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Abstract. A simple method is presented for detecting, localizing and recognizing instances of classes of objects,
while accommodating a wide variation in an object’s pose. The method utilizes a small two-dimensional template
that is warped into an image, and converts localization to a one-dimensional sub-problem, with the search for a
match between image and template executed by dynamic programming. For roughly cylindrical objects (like heads),
the method recovers three of the six degrees of freedom of motion (2 translation, 1 rotation), and accommodates
two more degrees of freedom in the search process (1 rotation, 1 translation). Experiments demonstrate that the
method provides an efficient search strategy that outperforms normalized correlation. This is demonstrated in the
example domain of face detection and localization, and can extended to more general detection tasks. An additional
technique recovers rough object pose from the match results, and is used in a two stage recognition experiment in
conjunction with maximization of mutual information.
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1. Introduction

Many recent approaches to object recognition are re-
ally verification and localization methods, because they
address the question: “Is there an instance of a specific
object in this image, and if so, where is it?” Thus, such
methods verify or refute the hypothesis that a particular
object exists in the image,1 but often don’t address:

• Detecting and localizing instances from classes of
objects (e.g., faces or cars), rather than specific
objects.
• Constructing object models that support object de-

tection from 2d images while allowing for three di-
mensional pose changes. One could use an explicit
3D model, or a large set of 2D images (real or vir-
tual). Ideally, one would like to use a very small set,
e.g., one image.

• Efficiently seeding the search for an instance of an
object in an image. Many recognition methods find
the alignment of model with data by minimizing
some error criterion. Such methods often have nar-
row capture radii. An alternative is to provide multi-
ple seed hypotheses, e.g., by considering matches of
minimal pairings of data and model features, but this
runs the danger of being overwhelmed by the search
combinatorics. We need methods that will converge
to optimal solutions from highly inaccurate initial
estimates.

To address these issues, we present a method that:

• detects instances of a class of objects (heads), while
allowing for object class variation, and pose changes;
• extracts approximate pose data that can seed more

detailed verification, and
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• if a 3D model is available, the method verifies the
existence and pose of an object by the Mutual In-
formation (MI) (Viola and Wells, 1995) approach to
recognition, which supports a very general match-
ing of model and image data, without direct feature
correspondence.

The technique we develop has several critical prop-
erties that make it robust in extracting the 2D image
location and 3D pose estimate of an object whose pose
in the image is unknown. It differs from the view-based
correlation methods in that the model is a single, sim-
ple, flexible template extracted from a nominal view
of the object and it is used in a matching method that
can handle a wide range of pose variations. This low
resolution template model together with the flexible
matching technique allows the method to accommodate
within-class variations caused by scaling and shifts of
individual regions.

Key properties of our approach include:

• The model for an object class is a single, simple
template that may be stretched or warped in one
dimension.
• This warped template can be matched to instances

of an object under widely different poses, accommo-
dating scaling, translation and out of plane rotations
about the vertical axis.
• The method converts the search for object instances

and poses into one (or a few) one dimensional match-
ing problem(s).
• Dynamic programming is used to establish a map-

ping from the deformable template representing the
object class into the image.
• While the method can recover good estimates of

three degrees of freedom of object motion (x and
z translation,y rotation), it can also accommodate
up to two more DOFs of motion in the search process
(x rotation,y translation). Extensions allow one to
also search for the final rotation. Depending on the
implementation, some information abouty transla-
tion may be available from knowledge of the actual
match of template to image.

Our approach combines the general detection fla-
vor of patch correlation with the ability to accommo-
date more degrees of freedom of object motion that are
traditionally associated with feature-based recognition
systems. We demonstrate our method on face detec-
tion, as faces naturally suit the approach (heads are

Figure 1. This class of cartoon faces shows the 2D deformations
handled by the system. The last row shows the resulting of matching
the template (nominal view) to a novel image.

usually oriented upwards, but appear facing in vary-
ing directions). We show performance comparable to
some current face detectors and show that the detection
results can be used for model-based pose verification
if needed.

The flexible shape model we propose deals with
2D deformations that are more severe than traditional
transformations. Figure 1 shows an example of 2D
transformations that the method can handle. The first
image in the set is the prototype (nominal) image
and the rest of the images illustrate warps due to
y-translation, vertical shifts, scaling and shearing vari-
ations that are accommodated as long as the overall
ordering of the features are maintained. This method
can be used to accommodate class variations due to
variation of features across a population or variations
of an individual over time (e.g. facial expressions).
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1.1. Background

A primary difficulty in object detection is accommo-
dating the wide range of variations in object appear-
ance due to pose, lighting and class variations, while
maintaining good detection performance. Existing ap-
proaches for dealing with these variations are described
below.

In view-based methods, one computes the similar-
ity between a template and image locations and re-
turns all matches above a threshold. Since most classes
of objects cannot be modeled by a single template,
these techniques typically use a set of templates to ac-
commodate variations in pose, lighting and shape, by
synthesizing views from a set of examples (Beymer,
1993), or by using networks to learn an object class
from several examples with varying pose and light-
ing (Sung and Poggio, 1994; Rowley et al., 1995).
Betke (Betke and Makris, 1995) uses simulated an-
nealing for fast 2D object recognition (traffic signs)
in noisy images by matching a new scene to a set of
templates generated by transforming model images.
Most of the existing methods for face detection per-
form well on upright, frontal faces and do not handle 3D
pose variations. Recently, some systems like Rowley
et al. (1998), Schneiderman and Kanade (1998) de-
tect faces with arbitrary rotations in the image plane.
However, these systems are not as robust with off-
plane rotations of faces (profiles). In this paper, we
propose a method that can handle off-plane rotations
(rotations about the vertical axis for faces) efficiently
and reliably.

In deformable template matching (Yuille et al., 1992;
Cootes et al., 1993), templates are constructed to model
the non-rigid features of the object, and at recognition
time the templates are aligned to the image by mini-
mizing an energy function for the individual features.
These methods work well when the deformations are
small—they provide a detailed analysis of the image
in terms of the template, but do not address non-local
search issues.

Eigenspace methods (Murase and Nayar, 1995;
Pentland et al., 1994; Huttenlocher et al., 1996) repre-
sent the varying appearances of objects by using prin-
cipal components analysis (PCA) on a set of sample
views to identify a low-dimensional subspace of the
view-space. Images are accepted or rejected based on
their distance from the pre-computed subspace. These
methods need a large set of views of the object to be
sampled under varying pose and lighting conditions.

The ratio-template (Sinha, 1994) detects faces under
varying illumination conditions, by capturing changes
in luminance between fixed image patches. While this
method performs well for frontal faces under varying
lighting conditions, it is not as robust under 3D pose
variations.

Hornegger (1995) converts feature based object
recognition under orthography into several 1D search
subproblems. The technique constructs 1D images
from the more conventional 2D images by a process
of marginalization, which projects image features onto
thex axis (and discards theiry coordinates). This ef-
fectively discharges two degrees of freedom (DOF) of
object motion, namelyx rotation andy translation.2

The remaining three DOFs are then searched exhaus-
tively. The resulting candidate partial solutions are then
completed with a full 5 DOF localization.

In this paper, we advocate the use of dynamic pro-
gramming to address the 3 DOF search that remains
after conversion to 1D matching subproblems. Dy-
namic programming (DP) has been used successfully in
speech recognition to produce an optimal time align-
ment of an actual speech stream to be recognized to
an acoustic model, via the Viterbi algorithm (Viterbi
1967; Forney, 1973; Sakoe and Chiba, 1978), and we
were motivated to apply it to search problems in object
recognition. DP is well established as a methodology
for solving the stereo matching problem, e.g., Baker
and Binford (1981) and Ohta and Kanade (1985). It
has also been used for contour adjustment and other
boundary oriented scoring or identification tasks e.g.,
Ballard and Brown (1982), Barrow (1976) and Shashua
and Ullman (1988).

DP matching techniques typically will accommo-
date fairly general 1D warpings in the matches that are
found, subject to order constraints. This might seem to
be a drawback because in object recognition, it would
allow distortions that can not be generated by a rigid ob-
ject moving in front of a camera. However, within the
warps that DP accepts are embedded some useful map-
pings, for examplex translation and the overall scale
changes that can occur as an object moves away from a
camera. In addition,y rotations of a vertically oriented
cylindrical object will induce (primarily) stretches and
shrinks alongx, which may be accommodated in a DP
match. Figure 2 illustrates the 1D-warps induced by
rotations and scale changes. We have found in our ex-
periments that this feature can be used to accurately
recover they rotation when the object in question is
approximately cylindrical.
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Figure 2. Rotations and scale changes induce 1-D warps.

2. Comparison with Affine Models

There has been considerable work in the computer
vision literature on recognition systems that ac-
commodate affine transformations on objects (e.g.
Huttenlocher and Ullman (1995) and Rucklidge (1994)
among others). Part of the motivation is that for pla-
nar objects, affine transforms are equivalent to rigid
body motion under orthography. The flexible shape
model that we propose handles five of the six DOF of
affine transformations. Figure 3 shows the allowable
set of affine deformations and Fig. 4 shows a shear that
is not handled by the system. Our technique finds a
match between members of a class by relating new im-
ages in the class to the prototype (template) through
the set of allowable deformations based on stretches
and shifts in the template features, subject to order
constraints. The ability of our system to handle these
affine warps is similar to the constrained-affine shape
model proposed by Syeda-Mahmood in (Mahmood and
Zhu, 1998). The constrained-affine shape model is a
region-topology based model that captures the spatial
layout similarity between members of a class by a set
of affine deformations from a prototypical member.

Figure 3. 2D affine warps handled by the system (x,y translation,
x,y scale and shear).

Figure 4. 2D shear that cannot be handled by the system.

The constrained-affine shape model accommodates in-
dividual 2D-deformations of every region in the model
as long as constraints on the residual translation, scal-
ing and the overall ordering of the regions is satisfied.
The technique we propose in this paper is related in that
it also accommodates 2D-warps by deforming model
regions (columns) but our technique extends this frame-
work to handle out-of-plane rotations (y-rotations) as
well.

3. Dynamic Template Warping

The information flow used in our system including 3D
pose recovery is outlined in Fig. 5. In brief, the class
model consists of many 3D surface patches derived
form a 3D model if it is available. The 3D model is
not essential for the detection but if present we can
use it to verify and refine the pose of the object in
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Figure 5. Information flow in the DTW pose solver. The template
is derived from the nominal image.

the image. A template (whose details are provided
below) is constructed from a characteristic (typically
frontal) view of a representative object in the class.
The actual mapping from surface patches to elements
of the template is determined once for the model. At
recognition time, dynamic programming (DP) is used

Figure 6. Results of the DP matcher on the nominal pose image. The left image shows the low resolution model columns copied into the
appropriate matching image columns. The images in the middle and right show the column mappings. The color code on the model template
and the image lines show the mapping. The red box on the image indicates the horizontal strip in which the best match was found. The middle
image shows the nominal view (frontal face) from which the template is extracted.

to solve one-dimensional matching sub-problems and
thus determine mappings from elements of the image
to corresponding elements of the template. A partial
solution for the unknown object pose is obtained by
solving an optimization in which the projection of the
model surface patches into template columns, via the
hypothesized pose and the runtime column mapping
determined by DP, are made to best agree with their
true values.

Below, we provide more details about the detection
and localization process.

3.1. Representing Objects

Our goal is to represent classes of objects in a flexible
manner, capturing 3D pose changes and class varia-
tions in a simple system. Initially, we assume that the
images we will be processing are taken in an upright
position, i.e., the gravity vector runs vertically through
the image. As a consequence, we choose to represent a
class of objects by a sequence of image columns, each
column consisting of a set of intensity patterns. To con-
struct our model template, we begin with an image of
the object rendered in the nominal pose (Fig. 6)—e.g.,
for the case of faces, we use an image of a face model in
a roughly frontal view. This image is smoothed, down-
sampled and intensity-normalized, then separated into
columns. Each column is described as a sequence of in-
tensity classes obtained by coarsely quantizing the
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intensities present in the smoothed, downsampled and
intensity-normalized image. The smoothing, down-
sampling and rough quantization blurs out the effects
of small intensity variations in the class, and as we shall
see shortly, the use of separated columns will allow us
to accommodate 3D pose variation.

3.2. Finding Template Matches in the Image

To find matches of such a template in an image, we
need to consider the variations that a template may
undergo as a function of class variation and pose vari-
ation. Class variations will be discussed shortly, when
we describe the measurement of similarity. We break
pose variation into several pieces, initially focusing on
three of the six degrees of freedom. Translation of the
template in the two image dimensions can be straight-
forwardly handled through a search process. Rotation
about the vertical axis will have the effect of inducing
a warping on the columns of the template. In partic-
ular, some of the template’s columns will be stretched
out to cover several image columns, and other columns
will be foreshortened and thus compressed into fewer
columns. This implies that our matching of template
columns to image columns is no longer a one-to-one
map, and cannot be dealt with by simple techniques
such as correlation. On the other hand, such a warp-
ing of the template naturally lends itself to dynamic
programming methods.

Dynamic Programming (DP) is a search technique
that has been applied to many problems that are formu-
lated as the minimization of a cost function over paths
in a graph. It may also be applied to find optimal match-
ings among features if certain monotonicity cons-
traints are met. The dynamic programming algorithm
we have used is derived from the longest common sub-
sequence algorithm described in Corman, Leiserson
and Rivest (1990). In the present application, sequences
of image and template features are compared by a mea-
sure of their degree of match rather than the binary-
valued measure used in the standard subsequence
algorithm.

For a given model template, a set of overlapping
horizontal strips is extracted that cover the input im-
age (Fig. 7). The strips are 1.5 times higher than the
template height, and overlap by three fourths of their
height—they have been designed so that some strip will
entirely cover an instance of the object with nominal
height. Within each strip, the template column fea-
tures are matched with the image column features by

Figure 7. DP matcher data structures.

a correlation-like process that locates the best matched
section of the image column feature. This embedded
problem of measuring the agreement of template and
image column features is somewhat similar to the sur-
rounding problem of matching image and template, and
it is similarly useful to address it with a mechanism that
is able to tolerate vertical shifts, and moderate scaling
and stretching.

3.3. Column Matcher

The horizontal strips of the template and the image
are sequences of pixel column vectorsT(i ) and I ( j ).
Pixels in the template and the image column are in-
dexed as follows:T(i,m), 0 < m < M whereM is
the template column height andI ( j, n), 0 < n < N
whereN is the image column height. The largest set
of corresponding pixels that preserve relative ordering
can be formulated as the problem of finding the longest
common subsequence (LCS) of the ordered pixels in
the template columnT(i ) that is also found in the image
column I ( j ). We adapted the dynamic programming
algorithm for computing an LCS described in Corman,
Leiserson and Rivest (1990) to give us the correspon-
dence between the template and image columns.

3.3.1. Local Cost. The local costd(m, n)of matching
a template column pixelT(i,m)with an image column
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pixel I ( j, n) is given by the squared difference between
T(i,m) and I ( j, n).

3.3.2. Global Column Matching Cost. The accumu-
lated cost functionD(i, j ) is the sum of the local cost
d(n,m) of matchingT(i,m) with I (i, n) over an opti-
mal path for 0< m < M and 0< n < N. The inter-
mediate results are recorded in a dynamic programming
tableScore(n,m), 0< m< M and 0< n < N which
records the current length of the sub-sequence obtained
by matchingT(i,m) with I ( j, n).

3.3.3. Details. Our search algorithm returns a set of
matched sequencesS = (s1, s2, . . .) where eachsk

is a sequence which contains the following informa-
tion. sk.length gives the length of that matched se-
quence,sk.score gives the score of that matched se-
quence andsk.matches has the list of matched feature
indices(n,m).

dmodel(m) 0<m<M , tracks the score of each model
pixel in the image allowing for one-to-many mapping
of model pixels in the image. If many consecutive pixels
map to the same model pixeldmodel(m), the final match
score for that pixel is the average over all the pixel
match scores to that model pixel.

The first step is to build a tabled(n,m) for m =
(0− M) andn = (0− N). d(n,m) given the squared
difference betweenI ( j, n) andT(i,m). The search for
score of the longest common subsequence proceeds as
follows:

3.3.4. Initialization.

Score(0,m) = d(0,m) 0≤ m< M

C(0) = min
0≤m≤M

(Score(0,m))

In(0) = argmin
0≤m≤M

(Score(0,m))

3.3.5. Recursive Step.

Score(n,m) = d(n,m)+ C(n− 1,m)

C(n,m) = min
0≤m≤M

(Score(n,m)) 1≤ n < N

In(n) = argmin
0≤m≤M

(Score(n,m)) 1≤ n < N

if n matches two consecutive model features (m1,m2)
equally well,In(n) gets set to the model feature with
the larger index.

If there is an acceptable match (i.e.C(n) < T), the
current matched sequencesk is updated based on the

ordering constraint as follows.

• If In(n) < In(n− 1), start new match sequencesk+1

since the ordering constraint is violated.
• If In(n) > In(n), update current match sequence

sk since the ordering constraint is preserved. The
sequence is updated as given in Section 3.4.
• If In(n) = In(n), update current match sequence

sk since the ordering constraint is preserved if
MHits(In(n) < δ. The sequence is updated as given
in Section 3.4.

3.4. Updating the Match Sequence

We would like to update the model match score ac-
counting for multiple consecutive matches in the im-
age to the same model pixel i.e. accounting for some
limited deformation of the model column in the image.

• If the best matched model pixel is the same as the
previous best matched model pixel i.e.In(n) ==
In(n − 1), update the score for that model pixel
dmodel(m) by adding the new match score and in-
crementing the number of hits to that model pixel
Mhits(m). Updatesk.length andsk.match.
• If the best matched model pixel is not the same as the

previous matched model pixel, update the score for
the previous matched model pixeldmodel(m− 1) by
averaging the total score for the previous model pixel
by the number of hits. Updatesk.length,sk.match
andsk.scorewith the computed average score for
the model pixeldmodel(m− 1). This avoids giving
a larger score for a scaled/stretched instance of the
model in the image. Update the score for the current
matched model pixel as before.
• If there is no match, and the number of consecu-

tive non-matched pixels in the current sequencesk

is within some limit, the current sequence score is
updated, but the length of the current matched se-
quence remains the same. This mechanism provides
a way of handling some noise in the image since the
occluding patches will be consecutive image column
pixels with no matching model column pixels.
• Result of column matcher: Given the matched subse-

quencesS= (s0, s1, . . . , sK ), we can find the score
((D(i, j )) of the longest matched subsequence for
model columnM(i ) and image columnI ( j ).

To summarize, the column matcher provides a way
of finding a many to one matching between elements
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of the image and template column features. The pro-
cess operates by searching for equivalent structure in
terms of uniform intensity class subsequences while
accommodating some variation in subsequence length
(up to a factor of two). In more detail, each tem-
plate and image column is a vector of pixels given
by (T(i, 0), . . . , T(i,M)) and (I ( j, 0), . . . , I ( j, N)).
Starting from all pairs of pixels in the template and im-
age column vector, match the content of pairs of pixels
based on their intensity. The match score between pairs
of pixels (T(i,m), I ( j, n)) are used to fill a cost table.
Dynamic programming can then be used to find the
optimal subsequence that satisfies the following con-
straints: (1) the overall spatial ordering of elements in
the template column is preserved in the image column
and (2) the extent of stretch of a template column el-
ement (T(i,m)) in the image column is bounded by a
fixed thresholdδ.3 This column matching algorithm
gives the longest common set of corresponding ele-
ments between the template and image columns which
match in their content, have the same overall spatial or-
dering while allowing for some bounded vertical shifts
and scale variations.

3.5. Column Mapper

To match across the sequence of column matches,
we use the standard subsequence algorithm for dy-
namic programming, which assumes that matches are
order-preserving and have scores that are independent
of one another. The algorithm constructs two tables,
the cost table, and the index table, that we index by
every pair of template (T(0), . . . , T(m)) and image
(I (0), . . . , I (n)) column-features (the cost table is il-
lustrated in (Fig. 7)). The dynamic programming ap-
proach to finding the optimal subsequence proceeds
from left to right. By consulting the cost table, and
by examining previously computed solutions to prob-
lems ending in the previous position, the algorithm ef-
ficiently computes and stores in the tables the scores
and sub-sequence predecessor information for the
optimal solutions to the problem at the current
position.

Our algorithm extends the standard one to return all
subsequences having scores above a threshold (rather
than a single best subsequence), by preserving infor-
mation defining the previously most promising subse-
quence when a new subsequence is initiated.

The algorithm needs more space to store this in-
formation, but the time complexity remains the same
(O(M N)) for M model column features andN image

column features andk strips. In addition, we employ
a look-ahead technique similar to those used in DP
stereo-matching systems to accommodate partial oc-
clusions, by requiring several columns of match fail-
ure before the initiation of a new subsequence. When
combined with the column matcher described above,
and run at a single scale, the DP template matching
algorithm has equivalent complexity to simple tem-
plate correlation while accommodating larger rotations
about they-axis.

The DP matching algorithm described above is used
to find ordered image strip columns that are deemed to
be explained by the template by having scores greater
than a given threshold. The matches found by the DP
algorithm are ranked according to score.

We can repeat this process for each horizontal strip
of the image. Note that using multiple strips covers the
y translation, and finding the optimal column match
using DP directly covers thex translation and rota-
tion about they axis. Note that the flexibility of the
matching—both the roughly quantized intensity se-
quence matching within each column, and the flexible
matching across columns—allows for a range of class
variations as well.

When the DP matcher has finished, the following in-
formation is available for use by the partial pose solver
(which will be described below):

• The “active patch” in which the match was found if
the model was present in the image i.e. the horizontal
position together with the vertical position given by
the horizontal strip.
• A detailed column mapping between image columns

and template columns where many image columns
can map to the same model column (to account for
horizontal stretching caused by rotations about the
y-axis and scaling). Image columns may also map to
the “no” model column (this accommodates partial
occlusions).

3.6. Scale Hierarchy

Our initial strategy uses a fixed template height of 64
pixels. Because the column matcher is able to accom-
modate some variation in scale, and the DP match-
ing algorithm can accommodate scale variation as a
“stretching” of the match, this mechanism can accom-
modate object instances with apparent heights ranging
from roughly 40 to 80 image pixels, and the scale may
be later recovered from information recorded in the
detailed column mapping.
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A hierarchical implementation was used for the rest
of the experiments. A set of three templates were con-
structed with heights of 16, 32, and 64 pixels by pixel
replication, and three sets of image strips were pre-
pared, as described above. The DP matching algorithm
was then run at the three scales, in order to accommo-
date objects instances with apparent heights ranging
from roughly 10 to 80 image pixels. Note that this im-
plicitly allows us to solve for the third translational
component of the pose.

3.7. Partial Pose from DP Match Results

In this section we describe a method for recovering a
rough, or partial, object pose from the detailed column
mapping that is obtained as a result of the DP match
from image to template columns. The center column
of Fig. 5 shows the flow of information that is used
in the pose determination process given a 3D model
which has been rendered in a nominal pose to form the
template (left column of Fig. 5) and the results of the
DP matcher (right column of Fig. 5).

Our pose determination subsystem may be used in
those situations where a concrete 3D model of the ob-
ject is available. In our experiments we have used 3D
data from a cyberware scan of a person’s head. This
data consists of a collection of small surface patches
that are each described by their 3D position, surface
orientation, and albedo.

We utilize a rendering algorithm that is able to sim-
ulate perspective projection and generate realistic im-
ages of the object, as well as a mapping from image
pixels back to the 3D patch (if any) that is imaged at the
pixel. The column mappings generated by the matcher
map from image columns onto template columns, and
by using these mappings, we can obtain, for each im-
age pixel imaging a surface patch, an association be-
tween the patch and its “image” in template space. The
pose solver makes use of the runtime column map and
operates by minimizing the disagreement among the
true values of template space coordinates of the sur-
face patches, and those values obtained via renderings
at hypothesized poses. This mechanism is described in
more detail below.

We seek a pose such that a rendering of the model
by that pose looks like the input image. We assume
that the DP matcher has determined the correct col-
umn map (the “runtime column map”) that maps im-
age columns to their corresponding template columns.
Thus we want to find a pose such that when the model
is rendered by that pose, the resulting synthetic image

will (like the input image) be correctly related to the
template columns via the runtime column map. This
suggests the following approach for evaluating a hy-
pothesized model pose:

• Project the model surface patches into the image by
rendering them according to the hypothesized pose,
and send the resulting image coordinates through the
runtime column mapping. This process will produce
a mapping from model surface patches to their cor-
responding template columns.
• Evaluate the consistency of the hypothesized pose

by comparing these predicted surface patch coordi-
nates (template indices) with their true values. The
true values of the template coordinates of the surface
patches was obtained as follows. The template itself
was derived from a rendering of the 3D model at the
nominal pose, by a quantization process. A nominal
column map was obtained by running the matcher
(using the template) on the nominal image. As de-
scribed above, an association between the model sur-
face patches and template coordinates was obtained
from the output of the rendering algorithm and the
nominal column map, and this association was taken
to define the “true” values of the surface patch coor-
dinates in template space.

An objective function may be constructed to mea-
sure this consistency—we have used the mean squared
difference between the predicted and true template co-
ordinates of the surface patches.

As it happens, there is a simple method available
for establishing an approximation to the true mapping
from object surface patches to template columns—we
simply render the model at a nominal (in this case,
frontal) pose, and use the DP matcher to establish a
nominal column map from the nominal image to the
template. We then establish the mapping from surface
patches to template columns in the manner described
above.

The mechanism outlined above provides detailed in-
formation relating tox andz translations, and also the
y rotations of the model.

Useful, but less precise, information related to thex
andy translations is available from our knowledge of
the “active patch” in the image (the section of the image
strip this is involved in the match that just includes the
columns at the beginning and of the DP match to the
template).

In our experiments, the partial pose solution is
determined in the following way.
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Figure 8. Probed values of the objective function used in the recognition-time pose estimation (the mean squared difference between predicted
and true template columns for projected model surface patches). The plots display the objective function against the difference between the
three pose adjustment parameters and their known true values.

• Starting with the nominal pose, an initial pose esti-
mate is obtained by applying a motion to the object
that adjusts the apparent azimuth and elevation of the
object in order to center it in the active patch. While
this motion is applied to the object, in terms of the
relation of the object and the camera, it is equivalent
to a rotation of the camera aboutx andy.
• The initial pose estimate is used as a starting value

for a second stage of pose estimation. An additional
motion is applied to the object that consists of a rota-
tion of the object abouty (measured in degrees), and
translations alongx andz (in millimeters). These pa-
rameters are optimized with respect to the objective
function described above, using the first stage esti-
mate as a starting value.

The effect of the first stage described above is to
move the object from the nominal pose in order to place
it in approximately the right part of the image, while
the second stage provides relatively precise adjustment
of some of the pose parameters from the match.

After this process,x and z translation andy rota-
tion have been determined relatively precisely from
the match, andy translation has been approximately
determined from knowledge of the active patch. The
remaining parameters of motion,x andz rotation are
not recovered by the method, and their values will be
whatever is obtained from the application of the two
stages of adjustment to the nominal pose (the adjust-
ments have minor effects in this regard).

Some plots of the pose objective function are shown
in Fig. 8, for a match done against a synthetic image
(top left image in Fig. 9) where the true pose is known.
The plots suggest a prominent minima near the true
value for the adjustment parameters, although some
noise and local minima are apparent.

4. Image Matching Results using DP

In this section we show some simple experiments to
demonstrate that dynamic programming with a sim-
ple, stretchable template can be used as an efficient
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Figure 9. Results of DP matcher on images with varying backgrounds. The colored vertical lines indicates the mapping from template columns
to input image columns. The box on the image indicates the strip in which the best match was found.

search strategy that can perform better than normalized
correlation for detection and localization tasks under
translations,y-rotations and partial vertical occlusions.
The method also provides a detailed column mapping
from matched image columns onto model columns
which can then be used for 3D pose estimation. We
will describe experiments that address these issues
below.

We used five Cyberware (Cyberware Incorporated)
scans of heads rendered at various poses using a graph-
ics package. The Cyberware scanner is a structured
light scanning device that simultaneously obtains 3D
surface and surface texture information. The rendered
heads were then embedded in a variety of backgrounds
as shown in Fig. 9. The cyberware models were ren-
dered with varying horizontal and vertical translations,

a large range ofy-rotations (−50 to 50 degrees from
the nominal pose) and a small range ofx-rotations (−5
to 5 degrees from the nominal pose). There were no
z-rotations of the model. In addition to the cyberware
scans, we tested the system on real images of heads
and compared detection performance with normalized
correlation (Figs. 10 and 11).

For roughly cylindrical and textured objects (like
heads), this technique can handle rotations about the
Y-axis since they are approximated by stretches and
shrinks of the model columns in the image. The model
can be thought of as a flexible template that consists
of a set of ordered columns that can be stretched and
shifted to fit the image.

Figure 6 describes the process of getting the nominal
column mapping used to approximate the true column
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Figure 10. End to end system running on a real image. The template and results of the DP column match are shown in the top row. Results
of the partial 3D pose solution using the DP-method, which is used as the initial pose given to the MI recognition system are shown in the next
row. This pose is illustrated by a rendering and by an overlay of points subsampled from the object. The final pose is illustrated by a rendering
of the 3D model, and by an overlay of points subsampled from the object surface in the next row. From the figure, we see that the final solution
given by the MI alignment has corrected thex-rotation error, and the pose in the final rendered image agrees with the input pose.

mapping for the model surface patches. The template
is a set of columns extracted from the quantized frontal
face (model face at the nominal pose) at low resolution.
The color code on the model face (right) and the input
image lines (left) show the mapping. The red box on
the image indicates the horizontal strip in which the
best match was found. A single template at 3 differ-
ent scales is used for all the experiments. The results
(Fig. 9) illustrate how rotations about theY-axis are
handled as horizontal deformations of model columns.
The best match finds the longest common subset of
ordered model columns that explain an image region.
Figure 9 also shows that simple vertical occlusions can

be naturally accommodated by the matcher and that
a single template can be used to locate heads in gen-
eral. Figure 10 shows an example of scale changes
handled by the system. This figure also illustrates that
the system can localize the head and get accurate col-
umn mapping information in real images.

4.1. Comparison to Normalized Correlation

These experiments compare the performance of the
DP search to normalized correlation in a domain with
rotations about theY-axis and clutter.
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Figure 11. Some examples showing the detection performance of
the system. The template used for detection was a frontal view of a
rendered synthetic face at 3 different scales.

Normalized correlation has been used in a variety
of detection tasks to find instances of an object in the
image. It works well when the object is not rotated or
scaled much in the image and the lighting varies uni-
formly. Variations of this basic technique have been
used successfully in the face detection literature, for
example in Brunelli and Poggio (1993), to locate in-
stances of face-like patterns with low computational
cost. More complicated systems like Sung and Poggio
(1994) and Rowley et al. (1995) use a view-based co-
rrelation approach to detect faces by representing vari-
ations in pose using many examples. These systems
operate in a view-based feature space of masked and
normalized face patterns. They build a distribution
based model of the class of all these canonical face
patterns in the feature space and learn similarity mea-
sures for matching new patterns against the model.

In this experiment we compare the DP matcher with
normalized correlation with a single frontal template
extracted from the nominal pose shown in Fig. 6 (ren-
dered face facing forward). For each threshold value,
we ran normalized correlation on 20 images with vary-
ing backgrounds and varying rotations of the face (−50
to 50 degrees) about theY-axis and rotations of (−5
to 5 degrees) about theX-axis. The template used
was extracted from the image of the face facing for-
ward with no rotation about theY-axis as shown in
the figure. The search window size was the size of the

template. The search was centered at pixels(i, j ) for
(i = 0, i < ImageWidth, i = i + 2) and (j = 0,
j < ImageHeight, j = j + 5) in all the images.

The detection performance of the two methods are
compared using a “Receiver Operating Characteris-
tic” (ROC) shown on the top in Fig. 12. The ROC
is frequently used in the detection literature to evalu-
ate detection performance by plotting the percentage of
true positives detected as a function of the false alarms
due to clutter. A higher curve indicates better perfor-
mance. We see that for detecting faces with cluttered

Figure 12. ROC Curves: Plot of False Positives vs True Positives
for varying threshold values. Each point represents the (False Posi-
tive, True Positive) pair for a particular threshold value. The thresh-
old values increase from 0 to 1 from the upper right corner to the
lower left. TOP: The curves show the detection performance of the
DP matcher (solid line) and Normalized correlation (dotted line) on
the synthetic dataset with rotated images of the head in cluttered back-
grounds. BOTTOM: The curves show the detection performance of
the DP matcher (dotted line) and Normalized correlation (solid line)
on a synthetic dataset with images where the scale varies upto a factor
of two.
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backgrounds and varying rotations about theY-axis
this method performs significantly better than normal-
ized correlation with a single template. Techniques
like Sung and Poggio (1994) and Rowley et al. (1995)
use several templates extracted from several views of
the object to accommodatey-rotations. The advantage
with the DP matcher is that a wide range ofy-rotations
can be accommodated with a single stretchable
template.

The lower plot in Fig. 12 compares the DP-matcher
with normalized correlation with a single frontal tem-
plate on a dataset of synthetic images of varying scales
(variations upto a factor of two in scale). Here again
we see that the DP matcher is able to accommodate
larger variations in scale using a single template than
traditional normalized correlation.

4.2. Comparison with Romano’s Facefinder

We compared the detection performance of the DP
matcher to a robust facefinder (Romano et al., 1996)
technique in a domain where normalized correlation is
known to perform well.

The input consisted of a dataset of 50 images which
contained frontal views of faces. The template is ex-
tracted from one of the faces in the dataset by spec-
ifying the coordinates of the locations of the left and
right eye, the left and right nose lobes and the left and
right extremities of the mouth. This template was then
matched against the images in the dataset using nor-
malized correlation for different thresholds.

Our algorithm was run on the same dataset of 50
images. Our template was extracted from the same
face image that was used to extract the template for
Romano’s method. The input images were split into
overlapping strips as described earlier and the out-
put consisted of image regions with column mapping
scores that were greater than the given threshold.

The ROC-curve in Fig. 13 shows that the DP matcher
performs slightly worse for this dataset for low thresh-
olds but is comparable to normalized correlation for
thresholds in the middle to high range.

4.3. Detection Experiments

We also ran the system on a set of face and non-face im-
ages, to determine its performance as a class detection
system. Figure 11 shows examples of faces detected by
the system. The database had a total of 188 faces. The

Figure 13. ROC Curves: Plot of False Positives vs. True Posi-
tives for varying threshold values. Each point represents the (False
Positive, True Positive) pair for a particular threshold value. The
threshold values increase from 0 to 1 from the upper right corner
to the lower left. The curves compare the detection performance of
the DP matcher (solid line) and Romano’s facefinder (dotted line)
on a dataset of frontal faces in cluttered backgrounds with varying
lighting.

true positive fraction of faces detected by the system
was 0.91. The false positive fraction was 0.23.

4.4. Pose Solving Experiment

Partial Pose Solution. Figures 14 and 10 shows ex-
amples of running the pose solver. For the experiment
shown in Fig. 14, we have optimized the adjustment pa-
rameters by using the downhill simplex method (Press
et al., 1990). The initial simplex was established with
displacements of 1 and 5 millimeters inx andz, and
3.5 degrees iny rotation. These values allow the opti-
mization to step past small local minima in the initial
movements of the optimization. For this (synthetic)
test image, the ground truth for the object pose is avail-
able, and the resulting errors in the estimated pose were
3.3 mm inx position, 12.8 mm inz position, and 1.2
degrees iny rotation. Note that the error in depth is
slight, considering that the object is 1000 mm from the
camera. Thex andz positions, andy rotation, have
been well determined from the information in the DP
match, while the approximatey position has been de-
termined from the vertical position of the “active patch”
in the image.

Figure 10 shows the results of the pose solver running
on a real image.
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Figure 14. Complete System: Detection and Pose estimation. The input image with a 20 deg. rotation, and the DP match are shown at top left.
Results of the partial 3D pose solution using the DP-method, which is used as the initial pose given to the MI recognition system are shown at
bottom left. This pose is illustrated by an overlay of points subsampled from the object. The partial pose estimate is too high—they estimate is
off by a few cm. They information was derived only from knowledge of which image strip was involved in the match. The estimatedy-rotation
is off by about 2 degrees from the ground truth pose. The final pose is illustrated by a rendering of the 3D model in the top right, and by an
overlay of points subsampled from the object surface in the bottom right. The figure shows that the final solution given by the MI alignment has
corrected they-displacement, and the pose shown in the final rendered image agrees with the input pose.

Two Stage Pose Determination using Mutual Infor-
mation. The pose determined by the pose solver was
used as an initial pose for a final pose refinement by
the method of Alignment by Maximization of Mutual
Information (MI) (Viola and Wells, 1995). The final
pose determined by MI is illustrated on the right in
Figs. 14 and 10. This refinement was carried out as
a local minimization over the six degrees of freedom
of motion of the model. Upon visual inspection, the
refinement has effectively corrected errors in the initial
pose and aligned the model with the image.

5. Conclusions

We have demonstrated a simple visual search tech-
nique, based on dynamic programming, that is use-
ful as a first stage for model based object recognition.

The method has some of the characteristics of template
correlation, but can solve for more DOF of object mo-
tion, while retaining similar complexity.

We have shown experiments to demonstrate that the
method is nearly as robust as template correlation, in a
domain where template correlation is successful. We
have also shown that our method is more robust than
simple template correlation in a domain having signifi-
cant out of plane rotations. This method is most effec-
tive for objects with textured patterns (e.g. faces/heads)
that can be approximated by an upright cylinder.

While the system can recover good estimates of three
of the six degrees of freedom of motion (x andz trans-
lation andy rotation), it is very sensitive to rotations
about thez-axis and cannot handle more than a±5
degree rotation about this axis. This is a limitation of
the current system. However, this is the only rotation
that we can synthesize reliably from a single example
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in order to try the same DP-localization using a few
in-plane rotations.

The run-time efficiency of dynamic programming
does not come for free—there are constraints that must
be met in the design of the objective function, in order
to get the guaranteed optimality properties in the solu-
tions, along with the economy. One of these constraints
implies that the matches between image and template
columns be evaluated independently. This weakens the
overall match strictness, by allowing column matches
that have inconsistent vertical positions. One may ask:
is the method able to maintain adequate robustness de-
spite this relaxation. The empirical evidence shown in
Section 4 suggests that the answer is a qualified “yes”,
at least in our test domain.

An additional benefit of our method is that partial
pose information may be obtained for downstream use
by local search and verification methods.

In speech recognition using DP, learning methods
are well established for automatically deriving the tem-
plates (in the form of hidden Markov models) from
training examples, and such a technique might be ap-
plicable here as well.
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Notes

1. Of course not all current recognition methods are so restricted.
For example, Murase and Nayar and related methods attempt to
find the best object from a library that accounts for the data.

2. To make the descriptions concrete, we use the convention that the
1D searches are carried out along thex-axis in the image.

3. This stretching is caused by many image column elements match-
ing the same template element.
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