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hypotheses whema andn can be easily on the order of several
In this paper we describe a new efficient algorithm for recognizing hundreds in natural pictures. A second problem is the toleran
3D objects by combining photometric and geometric invariants. Of the algorithm to scene clutter. To verify the hypothesize
We derive some photometric properties that are invariant to the transformation, object recognition algorithms have to collec
changes of illumination and to relative object motion with respect evidence of actual correspondences characterized by that tra
to the camera and/or the lighting source in 3D space. We show that  formation. This is usually done by looking for nearest imag
recognition does not require a full constancy of colors; rather, it faatures around the transformed model features, or equivalen
qnly needs‘ s‘omething that remains qnchanged u'nfier the var?ring by casting votes to a hash table of parameters, such as aff
light conditions and poses of the objects. Combining the derived . 520t arameters, leading to a correspondence (e.g., [27

color invariants and spatial constraints on the object surfaces, we . )
In either case, when features are extracted from the image w

identify corresponding positions in the model and the data space . . . )
coordinates, using centroid invariance of corresponding groups of perturbations, and if the image is cluttered so that the featu

feature positions. Tests are given to show the stability and efficiency ~ distribution is too dense, it_ is difficult to tell whether an i_m'
of our approach to 3D object recognition. © 1998 Academic Press age feature thus detected is the one actually corresponding

the model feature or if it just happened to fall close to the tran:
formed model feature. This issue has been extensively analyz
1. INTRODUCTION both theoretically and empirically, giving arguments about th
limitations of geometric feature based approaches to recogniti
In a typical approach to model-based object recognition [16b g. [1, 16, 17]).

geometric models are matched against features extracted frorgjyen the limitations of conventional approaches to recog
an image, where the features are typically localized geometfigion which depend solely on local geometrical features, it i
events, such as vertices. Objects are considered to have unggfaral to consider cues other than simple local geometric fe
gone a transformation in space to yield a novel view for thgres. One such candidate is photometric information like colo
image. To solve for this transformation explicitly, recognitiohecause we know that color often characterizes objects well a
methods use matches of features to hypothesize a transforfpar aimost invariant to change of view and lighting conditions
tion, which is used to align the model with the image and selegf parallel with geometry, color properties of the object sur
the best-fit pair of transformation and model. While this agace should be a strong key to the perception of the surfac
proach to recognition has achieved considerable success, th¢s®ever, most authors who have exploited color in recogn
still remain practical problems to be solved. tion used it simply for segmentation, e.g., [5, 18, 33], mostl
One such problem is the computational complexity of th§acause color is considered to be more contributive in buildir
method. For example, even with popular algorithms (e.gyp salient features on the object surface than in giving preci
[22, 36]) to recognize an object witim features from an im- jnformation on the location and the poses of the objects. E:
age withn features, we must examima®n® combinations of ceptions include Swain [31, 32], Funt and Finlayson [10], an
Nayar and Bolle [30] who have used photometric informatiol
more directly for recognition, the first two authors for indexing
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3D OBJECT RECOGNITION 75

histogram for representing objects and matched it over the iffinlayson recently removed the assumption of linear model ©
age to identify the object and localize its presence in the imagdlke ambient light by instead requiring surface observations ur
Funt and Finlayson improved this method by using their nedler two different illuminants [9]. However, all of those works
color invariant as the input to the histogram process, instedd not, at least explicitly, address the problem for 3D surfaces
of using the color values directly. Nayar and Bolle proposedTus, we tentatively conclude that conventional color constanc
photometric invariant and used it for matching regions with comadgorithms cannot be used for recognizing a 3D world as pre
sistent colors given the partitioned model and image derived bgnted. Contrastively, the invariant property to be presented he
some other color properties. Therefore, it requires a preliminasyeffectively computed from the images at the same time as g
segmentation of the image into regions having consistent colasmetrical features are extracted.

In this paper, we attempt to exploit both geometric and pho-
tometric cues to recognize 3D objects, by combining them ma2e2. Novel Color Invariants
tightly. Our goal is to develop an efficient and reliable algorithm

for recognition by taking advantage of the merits of both geomet- Let S(x, 1) be the spectral reflectance function of the objec

ric and color cues: the ability of color to generate larger and thagrface ak, that is the property one has to recover in color

: . . nstancy, IeE(x, A) be the spectral power distribution of the
more salient features reliably, as well as of adding more selectﬁfr)nbient light, and IeR, (1 be the spectral sensitivity of thieh

ity to features, which enables more efficient and reliable obje%t
recognition, and the rich information carried by the set of |gensor, themk(x)_, the scqlar response of tkih sensor channel
cal geometric features that is useful in accurately recovering '[Web € observed, is described as

transformation that generated the image from the model. To re-

alize this, we have developed new photometric invariants which pe(X) = / S(x, ) E(x, 1) Re(A) da, 1)

are suitable for this approach. Then, we combine the proposed

photometric properties with the centroid alignment approach @ere, generallyS can be an arbitrary function describing ge-
matching geometric feature groups in the model and the imageetric and spectral properties of the surface and E could
that we have recently proposed [28]. This strategy gives an effiso be an arbitrary function of and .. The integral is taken
cient and reliable algorithm for recognizing 3D objects. In oWyer the visible spectrum (usually from 380 to 800 nm). The
testing, ittook only 0.2 s to derive corresponding positions in thgyometric factor of the object surface, that is usually considere
model and the image for natural pictures. A preliminary versiqg jnclude the surface normal and the relative angle of the in

of this work was presented in [29]. cident and reflecting light direction with respect to the surface
normal, is very crucial in the 3D world [20], which makes the
2. NOVEL PHOTOMETRIC INVARIANTS color constancy more confounding for 3D surfaces. Since it i

) ) o known that a spectrum distribution of the surface reflectance c
In this section, we develop some photometric invariants thgfany materials depends very little on the surface geometry [26
can be used as strong cues in the recognition of 3D objects. Tfigmay break up the surface reflectance func8o 1) into the
motivation is to find simple cues that can be used reliably {goduct of geometrya(x) and spectrum property(x, 1) such
isolate portions of an object under a range of image acquisitigfht 5(x, 1) = G(x)L(x, A). Then, Eq. (1) becomes
variations.

2.1. ARelated Issue: Color Constancy pr(X) = fG(X)L(K M)E(X, A)Re(x) da

The invariants we develop here are related to the notion of
color constancythat is—whether in human or machine vision = G(X)/ L(x, 2)E(x, 2)Re(2) dA. )
—the perceptual ability to determine the surface reflectance
property of the target object given the reflected light from the ob- Assumption AE1: Constant ambient light assumption over th
ject surface in the receptive field. If a color constancy algorithghtire surface. If we assume that the ambient light spectrum
could perform sufficiently well, we could use it for object recoggistribution is constant over the entire surface of the objegts,
hition because it would provide a unique property of the objegbcomes simply a function of wavelengthThis assumption is
itself. Unfortunately, however, color constancy is generally dlIUStiﬁed when the lighting source is sufficiently far away from
ficult to compute in practice. Actually, as far as we have checkgg¢h object relative to the size of the object surface, and mutu:

almost all authors have addressed problems in a strongly cQmination and shadowing are not significant. This yields
strained world like Mondrian space [9, 14, 15, 21, 35, 37]: a 2D

space composed of several matte patches overlapping each other.

Then, based on the assumption that both the ambient light and p(X) = G(X)/ L(x, A)E()Re(r) da. 3)
the surface reflectance for planar surfaces can be approximated

by linear combinations of a small number of fixed basis functioffaking the ratios between twa, () channel responses elimi-
[7, 24], the problem becomes manageable [9, 12, 14, 15, 35, 37dtes the geometric fact@(x) which depends on the relative
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orientation of the object surface with respect to the camera and/or E'(u) [P L', u)R (u) du
the lighting source, v (X) ~ >

E/()LJ-)f(f’jJ L'(x', u)R; (u) du’
_ a0 _ L AERR () da @
N p;j (X) - [L(x, N)EQ)R;(x)dr’ Note thatL(x, ) = L/(X, 1), because the spectrum property
of the surface reflectance would not be affected by the obje
By the same reasoning, we have a similar form after the motionrabtion. Taking the ratio gf's before and after the motion and/or
the object with respect to the camera and/or the lighting sourtiee change of lighting conditions yields

;) UK DE )R (L) dA 5 nx 13
= ey 1! / . ’ ( ) o €ij» ( )
pi(X) [ L'(X, \)E'(M)R; (1) dA % ()
where primes show the function after the motion, and this prim¢here
notation applies to any symbol expressing some quantity after
the motion of the object in the rest of this paper unless oth- o — E(i) /E'(M) (14)
erwise described. In the following, we show that under some YTER) /S EOy)

assumptions on camera sensors or ambient light properties we
can derive photometric invariants fropis defined above that As ¢’s are independent of the position on the surface, Egs. (1
can be used for recognizing 3D objects. and (14) show that under the assumptions AE1, AE2, and AS
we obtain a photometric property that is invariant within a
consistent scale to the changes of the spectral property of the
ambient light and the orientations of the object surfaces. Itis ve
important to note that the assumption of slow spectral variatic
i of the ambient light must be used in conjunction with that of thi
R = / S(r —uR (u)du, (6) frequency selective filter. This is because as demonstrated ab
& “slow variation” is required only for the range of the wavelengtt
for which the sensors are effective. For instance, when we lo
at the spectral components of the sun’s radiation observed
the ground, the power is fairly constant above the waveleng
500 nm that is the ranges covered by Green and Red chann
in standard cameras [23].

Assumption AS1: Frequency-selecting sensor assumpti
When we approximate the spectral absorption functigrsy
frequency-selective filterR such that

that is centered around the peak wavelengtlof the sensor
R/, wherea; andgj (o < Aj < i) are lower and upper cut-off
wavelengths, respectively, we have

oi (X) ~ / L(x, \)E(X)R/(x) dx @)
Assumption AS2: Narrow band sensor assumptidnstead

b of assuming slow spectral variation of the ambient light an

= / L(x, 2)E() /a 8(r —uwR(uduidr  (8) 4pproximating the sensor by frequency-selective sensor, if \

' place a narrow band filter in front of the camera sensor or whe
_ /ﬂ [/ L )EGIS0. — u) dA] R(u)du, (9) We approximate the spectral absorption funct_iﬁhlsy narrow
. band filters suchthd, (1) ~ s38(A; —A), wheres is the channel

sensitivity and the.; is the peak of the spectral sensitivity of the
where the geometrical ter@ has been omitted, and in the lastth channel, we obtain ratios from (4) and (5):

step the order of integrals has been interchanged.

Assumption AE2: Slow spectral variation of ambient light i () = X ~ 3 L(x, 2)E(i) (15)
assumption. Here, if we can assume that the spectral variation pi(X)  sjL(X, Aj)E(%j)
of the ambient light is slow enough with respect to the effective ) o/ (X') sL(X, A)E'(A)
range of wavelength, i.eo; < A < B; such thatE(A) ~ E(Ai) v X) = ==~ (16)

foro; < A < Bi, we have pi(X)  siL(X, AE ()
A Since the bandwidth over which a real camera sensor respor
pi(xX) = EM) f L(X, u)R (u)du. (10) varies from camera to camera, and the standard ones may no
Qi too narrow, this is only an approximation if we do not actually
use ones. Taking the ratio ¢fs before and after the motion

Therefore, we obtain and/or the change of lighting conditions yields

i (X) ~

E(a) /7 L(x, u)R (u)du |
5 11 nx
E()“J) falslj L(Xv u) RJ (u) dU ( ) )/I/II(X/) ~ 6IJ ) (17)



3D OBJECT RECOGNITION 77
where and under AE1 and AS2 (Egs. (15), (16)),

_ E@) /E'(M)

. ni) L4, A) [ L(Xm, Ai)
TEW)/ Ey)

Wi m) LA/ Lk 2j)

(18) wiljm = (24)

Again, ;; is independent of the position on the surface and d&he quantityy is invariant, that isy{” ~ y;™, because it de-
pends only on the incident light. Therefore, under the assunpends only on surface properties that remain unchange
tions AE1 and AS2y;(x) can be regarded as approximately-(x, A) = L'(X’, ). However,wi'jm is obviously sensitive to per-
invariant to the changes of illuminant conditions and to the mirbations contained in the image signals, especially when or
tions of the object within a consistent scale factor over the objeoekes the values of; (xm) (the denominator in (23) or (24))
surface. close to zero. To stabilize this, we adopt a normalized measu

In order to use/’s thus derived in Egs. (11), (12) and (15)in place ofy itself:
(16) for object recognition, we might need to normalize its dis-
tribution because generally it is invariant only within a scale Im _ i ()
factore. A ibei i ideri Y= () (25)

€. As we describe in the next section, considering also the Yij (Xm) + vy (X1)
correlative property betweep;’s of natural objects, obtained
using different channel pairs, (j), we normalizey’s by decor- It is easy to see ~ ¢/, that is,¢ is approximately invariant to
relating their joint distributions. This allows us to make full us¢he change of illumination conditions and of orientations of the
of the information fromy’s as well as to remove the scale factoobject surfaces. Note that fer; we cannot derive this kind of
thus deriving an invariant. normalized invariant formula.
. ] ) An important thing to remember here is that in order to make

Assumphon AE3: Only locally constant ambient Ilgh_& useful, the surface reflectance properties associated with tw
assumption. Now, let us assume only a locally constant ambhearby positiong;, xm to be picked must be sufficiently differ-
ent light spectrum distribution, instead of the globally constagh from each other. Otherwise, even if an invariang @f (25)
one over the object surfacB(x, 1) = E(xm, 1) for nearby po- ho|ds true, as the’s tend to have the same value ot Xm,

sitions x, xm. Then, accordingly, Egs. (11) and (12) must bge ;s always return values that are close to 0.5, so that it doe

modified, respectively, as not provide any useful information involved in their color prop-
erties. Fortunately, as we describe later, when color propertie
Ex, A) [P L(x, u)R (u)du are picked from different sides of brightness boundaries, thi

nj(x) ~ > (19) situation may often be avoided.

Y B .
E(x.4)) fajj L(x. u)R;(u)du Insummary, we have derived two ratipsy which are general

E'(X, A1) f/si L'(x, )R (U) du values that are distinctive to _the objects from which they ar.ise
’ o ’ ) (20) andare notinfluenced by environmental factors such as lightin
E'(X, Aj) fofj' L'(x’, u)Rj(u)du They both correspond to simple ratios, which are easily extracte
from imagery. It may be claimed that we could show a way tc

By the same reason, Egs. (15) and (16) should be derive them using only frequency selective sensor assumptic
for the ambient light of slow spectral variation, without nessesar

ily using narrow band sensors as are often assumed in derivir

pi(¥)  SLKAM)EX, Ai) (21) c)(/)nvengt;ional invariants. This combination of the assumption:
P SL(X A)E(X. 4)) can also be used for those other invariants which are describ
(X)) _ sL(X A)E'(X, &) 22) in_ the next_ section [11, 30],_a||owing th_em to derive invariants
P} (X)) ~ S L A)E(X.4)) without using narrow band filters. We will actually demonstrate
the performance of the proposed invariant computed using tf

RGB outputs of the usual camera sensors in the experiments.

Vi/j (x) ~

yi(¥) =

Vi/j x) =

Incorporating the assumption, thaths(x;, A) = E(Xm, A) and
E'(x/, ) = E'(x,, A), we again have the following invariai]}tjrn

\ 3 .3. Related Photometric Invariants
for both cases; i.e., under the assumptions AE1, AE2, and A%l

(Egs. (11), (12)), A related invariant to our photometric invariants was pro-
posed earlier based on apponent color modddy Faugeras for

m v (x) image processing applications [8]. The opponent color mode

vy = i %m) was first introduced by Hering [19] to describe the mecha

nism of human color sensation. He advocated that the thre

(f‘ L(x, u)Ri(u)du / ffi L(Xm, U)R (u)du 23) pairs Red—Green, Blue—Yellow, White—Black form the basis o

~ 7B . B; _ ) human color perception. A simple mathematical formulation
fa. L(4. u)R;(u)du fou L (tm, W)R; (u) du of this [3], which is a linear transformation &, G, B, was
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used as a color invariant in [31, 32] for indexing 3D objectszinlayson for use in indexing [11]. This invariant is defined ei
[R-G, BI-Y,W-BK]" = L[R, G, B]", whereL is alinear trans- ther as the first derivative or the Laplacian of the logarithm c
formation. A similar formalization of an opponent color modes single color channel, which in essence is the color ratios b
was also used for the correspondence process in color stereopsgen neighboring points, so it is basically the same as Nay
[5]. However, there are no theoretical explanations of the lineand Bolles’.
transformation model for the full 3D object surfaces, because,
as we noted in the derivation of our invariants, the surface o8i-4. Experiments
entation in 3D space with respect to the lighting source and the
camera is an unignorable factor (see also [20]) in deriving in- Experiments were conducted to examine the accuracy of tl
variants for a 3D world, and it is never removed by any linegaroposed photometric invariants. The goal here is to show th
transformation. the ratios we described remain invariant over changes in ima
Unlike this linear transformation case, Faugeras’ form is tteequisition and thus are indicative of properties of the objec
logarithm of the ratios between different channel responses fanat the environment.
chromatic model, so is similar to ours, and is the logarithm of the Figure 1 shows pictures of a man-made convex polyhedrc
products of thredR, G, B responses but with low-pass filteringcomposed of six planar surfaces each with a different surfa
accounting for lateral inhibition for achromatic responses. orientation. The left picture is a front view of the polyhedron
In [4] a unique illuminant-invariant was proposed which, adiereafter pos®,, while in the right picture the object is rotated
suming the existence of at least four local distinct color surfacespund the vertical axisyfaxis) by about 3Q hereafter pose
uses the volumetric ratio invariant of the parallel pipe generat&g. On each side of the boundary of adjacent surfaces, seve
by the responses of the three receptors. It seems to us, havatte patches with different colors were pasted. Then, we pick
ever, that the assumption of four local distinct color surfacesgsrresponding positions manually within each colored patch |
demanding too much in practice. the pictures for the poseBf, Pg). The selected positions within
Recently, a new photometric invariant was proposed for opatches are depicted by crossesin the pictures. We used manu
ject recognition by Nayar and Bolle [30]. When its applicatioselected points because we want to verify that our invarian
was limited to only geometrically continuous smooth surfacegerform correctly given a correct point correspondence. Late
it used as an invariant the ratio between the channel intensitves will worry about the performance when there is error o
of two adjacent points through a narrow band filter. This invarisncertainty in the correspondence.
ant ratio is almost identical to our invariatit that is actually ~ To test the accuracy of the proposed invarigntsy under
the ratio of theirs in two channels. The effect of taking the raarying illuminant conditions and surface orientations of the
tio in different color channels is that it removes the geometrabject with respect to the illuminant and the camera, we toc
factor of the surface reflectance, so the surface smoothnesthise pictures: the first at the poBg under the usual lighting
not required. Another new invariant was proposed by Funt andnditions P and Ly), the second at the pode; under a

FIG.1. Tests of invariant on convex polyhedron. The pictures show the convex polyhedron in different poses: IBft, pioget posePg. This object is composed
of 6 planar surface patches each with different surface orientation. On each side of the boundary of adjacent surfaces, several matte patches with differ
were pasted. Then, we picked corresponding positions manually within each colored patch in both pictures. The selected positions within patches are d¢
crosses.
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greenish light Pg andL g), and the third at the po$®; but under c?
a bluish light (Pg andL g). To change the source light spectrum, | e (26)
i.e., to getgreenish or bluish light, we covered a tungsten halogen CoaCorr

lamp with cellophane of colors green and blue.

For ¢, the surface positions within planar patches facing ovahere theCyy's (a,b € {«, «}) are the covariances between
the boundaries of planar surfaces were used as neighboring {e-sets of the values of the measurée.g.,y) before &) and
sitions to satisfy the requirement of (locally) constant ambieafter ') the motion of the objects or the changes of the lighting
light. To compute the invariants in practice, we used the ratiegnditions, which is defined by
G/R, B/Rfor y andg; = (G*/RY)/(GY/R! + G%/R?), 92 =
(B/RY)/(BY/R+B?/R?)for ¢, whereR, G, B are the outputs Cap = Z P(a, b)(a — a)(b — b), 27)
from the sensor channels, respectively, of Red, Green, Blue, and
the indices attac'he(? tB,. G, B show the ;ldes of thg Surface%/vhereiis the average of the measweP(a, b) is the probabil-
used for computing’s with respect to their boundaries. ity density function, and the sum is taken over all correspondin

As described previously, in our theory, when we use th lues of the measures b. A high correlation, that gives a

RG Bchannel outputs to compute invariants, instead of OUPW21 e close to 1, shows that the proposed invariant measur
through the exact narrow band filters, the assumption of slq '

L . . . ¥mained unchanged within a consistent scale over the set
spectr_al vquatlon of the ambient light to.ge.ther with frequen ositions between the two pictures, while a low correlation, tha
sele(.:tlve'fllter of the sensor must be satlsflgd or an extreme aR- < - value close to 0. means that the values of the measu
proxmaﬂo_n of the sensors by narrow band filters must be tak anged in an irregular manner. For comparison, other colc
The following results show that the valuesyoéndy computed

properties including rawR, G, B), a linear-transformation im-

using RG B are fairly invariant to the changes of the 'Ilum'na('g_lgmentation of the opponent color model [3], and the invari

tion conditions as well as the surface orientations and dem it proposed by Nayar and Bolle [30], which is defined by

strate that some of those requirement we have described may be_ (01 — p2)/(p1 + p2), Wherep; is | deéllly a narrow band
- e - - 1 1

satisfied. fiI;er output at position, are also included. In this experiment,

In Table 1, thg cor_relat|on coefficients between the Smst%implemen'w,we simply used the RGB output from the same
values for each invariant measure computed at correspond f of positions used to compute our invarigninstead of the

positions in different pictures are given, that are measured py. "\ - e outputzr; = (R1 — Rp)/(R1 + Re), w2 =

the formula (G1 — G2)/(G1 + Gy), w3 = (B, — By)/(B1 + By). Since the
two faces of the convex polyhedrom used for computingave
some jumps of the orientation on their boundaries though the ir

TABLE 1 variante is designed to be used for locally smooth surfaces, thi
Correlation Coefficients between the Sets of the Values of the is only a test of how it can tolerate against the rough surface:
Color Properties from Different Pictures of Test-Object From the table, we note between the first and the second pictur
the invariants andew performed perfectly, though other prop-
PaandLy — PaandLy — ertiesR, G, B, R—G,B-Y, y = G/R, B/R, were also good.
Pg and Lg Pg andLB

This means those properties may have been changed but ot
within a consistent scale between the different pictures (reca

R 0.988368 0.989877
G 0.967951 0.974081 the property ofy being invariant within a scale factor). Looking
B 0.946251 0.882816  at the results using the first and third pictures, however, we no
R-G 0.985398 0.985687  that the propertys degraded, whilep was almost perfect. To
B-Y 0.935039 0.908867  gee how far the color properties remained unchanged in adc
2; — Egll B 222))/ /((FélliRéi) 8:32;2;? gjggfggg tion to the correlativ.e relation, in Fig. 2 the actual Qistribution
@3 = (B1 — Bp)/(B1 + By) 0.979000 0.945734  Of the color properties are plotted, where the horizontal axe
y=G/R 0.978163 0.988289  are the values for the pos&, while the vertical axes are those
y =B/R 0.962186 0.907126  for the posePg. If the color measures remained unchanged be
o1 = (Gi/ Ri)/(Gll/ Ri + G: / R: ) 0.997766 0.997532  t\ween the two pictures before and after the motions of the ok
92 = (BY/RY/(BY/R! + BY/R?) 0.991843 0.988893

ject and/or the changes of the light conditions, the distribution:
Note The correlation coefficients between the sets of values of the proposgdould present linear shapes, ?md their slopes Shomd be close

invariants from pictures taken under different light conditions and at the differeht Indeed, the measugeis certainly found to remain almost un-

poses of the object are given to show how much they remain unchanged withigllanged under varying light conditions, while the property

consistent scale. For comparison, other color properties includingra@,(B), G/R, B/R is found to change The property also remains
a linear-transformation implementation of the opponent color model [3], and th ’ . )
invarianter proposed by Nayar and Bolle [30], which was computed uBiGB a?mOSt unchanged. The biases of the slopeg either toward

output as1 = (Ri — Ry)/(Ry+ Ry), @2 = (G1 — G»)/(G1+ G2), ma = (Bi—  the horizontal or vertical axes indicate that the light spectrun
B>)/(B1 + By), are also included. has been changed between the two compared pictures.
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] 0.2 0.4 06 08 1 0 0.2 0.4 08 0.8 1 0 0.2 0.4 06 0.8 1 [} 0.2 0.4 06 0.8 1

FIG. 2. Distributions of invariants on convex polyhedron. The left two columns are from pictures takenRx@ed Ly (horizontal axis) andPg andLg
(vertical axis), and the right two columns are from pictures taken uRdeandLy (horizontal axis) andPg andL g (vertical axis). The rows in each of the two
columns are, respectively, top left and right; = (G1 — G2)/(G1 + G2) andws = (B1 — Bp)/(B1 + By); middle left and rightG/R and B/ R; bottom left and
right, o1 = (G1/RY)/(G'/R! + G?/R?) andg, = (B!/R!)/(B1/R! + B%/R?).

Figure 3 shows the performance pfconstancy against the 1, which is probably caused by the perturbed orientations of tt
change of the object pose, under the same lighting conditionsplatches. This suggests thamay be used for object recognition
other words, unlike in the last experiments, this time the ambienithout applying any normalization process, so that extractin
light has not been changed for both of the two pictures, aotject regions might not be a prerequisite, as long as the lighti
only the object pose has been changed. For comparison, ¢beditions are not changed.
performance oB — Y (linear-trans implementation for blue vs  Similarly, in Table 2 the results of the similar tests as above b
yellow, the second figure from the left) as well as rBvwiblue, on a natural object, a doll which is shown in Fig. 4, are given, fc
the first one) are also shown. Note that what should be obserwvétich both the ambient light and the object pose were change
here is how the slopes of the distributions are close to 1. Excéfgé refer to the pose of the doll similarly to the above tests ©
for the two samples in the upper area in the figure (the fourthe test-object: left posBa, right posePg. The first picture was
picture),y = B/Ris found to be almost unchanged between thtaken under a usual lighting conditions from the oblique angl
two pictures. The two exceptional samples were from patch@®, andLy), the second and third were taken, respectively, ur
with almost saturated blue channel inthe picture at fgs@he der a greenish and a bluish light from the front andbg énd
performance of = G/R (the third figure) is almost perfect. OnLg, Pg andLg). Corresponding positions were picked manu
the other handB — Y andB are perturbed around the slope olly as done in the previous tests. As the surface colors vari
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FIG. 3. Tests ofy at different poses of object but under the same illuminant conditions. The first from the left, distribution of Blue; the BeeondBlue vs
Yellow); the third,G/R; the fourth,B/R. The horizontal axis is for the pod®, and the vertical axis is for the po$¥. Except for the two samples in the upper
right area of the distributiony = B/R is found to be almost unchanged in both of the pictures because the slope is almost B whilend B are perturbed
around the slope of 1. Those two exceptional samples were from patches with almost saturated blue channel in the pictBge @hpatistribution ofy = G/R

is almost perfect. This gives the evidence thahay be used for object recognition without applying any normalization process, so that extracting object regi
might not be a prerequisite as long as the lighting conditions are not changed.

smoothly, we cannot expect that we could pick up correspondipgsitions, the distribution of (i.e., 91 = (G*/R)/(G!/R! +
points accurately. Thus, unwanted errors could be introduceddd/R?), ¢, = (B!/R!)/(B!/R! + B2?/R?)) did not spread very
this operation. This time fop, two positions which are closestwell, thus having a weak selectivity photometrically, as seer
to each other among the selected points are used. The propgtyig. 5. Therefore, when picking two nearby positions gor
w is notincluded in this test, since it was very hard to find a paiér object recognition, it is important that they have different
of positions where surface normals do not have a big change bpéctral reflectance. This will also be true in using the invarian
have a change of colordl¢te The values of invariantr such proposed by Nayar and Bolle. We should note that the propert
asg will be close to 0 in places where colors do not change). does not require this condition, though in terms of invariance
In these testsR, G, B performed poorly. The linear modelit is not superior tas or ¢. For comparison, the values pfare
R—G, B-Y,andy = G/R, B/Rperformed well again, though also plotted in Fig. 5.
y was better. The measugas quite stable again. Unlike the re-
sults on the test-object, however, since the surface of the dgi- Sensing Limitations
especially in the body parts, had similar surface colors in nearbyas we note in the examination above, the invariant propertie
y, @ are sometimes perturbed around the ideal values which su
port our theories. This is caused mainly by the limited dynamic

TABLE 2 range of the sensors of the camera. These effects inclide
Correlation Coefficients between the Sets of the Values of the clipping and bloomingas argued carefully in [26]. When the
Color Properties from Different Pictures of the Doll incident light is too strong and exceeds the dynamic range of th
sensor, the sensor cannot respond to that much input and th
PaandLy— PaandLy— . .
Pg andLg PsandLg  ClipS the upper level beyond thg range. This means the sens
no longer correctly reflects the intensity of the light. Note that
R 0.764343 0.819267  this is very serious for our invariants, because botndy are
G 0.588161 0.881416  ratio invariant, and a basis of their theory is, whether locally o
2_ G 3'322213 g'gggigg globally, the consistency of the amount of light falling onto the
B_Y 0.948642 0877519 conc.erning positions on the; object ;urfaceg. Here,.our natur
G/R 0.779377 0.944164 and important assumption is that this consistency is correctl
B/R 0.962186 0.895180  reflected in the responses of the sensors. Therefore, if the sen:
¢1=(G!/RY)/(G/R' + G?/R?) 0.996245 0998781  yesponse does not meet this assumption, our theory no long
@2 = (BY/RY/(BY/R! 4+ B¥/R?) 0.988840 0.983675

holds. The same arguments also hold for the blooming effec

Note The results on a natural object, a doll, are given. The first picture wahen the iIncoming “ght IS too strong to be received by the sen
taken under usual lighting conditions from the oblique andte andLy), SOrelementofthe CCD camera, the overloaded charge will trave
the second and third were taken, respectively, under a greenish and a bltsbhe nearby pixels, thus crippling the responses of such pixel:
light from the front angle Pg and Lg, Pg and Lg). This time forg (i.e.,
¢1=(G'/RY)/(G'/R! + G?/R?), ¢, = (B/R")/(B'/R' + B?/R?))two po-  2.6. Summary
sitions which are closestto each other are used. In thiRe&, B were very un- . . . .
stable. The linear mod&® — G, B— Y, y — G/R, B/Rdid perform wellagain,  IN this section, we have developed two different photometric

thoughy was better. The measugeis quite stable again. invariants and demonstrated their accuracy on a set of natur
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FIG. 4. Tests of invariant on natural pictures. The pictures show a doll at different poses: left pose A, right pose B. We picked corresponding positions
views. The selected positions are depicted by crosses.

images. In the next section, we turn to the question of how 8D objects. The basic idea is to combine it with the centroi
utilize these photometric constraints in conjunction with ge@lignment approach we recently proposed in [28].
metric constraints, for use in recognition.

3.1. Centroid Invariant of Geometric Feature Groups
3. COMBINING PHOTOMETRIC AND GEOMETRIC

CONSTRAINTS FOR 3D OBJECT RECOGNITION We argued in[28] thatwhen an objectundergoes alineartrar
formation caused by its motion, the centroid of a group of 3lI

In this section, we describe how we can exploit the photomesdrface points is transformed by the same linear transformatic
ric invariant developed in the preceding section for recognizifithus, it was shown that under an orthographic projection mod:

G/R B/R G/R B/R
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FIG. 5. The distributions of invariant measures on Doll pictures. The left two columns are from pictures takerPyrated Ly (horizontal axis) andPg
andLg (vertical axis), and the right two columns are from pictures taken uRdeand Ly (horizontal axis) andg andL g (vertical axis). The rows in each
two columns are, respectively, top left and right,and S; middle left and rightG/R and B/R; bottom left and rightp; = (G!/RY)/(G1/R! + G2/R?) and
92 = (BY/RY)/(BY/R! + B2/R?).
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centroids of 2D image geometric features always correspotie second row of Fig. 6), which, from the information theo-
over different views regardless of the 3D pose of the 3D obetic point of view, means that if they are used directly they are
ject in space. This is true for any object surfaces (without seléss informative than they could be, as a result of reducing th
occlusion). Note that this property is very useful, becausedfmension of the distributions.

we have some way to obtain corresponding feature groups ovelhus, we define the extended feature vedtdor clustering
different views, we can replace simple local features used fas

defining alignment in conventional methods by those groups,

thereby reducing computational cost. We demonstrated the ef- f= [ng , spr ]T, (28)
fectiveness of this approach to object recognition on natural as
well as simulation data [28]. where f4 is the 2D geometric feature composed of spatial co

_ . _ _ ordinatesfy = (x, y)T of a feature point in they image plane,
3.2. Grouping by Photometric and Geometric Constraints  f, is the vector of photometric invariant properties we propose

While the idea of using centroids of similar groups dramaltIj the preceding sections, asds a balancing parameter. Then,

ically reduces the complexity of alignment-style recognitioﬂqe distributipn of this featurfﬁ is transformed (normalized) by
schemes, we need to find reliable ways of extracting such grou _g_ecorrelat_lng tran_sformatldh =diag{Tg. Tp) whereTg, Tp
One set of methods was described in [28]. Here we focus the matrices defined as follows and, respectively, decorrela
amplifying this approach by utilizing our photometric invarine distributions offq and fp,
ants to obtain corresponding groups of 2D geometric featu-
res.

In [28], to obtain corresponding geometric feature groups, a . ) ,
clustering operation, in which the clustering criterion was rotd!"€re® andA are eigenvector and eigenvalue matrices of the
tionally invariant, was applied in the coordinates which had be§Rvariance matrix offq or fp,[]72 denotes the square root
normalized up to a rotation prior to a clustering. This time, wi&lrix of & positive definite matrix, and[ is the matrix trans-

again use a clustering technique to obtain corresponding ggg_se. It should be noted that the invariance of the distributiol

metric feature groups in different views. Our intention is to yield fp: Which is composed of or ¢, up to a rotation is never

corresponding cluster configurations using a criterion incorpd@maged through this operation. Moreover, by this normalizin,
rating spatial proximity constraints of geometric features aftPeration all the physical dimensions included in the geometri
the invariance of their associated photometric invariants. Thefild photometric features, such as image resolution and pow
fore, we assume that surface colors (surface spectral reflectarfiid]'€ light energy, are removed. Therefore, in constructing ;
vary mostly from place to place. In other words, within somB'g Fhmensmnal feature vectqr for .cluste.rlng, we can provide s
local areas surface colors are almost consistent. Note that Ff&S!Stency between the physical dimensions of the componer

assumption should be justified for most object surfaces, beca@s&atures. So, in theory, even when the physical properties
otherwise we must always be seeing diffused colors over tH}¥ image change, the balancing parameteay not have to be

surface and thus always having difficulty in trying to distinguisfeadiusted.
surfaces. 3.3. Implementation
When we are provided with geometric and photometric fea-""
ture sets from almost corresponding model and data points, wéVe employ th&Kmeanclustering algorithm, in which the cri-
normalize those feature distributions using the decor-relatitgrion is rotationally invariant, to obtain corresponding feature
transformation presented in[28]. This operation performs invagroups in the feature set from different views. Note that wha
ance between the model and data features and brings stabilitweultimately need here is simply the configuration of geomet
the results of clustering. As we will see in the experiments, howe features, that isfg, in the clustering results, and the pho-
ever, the requirement of correspondences of feature sets praeasetric invariant is used only as a cue in performing cluster
not so strict. The distribution of geometric features are normaig.
ized using the same transformation used in [28]. This operationAfter the clustering, an alignment process starts by using cer
has been confirmed, both mathematically and empirically, taids of clusters so derived to recover the transformation whic
generate a unique distribution up to a rotation, for feature segsnerated a novel view, the image data, from the model. It i
from a planar surface on the object, regardless of the surfdoewn that only 3-point correspondences suffice to recover th
orientation in 3D space. We note that even 3D object surfadesnsformation either by using linear combination of the model:
often tend to become planar in their visible surfaces, thus jU86] or a full 3D object model [22]. Therefore, we examine ev-
tifying the use of our transformation for 3D object surface. Wery possible combination of triples of cluster centroids of model:
also decorrelate the joint distributions of the different phot@nd data that are generated by clustering and select the best
metric invariants by a transformation defined similarly to thatansformation to generate the data from the model in terms ¢
for geometric features. The reason of this is, as we will seetimeir match. In our testing, which we will see later, this num-
the experiments, that the distribution of different photometrizer of clusters could be suppressed to less than ten. Further, \
invariants may be jointly highly correlative (for instance, seshould note that we only need to consider the combination c

T=A1Y20T, (29)
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model and data cluster centroids which have compatible védr y,
ues ofy or ¢. This means that adding photometric properties

contributes not only to the clustering but also to the selectivity i (G'/R) (GI/R))

of the features (cluster centroids). Therefore, considering the P (G'/R +GIi/Ri)’ (GI/R +Gi/Ri)’
computational complexity of conventional alignment approach - .

to recognition, this should bring a noticeable computational im- _ (B /R_) _ _ (E’ /R _) _ )
provement. (B'/R +BI/Rl)’ (B'/R +BI/Rl)

for ¢, indices (, j) € {(1, 2), (2, 1)} show the sides of the sur-
faces with respect to their boundaries, and the distance met

In this section, we show experimental results of our alg&etweenfy; and fy, for geometric feature positions 1, 2 is
rithm for identifying corresponding positions in different views.
Tests were conducted on natural pictures including 3D unoc- |y — fpo|? = min{| f3, — 5%+ 2 - 2,
cluded/occluded objects to be recognized, which are taken under ) )12 ) L2
varying light conditions and poses of objects. | for = fl™+ [ for— T2}, (30)

4. EMPIRICAL RESULTS

2

’

4.1. Preliminaries where|| - || denotes Euclidean distance. This apparently suppol
dthe symmetry on the sides of the surfaces over the boundar
o?sthe gray level and is invariant to the rotation of the object
within an image plane. The following experiments test our algc
1. Use an edge detector [6] after preliminary smoothing {gthm with both of the proposed invariants¢. For each feature
obtain edge points from the original gray level images. position, the associated invarignivas computed using color at-

2. Link individual edge points to form edge curve contoursyiputes of those two points mentioned above, that is, two points

3. Using local curvatures along the contours, identify fegttle away from the geometrical feature points along the contot
tures as corners and inflection points, respectively, by detectifgrmals in the opposite directions. As described earlier, sin
high curvature points and zero crossings based on the metlypgly level edges tend to coincide with color edges, the col
described in [22]. Before actually detecting such features, Wgjues collected from those two positions facing across the gr
smooth the curvatures along the curves [2]. level edges are usually quite different, thereby produgiiis-

In obtaining color attributes from corresponding positions wigibutions that spread over the feature space.
should note that the positions of the geometric features thus ex- ) )
tracted in different views do not always correspond exactly th2. Tests on Images without Occlusion

discrete image coordinate space. This is not only due to quanThe first experiment tests our algorithm on feature sets fro
tization error, but also because edges detected to derive fealyjfgost corresponding model and data regions. The region
points can shiftto the other side of the surface beyond the bouggction was done manually though we expect that this cou
ary under an objectrotation within animage plane. Note that tr§g gone automatically using several cues such as motion, col
is serious because the occurrences of gray level edges often tgadltexture (see, e.g., [31-34]). Then, through the normalizati
to coincide with color edges [5]. So, we cannot simply use th@ocess of the distribution of as well as geometric features as
color attributes of the geometrical feature points derived froﬂbscribedy becomes a complete invariant. Note that, howeve
gray level edges. To solve this problem, we picked color val ysing ¢ these processes, i.e., region extraction and norme
ues from two positions over the gray level boundary, which ajgation, are not necessarily required, as long as the backgrot
away from the geometric feature positions in the opposite dir§g-the picture happened to have different colors than the obje
tions along the local normals of the contours. Then, we used tWfjs js because is a complete invariant, unlike which needs
color values from both of the two positions. As we do not k”O\H_ormaIization to remove scale factors. This is also trueyfor

which side of an edge in one picture corresponds to which sidgjfen the ambient light has not been changed before and af
another, the distance metric between the photometric invarighg motion of the objects.

vectors associated with two different feature positions should|; would not be hard to see that identifying correspondin
be independent of the correspondences of those side;; Qf theﬁHé‘itions perfectly is not an easy task, because in doing tt
faces. Thus, the actual measure used for photometric invarigrf myst fight against two different kinds of instabilities: one ir
vector f, and the distance metric for two of those (that are usgracting geometric features, the most serious of which is mis
for computing the values for clustering criterion) are designggly features and the other substantially contained in photomet
such that they support the sTymmTetry on the sides of the Surfaﬁ?éperties of the image, such as the ones described in the ar
over the boundaries, = [f;", fZ'17, where ments for sensing limitations. Remember that, however, for o
_ S ultimate objective, which is recognizing objects using the ider

f,=(G'/R,B'/R) tified positions, only three correspondences are sufficient unc

Geometric features used for our algorithm can be extracte
follows:
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FIG. 6. Tests withy on Bandage-box pictures. Edge maps are shown with extracted geometric features superimposed on them in the first row. The first
(from the left) was taken under usual light conditions. The second and third pictures were taken, respectively, under a greenish and a bluish light at a differe
Identified corresponding positions using our algorithm are also superimposed by large closed circles. The figures in the second and third rows show the r¢
original and normalized distributions ef The intermediate results of clustering are shown in the fourth row figures in their normalized coordinate of the geom
features.

orthographic projection model [36] or weak perspective projethird) pictures were taken, respectively, under a greenish and
tion model [22]. Therefore, what must be observed in the folloviluish light at a different pose from the first one. Throughout
ing results is whether our algorithm could identify at least thihe rest of the paper, we refer to the figures by the order they a
minimum number of correspondences or not. First, the resutieesented from the left as above. The lighting conditions wer
of usingy as the photometric invariant are shown. changed by the same way as in the experiments presented
Section 2.4. The figures in the second and the third rows sho
Using y for photometric invariant. Figure 6 shows the re- the respective original and normalized distributiong ofn the
sults of obtaining feature group centroids on Bandage-box p&econd row, the horizontal axes of the figures ar&XpR while
tures, which includes characters of some different colors orthe vertical axes are fd8/R. These figures show how the in-
white base on the surface. All the pictures were taken to involvaeriant propertyy remained unchanged between the different
the same three surfaces of the box, which are to be used for phgures. When it performs well, the original distributionsyof
recognition. The figures in the first row from the top show thghould show similar shape over different views except for som
edge maps, with extracted geometric features superimposedsoale change along the axes. Then, those scale distortions (e
them with small closed circles. The first from the left (hereaftedjlation) should be corrected by the decorrelating process of th
first) picture was taken under usual light conditions. The secodstribution, thus ideally showing the same distribution within
fromthe left (hereafter, second) and third from the left (hereaftegtations. Note that even if the shape of thelistributions are
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distorted in addition to the dilation, we cannot conclude that tf
proposed invariants performed poorly. This is because unstal
results of the geometrical feature extraction will also distort th
shape of the distribution of the photometric properties.

This intermediate results of clustering are shown in the four
row in their normalized coordinate of the geometric features. |
the figures of the first row, identified corresponding position
using our algorithm are superimposed by large closed circlg
Therein, the accuracy of our algorithm is found to be fairly gooc
Apparently perturbations of identified positions were cause
partly by the unstable results of feature extraction, e.g., missi
features, rather than by clustering errors or incompleteness
the proposed photometric invariant. Note again that what is r
quired is that at least three of these features correspond betw
pairs of views. As seen in Fig. 6, there are five common featur
between the first two views, seven common features betwe
the first and third view, and four common features between tl
second and third views. Thus an alignment method will ea
ily correctly identify the pose base on the pairings of commo
triples of features and will reject poses based on other pairing
More importantly, the number of pairings to be tested has be:
drastically reduced, without losing the correct answer.

In Fig. 7, results on Spaghetti-box pictures taken in the san
way as the Bandage-box pictures are given. The surfaces of t
box include some textures including large/small characters. Tt
is a lightly cluttered texture compared with the Bandage-bc
surface. The first row shows the edges with extracted geom
ric features superimposed on them. The first picture was taken
under usual light conditions. The second and the third picturE&s.7. Testswithy on Spaghetti-box pictures. The surface of this box include
were taken, respectively, under a greenish and a bluish "qﬁfne colored textures including large/small characters. The pictures in the fi

. . . ow show the edges with extracted geometric features superimposed on it. T
at different poses. The second and the third row figures Shﬁ%’t picture (from the left) was taken under usual light conditions. The secor

the V?SpeCtive original a:nd nlo_rma_-lized diStribUtionVOfThe and third pictures were taken, respectively, under a greenish and a bluish ligh
algorithm could perform identification of the corresponding paxdifferent pose from the first one. The second and third rows show the respect

sitions fairly accurately as we see in the top figures. Similar tgnal and normalized distributions of The identified positions are depicted
the previous case, between any pair of views there are either f%ftrge closed circles in the figures of the first row. The algorithm could perfort
. feat that l t thod identification of the corresponding positions fairly accurately as we see in tt
SIX, or sev_en common reatures, so that an alignment metno er figures.
correctly find the true pose.
Similarly, in Fig. 8 the results on Doll (the same one used

. . ) %e distributions ofy are not affected by the change of pose o
Section 2.4) pictures are presented. Unlike the last two ex e object. The algorithm could perform identification of the cor

ples, the surface of this doll does not have man-made text% . i . . :
. onding positions fairly accurately as we see in the picture
such as characters, but only has color/brightness changes part 3}) ng posit Iy aced yasw ! pictu

due to the change of materials and partly due to depth variationsUsingg. The results of using as a photometric invariant
The surface is mostly smooth except for some parts including the same pictures used foare shown. Figure 9 presents the
hair, face, and finger parts. The pictures in the first row show thesults on Bandage-box pictures. The first row shows the ed
edges with extracted geometric features superimposed on themps with extracted geometric features superimposed on th
The first and second pictures were taken under usual light cavith closed circles. In the second row, respective distributior
ditions, but at different poses of the doll. The third picture waaf ¢ are shown. The horizontal axes are f6! (R')/(G' /R +
taken under a moderate greenish light plus usual room light. F&f/R'), while the vertical axes are foB{/R')/(B'/R' + B!/
the fourth picture, we used an extremely strong tungsten haRt), where {, j) € {(1, 2), (2, 1)}. As described already, since
gen lamp with a bluish cellophane covering it. The second am do not know the correspondences of the sides of the surfe
the third row figures show the respective original and normalizedter the edges (contours), we included properties from bo
distributions ofy. Comparing the shapes of original and normasbides of the edges. Consequently, we had 2-fold symmetric d
ized distributions ofy for the first and the second pictures, weributions ofy around its centroid as noted in the second rov
can confirmthat when the light conditions have not been chandiglires (see Eq. (25)). Wherperforms well as an invariant, this
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FIG. 8. Tests withy on Doll pictures. The surface of this doll does not have man-made texture like characters, but only has color/brightness variation part
to the changes of materials and partly due to depth variations. The surface is mostly smooth except for some parts including hairs, face, and finger parts.
row shows the edge maps with the extracted geometrical features superimposed on it with small closed circles. The first and second pictures (from the |
taken under usual light conditions, but at different poses of the doll. The third picture was taken under a moderate greenish light plus usual room light. For th
picture, we used an extremely strong tungsten halogen lamp with bluish cellophane covering it. The second and the third rows show the respective oric
normalized distributions of. The identified positions are depicted by large closed circles in the figures of the first row. The algorithm could perform identifice
of the corresponding positions fairly accurately as we see in the figures.

distribution should remain unchanged over different picturesn them are shown. The second and the third rows show the tl
Thus, the second row figures demonstrate a fairly good perfoespective original and the decorrelated distributions. &ince
mance for this picture. The third row shows their decorrelatédr the fourth picture we used extremely intensive blue light,
distributions. The intermediate results of clustering are givehe blue channel of many pixels were saturated. As a cons
in the fourth row figures in their normalized coordinate of thquence, the distribution @f was shrunk in the vertical direction
geometric features. In the figures of the first row, identified coas noted in the fourth picture of the second row. For these do
responding positions using our algorithm are also superimpogadtures, generally, the results of identifying corresponding po
by large closed circles. Thus, the accuracy of our algorithmsgtions withg were not as good as those withthough they were
found to be fairly good. not very bad. This is probably because as the surface colors
In Fig. 10 the results witlp on Spaghetti-box are given. Thethe doll vary quite smoothly in most parts, the distributiorpof
first row shows the extracted geometric features. The second aitinot spread well, so that it did not work so well to separate
the third rows show the original and the decorrelated distribakusters in terms of colors.
tions ofp. The performance af is almost perfect. As we see in
the pictures, the algorithm witl could perform identification
of the corresponding positions very well. In the following experiment we examine the tolerance of the
Figure 11 presents the results on Doll pictures. In the first roalgorithm against occlusions of local data parts. In this test
the edge maps with extracted geometric features superimposedusion was produced by manually removing nearly 20 to 359

4.3. Tests on Images with Occlusion
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FIG. 9. Tests withp on Bandage-box pictures. The pictures in the top show the edge maps with extracted geometric features superimposed on them.
picture (from the left) was taken under usual light conditions. The second and third pictures were taken, respectively, under a greenish and a bluish light at ¢
pose from the first one. The second and the third row figures show the respective original and decorrelated distripufitieSofirth row shows the intermediate

results of the clustering. The identified positions are depicted by large closed circles in the figures of the first row. The algorithm could perform identific:
the corresponding positions fairly accurately as we see in the upper figures.

of the whole object region. After extracing the photometric amdfopped region was not so large, e.g., up to around 35%, and 1
geometric features out of remaining regions, those features welgect surface has enough variety of colors.

decorrelated in the same way as in the tests on almost complete

data sets. Theoretically, in this case the invariance of the featurefJsing y for photometric invariant. Figure 12 shows the re-
between the different views no longer hold if we decorrelagilts on the Bandage-box pictures which are the same as the
the distributions, due to the collapse of the correspondencased for the first experiments, except that input image data he
However, we will see that this does not have a significant effedtops of the local regions. In the top, for our convenience, w
on the results of clustering, as long as the percentage of #gain include the result of a picture without any dropping o



3D OBJECT RECOGNITION 89

surface of the object Bandage-box, we note it has some loc
regions having dense feature distributions with consistent co
ors coming from the man-made textures. Thus, those local par
are stably detected even in the presence of occlusions of oth
remote areas.

Similarly, Fig. 13 shows the results on occluded Doll pictures
The top figure is the result on the complete object view, while
in the bottom figures results are given in which almost 20% o
the whole object regions are occluded: in the first view uppe
right part is dropped losing about 32% of the whole features, il
the second view the lower left is dropped losing 12% features
and in the third the upper left is removed which included 27%
features. Although the object Doll’s surface has almost regule
feature patterns rather than locally dense ones, the results
extracting the salient points correspond well over the differen
views.

From those results, we conclude that by using the invagiant
we can provide an algorithm that can still tolerate occlusions o
the object surfaces despite the fact that we can no longer supp
the complete invariance of the features.

Using@. Similar tests are conducted usipgas invariant.
We use the same set of pictures including the occluded ol
jects as used in the tests for In Fig. 14, we note the results
of detecting the salient features are fairly good, providing still
enough commonality: four common features between the firs
(top figure) and the second (bottom left figure), three betwee
FIG. 10. Tests withy on Spaghetti-box pictures. The surface of this box ins€cond and third (bottom right), and six between the first and th
cludes some colored textures including large/small characters. Top pictures shlyd.
the edges with extracted geometric features superimposed on it. The first picin Fig, 15, however, the accuracy of the correspondences «

ture was taken under usual light conditions. The second and third pictures WRS extracted features degrades. Specificallv. between the secc
taken, respectively, under a greenish and a bluish light and at a different p 9 =P Y,

The second and the third figures show the respective original and decorrelziaegttom left) and the third (bottom middle) views only one or two

distributions ofg. The identified positions are depicted by large closed circlgglausible correspondences were obtained which is not enou

in the figures of the upper row. The algorithm could perform identification dior alignment style recognition algorithm, though in other pairs

the corresponding positions fairly accurately as we see in the upper figures.of the views at least three correspondences were obtained. Tt

decrease in accuracy will be due to the fact that the surface

the object Doll has almost regular geometric feature distribu

i ) ) tions in the image space and that the color varies only in sma

regions. In the bottom left picture, the lower right corner of th reas on the surface: the color changes only on the boundari

object region was dropped, which was nearly 35% of the who % hair and face, face and body, and body and arms and leg
object area, which included about 20% of the feature poinigs \ e argued in the derivation of since it provides no selec-

The p|r$tuhre n thel bottom E'ghtfhﬁs a (rj]r(?p of the upp((jar_ Ieflt (:jotri‘ ity in places where color does not change, always returnin
ner which was almost 20% of the whole region and includgfle ’same value 0.5, it does not contribute to clustering in suc
23% feature points. Comparing with the results on the alm es

complete data sets presented in Fig. 6, we note the accuracy hus, from this experiment fag, it is not robust against oc-

detecting the salient feature positions, i.e., cluster Centmids’cilrﬂlsions when the surface of the object does not have enou
the remaining feature sets is almost the same, providing @Blor variations from place to place )

responding salient features sufficient to subsequent matching

process. The reason for this stability in spite of the break of the

invariance of the features is explained as follows: As argued in 5. DISCUSSION AND CONCLUSION

our previous work [28], since the clustering algoritikmean

we employed tries to detect local parts in which features areWe argued that by combining the proposed photometric in
concentrated. As long as those concentrations are not damaggaiants with geometric constraints, we can realize efficient an
by occlusions, it can still be detected no matter how other neeliable recognition of 3D objects. Specifically, we conductec
mote local areas are devastated. In terms of this, looking at #yeriments of identifying the corresponding feature position
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‘i,

FIG. 11. Tests withg on Doll pictures. The surface of this doll does not have man-made texture like characters, but only has color/brightness variation
the change of material. The surface is mostly smooth except for some parts including hairs, face, and finger parts. The pictures in the top row show the e
extracted geometric features superimposed on it. The first and second pictures were taken under usual light conditions, but at different poses of the doll.
picture was taken under a moderate greenish light and the fourth picture was taken under an extremely bright bluish light. The figures in the second anc
row show the respective original and decorrelated distributions @he identified positions are depicted by large closed circles in the figures of the upper r
The algorithm could perform identification of the corresponding positions fairly well as we see in the pictures.

over the different views taken under different conditions. In owf color and geometric properties and could provide at lea
method, we apply a geometric and photometric normalizationaominimum number of correspondences of positions necess:
bring features into a coordinate frame in which they are invariafur object recognitions. Although generally it might be better tc
up to a rotation in the feature space, and we use these invariextract object regions prior to feature detection and clusterir
properties to yield the same cluster configurations in the clysrocesses, we stress again that, as demonstrated, our met
tering results. The centroids of those groups can then be usedass not require the accuracy of those preliminary process
input to an alignment style recognition system, such as [22] so strictly. Moreover, as long as the background has differe
the linear combination of the model [36]. We note that the feaeolors from the object, we can ugewithout any preliminary
ture groups obtained (as shown by the large circles in the figuresycessing for region extraction. This also holds true/famen
are not perfect but in each case there was sufficient commonatitg ambient light has remained unchanged. The weakness o
of the extracted feature groups so that an alignment technigquemes out when the discontinuities of gray level do not coincic
would correctly identify the pose of the object. Of course, thiwith the discontinuities of colors. In this case, the distribution o
assumes that alignment will also be able to use verification @floes not spread very well. This emerged in the body parts of tl
the full model to distinguish correct from incorrect index setsloll. Compared with the conventional approaches of matchir
as was demonstrated in [28]. local features of which the number is of the order of several hul
In the experiments, we showed that our methods could talreds, the computational cost of our approach for recognizir
erate considerable occlusions in addition to the perturbatioBB objects should be very small. The time for identifying (abou
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Of course, it can still contribute to reducing the computationa
cost, since in general the number of color regions included i
the entire image could still be on the order of some tens. Bu
it appears to be less of a contribution than color segmentatic
to the reduction of computational cost. On the other hand, ot
method in some cases does not require color segmentation a
in others requires only rough extraction of the object region
As far as we have experienced, the feature detection that is n
required of Nayar’s method is not a hard task, and is not tim¢
consuming, as long as we do not require high accuracy. Afte
those preliminary processes, since the color invariant prope
ties are passed to the following clustering plus feature centroi
alignment process, our method can tolerate many confoundir
factors, such as inaccuracies of region and/or feature extractio
happening in the application to the real world. The clustering
plus feature centroid alignment process is very suitable for cor
pensating those uncertainties. We should also point out that,
be theoretical, the region centroids which they used for matct
ing cannot be used for 3D surfaces, while our feature centroic
can.

The weakness of both our and Nayar’s methods will be again:
large occlusions, especially on objects having small color varia
FIG. 12. Tests withy on occluded Bandage-box pictures. The result of #0NS. Since bothtry to produce corresponding partitions, wheth:

picture without any drop of regions is given on the top. In the bottom left picture,
the lower right corner of the object region was dropped, which was nearly 35%
of the whole object area, which included about 20% of the feature points. The
picture in the bottom right has a drop of the upper left corner which was almost
20% of the whole region and included 23% of the feature points.

10) corresponding feature positions, i.e., cluster centroids, was
around 0.2 s for pictures with several hundreds of features. In
addition, we can use the invariant photometric values in search-
ing for the correspondences between the derived feature points
in the model and the image, so that needless searches could be
further suppressed. As for the stability of our algorithm against
the change of the parameters included in the algorithm, we ac-
tually noted that when we changed the weiglthich balances
geometry and photometry in forming the extended features, the
clustering configuration perturbed slightly. This kind of instabil-

ity always accompanies when one includes a clustering process
in the algorithm. However, in alignment-style recognition this
can also be handled in its consistent framework by simply treat-
ing those perturbed candidates as just another candidate, thus
increasing the search space by just a few scale.

The differences and similarities of our approach and Nayar’s
are as follows. Their method used invariant photometric prop-
erties designed for neighboring points for regions each with
a consistent and a different color, so that the color segmenta-
tion is a prerequisite. In our view, this color segmentation is
an essential process to reduce the size of the search spac&Hér13. Testswithy onoccluded Doll pictures. The top figure is the result on
correspondences, and the photometric invariant was used JdhAgFomplete object view, while in the bottom figures results are given in whict

for further limitin ossible matches between the model al almost 20% of the whole object regions are occluded: in the first view the uppe
gp 0 ht part is dropped losing about 32% of the whole features, in the second vie

the data regiong. U'nfortunate'ly, however, .achieving Cpmpqu@ lower left is dropped losing 12% features, and in the third the upper left i
color segmentation is often quite hard and time consuming [33moved which included 27% of the features.
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in feature space or in image space, if the whole object area
damaged significantly we will never be able to obtain corre
sponding groupings. Also, their method and ours using the i
varianty will not work well on objects which do not have enough
variety of colors on the surfaces, as those invariants would pr
vide no information except on the color bounraries. In our expe
iments usingy on occluded Doll pictures, this happened exactl
and the accuracy of the correspondences of extracted featt
degraded.

An alternative way of using the proposed photometric invar
ant in recognition is just to incorporate it into the conventione

framework of recognition. For example, in selecting feature
to form hypothesized corresponding triples of features betwe
the model and the data, photometric properties can be usec
limit the possible matches between the model and the data fq
tures, trimming a bunch of needless combinations in the seat
space, thereby effectively reducing the computational cost. TH
kind of idea has been used in [30] for matching correspondir
regions.

FIG. 15. Tests withg on occluded Doll pictures. The top figure is the result

on the complete object view, while in the bottom figures results are given |
which almost 20% of the whole object regions are occluded: in the first vie\
the upper right part is dropped losing about 32% of the whole features, in tl
second view the lower left is dropped losing 12% of the features, and in the thi
the upper left is removed which included 27% of the features. The accura
of the correspondences of the extracted features degrades: only one or
correspondences were obtained between the second (bottom left) and the t
(bottom middle) views.
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