. In our current approach,
we use our registration method to provide a
visual overlay of the view of the patient with
internal structures that the surgeon has se-

lected. By viewing this overlay on a live

video monitor, the surgeon can trace with a
marker the outline of key structures on the
patient’s scalp. This enables the surgeon to
mark locations for planned surgical steps,
prior to placing the patient in the operating

room. To date, we have used this procedure
on a small number of neurosurgical patients
at Brigham and Women’s Hospital in
Boston. Perturbation studies of the method
show that it has a repeatability on the order
of 200300 pm.

During surgery, with operator guidance,
we perform a second registration that
provides the surgeon with guidance and
feedback. The surgeon uses the full 3D
segmented model for locating targets. as
well as for guidance to critical structure
proximity.

Other 1U applications in
medicine

Visualization in image guided surgery is
only one way in which IU tools can solve
medical applications. IU techniques are pro-
viding important leverage in other medical
areas as well. In the following sections I
briefly describe some of these applications.

Deformable models. I have already men-
tioned the use of deformable models, such
as snakes, for structure extraction as part
of our surgical visualization system. Many
other medical applications also use de-
formable models. These models are espe-
cially useful for capturing shape represen-
tations of structures that are themselves
flexible, such as the lungs or heart. For ex-
ample, by fitting a deformable model io a
motion sequence of a beating heart, one
can capture a physical model of the delor-
mations of the heart over its full cycle.
Such models facilitate pathology diagno-
sis, as well as the impact of injuries to the
heart wall.

Change detection. Registration methods
also have application in clinical settings. For
example, we took two MRI scans of the same
patient, each several months apart. These
scans are part of an ongoing National Insti-
tute of Health study of multiple sclerosis
(MS) at Brigham and Women’s Hospital
aime_d at determining the optimal frequency
for performing MR imaging of MS patients.
Under this study researchers image patients
with varying disease stages at different fre-
quencies to identify changes in MS lesion ac-
tivity. To support this analysis, it is necessary
to register the MRI scans from different
points in time and compare them to detect
re!evant changes. We have applied our tech-
nique to this task, using the surface of the
intracranial cavity in different MRI scans as
the basis for the registration.

Given this alignment, we can transform
the second data set into the coordinate frame
of the first data set and then resection the
data to obtain 2D slices equivalent to those
of the first data set. With these new sections,
we can then compare individual slices of the
first data set to the resectioned second data
set, and do image differencing to find no-
ticeable changes. An example of this, high-
lighting the growth of a lesion in the patient,
is shown in Figure 11 (next page).

This registration makes it easy to mea-
sure changes in structures, especially when
combined with automatic segmentation
techniques. Researchers could use these
tools to track the progression of a disease, or
to track the effectiveness of a therapy in
controlling a tumor or disease.

Feature detection. 1U techniques also aid
disease diagnosis. For example, Cerneaz and
Brady use edge detection and contour ex-
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Figure 11. A series of MRI slices of a patient taken several weeks apart, over a period of eight months. Shown are the results of reslicing and normalizing each subsequent MRI scan,
relative fo the first scan, so that, in principle, the same slice of the anatomy is shown. The reader can easily see the lesion changes, in the lower left and lower right, over time. The
difference image (right) shows pasitive (green) and negative (red) change (center tap) indicates the apparent growth of o lesion.

traction tools developed for traditional IU
work as a basis for constructing diagnostic
screening methods for mammograms.?

IQADITIONAL IU TECHNIQUES,
originally developed to address problems
such as photo-interpretation, industrial au-
tomation, and autonomous-vehicle naviga-
tion, have proven effective in several med-
ical applications. Although the underlying
bases for medical imaging problems are very
different, researchers have successfully
retailored 1U techniques to such medical

applications as image guided surgery, ther-

apy evaluation, and diagnostic screening.
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