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In this paper we describe a new efficient algorithm for recognizing
3D objects by combining photometric and geometric invariants.
We derive some photometric properties that are invariant to the
changes of illumination and to relative object motion with respect
to the camera and/or the lighting source in 3D space. We show that
recognition does not require a full constancy of colors; rather, it
only needs something that remains unchanged under the varying
light conditions and poses of the objects. Combining the derived
color invariants and spatial constraints on the object surfaces, we
identify corresponding positions in the model and the data space
coordinates, using centroid invariance of corresponding groups of
feature positions. Tests are given to show the stability and efficiency
of our approach to 3D object recognition. c© 1998 Academic Press

1. INTRODUCTION

In a typical approach to model-based object recognition [16],
geometric models are matched against features extracted from
an image, where the features are typically localized geometric
events, such as vertices. Objects are considered to have under-
gone a transformation in space to yield a novel view for the
image. To solve for this transformation explicitly, recognition
methods use matches of features to hypothesize a transforma-
tion, which is used to align the model with the image and select
the best-fit pair of transformation and model. While this ap-
proach to recognition has achieved considerable success, there
still remain practical problems to be solved.

One such problem is the computational complexity of the
method. For example, even with popular algorithms (e.g.,
[22, 36]) to recognize an object withm features from an im-
age withn features, we must examinem3n3 combinations of
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hypotheses wherem andn can be easily on the order of several
hundreds in natural pictures. A second problem is the tolerance
of the algorithm to scene clutter. To verify the hypothesized
transformation, object recognition algorithms have to collect
evidence of actual correspondences characterized by that trans-
formation. This is usually done by looking for nearest image
features around the transformed model features, or equivalently
by casting votes to a hash table of parameters, such as affine
invariant parameters, leading to a correspondence (e.g., [27]).
In either case, when features are extracted from the image with
perturbations, and if the image is cluttered so that the feature
distribution is too dense, it is difficult to tell whether an im-
age feature thus detected is the one actually corresponding to
the model feature or if it just happened to fall close to the trans-
formed model feature. This issue has been extensively analyzed,
both theoretically and empirically, giving arguments about the
limitations of geometric feature based approaches to recognition
(e.g., [1, 16, 17]).

Given the limitations of conventional approaches to recog-
nition which depend solely on local geometrical features, it is
natural to consider cues other than simple local geometric fea-
tures. One such candidate is photometric information like color,
because we know that color often characterizes objects well and
it is almost invariant to change of view and lighting conditions.
In parallel with geometry, color properties of the object sur-
face should be a strong key to the perception of the surface.
However, most authors who have exploited color in recogni-
tion used it simply for segmentation, e.g., [5, 18, 33], mostly
because color is considered to be more contributive in building
up salient features on the object surface than in giving precise
information on the location and the poses of the objects. Ex-
ceptions include Swain [31, 32], Funt and Finlayson [10], and
Nayar and Bolle [30] who have used photometric information
more directly for recognition, the first two authors for indexing,
and the third for matching processes.

At the same time, however, they abandoned the use of local
geometric features, which are still very useful in predicting the
locations and the poses of the objects. Swain used only a color
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histogram for representing objects and matched it over the im-
age to identify the object and localize its presence in the image.
Funt and Finlayson improved this method by using their new
color invariant as the input to the histogram process, instead
of using the color values directly. Nayar and Bolle proposed a
photometric invariant and used it for matching regions with con-
sistent colors given the partitioned model and image derived by
some other color properties. Therefore, it requires a preliminary
segmentation of the image into regions having consistent colors.

In this paper, we attempt to exploit both geometric and pho-
tometric cues to recognize 3D objects, by combining them more
tightly. Our goal is to develop an efficient and reliable algorithm
for recognition by taking advantage of the merits of both geomet-
ric and color cues: the ability of color to generate larger and thus
more salient features reliably, as well as of adding more selectiv-
ity to features, which enables more efficient and reliable object
recognition, and the rich information carried by the set of lo-
cal geometric features that is useful in accurately recovering the
transformation that generated the image from the model. To re-
alize this, we have developed new photometric invariants which
are suitable for this approach. Then, we combine the proposed
photometric properties with the centroid alignment approach of
matching geometric feature groups in the model and the image
that we have recently proposed [28]. This strategy gives an effi-
cient and reliable algorithm for recognizing 3D objects. In our
testing, it took only 0.2 s to derive corresponding positions in the
model and the image for natural pictures. A preliminary version
of this work was presented in [29].

2. NOVEL PHOTOMETRIC INVARIANTS

In this section, we develop some photometric invariants that
can be used as strong cues in the recognition of 3D objects. The
motivation is to find simple cues that can be used reliably to
isolate portions of an object under a range of image acquisition
variations.

2.1. A Related Issue: Color Constancy

The invariants we develop here are related to the notion of
color constancy, that is—whether in human or machine vision
—the perceptual ability to determine the surface reflectance
property of the target object given the reflected light from the ob-
ject surface in the receptive field. If a color constancy algorithm
could perform sufficiently well, we could use it for object recog-
nition because it would provide a unique property of the object
itself. Unfortunately, however, color constancy is generally dif-
ficult to compute in practice. Actually, as far as we have checked
almost all authors have addressed problems in a strongly con-
strained world like Mondrian space [9, 14, 15, 21, 35, 37]: a 2D
space composed of several matte patches overlapping each other.
Then, based on the assumption that both the ambient light and
the surface reflectance for planar surfaces can be approximated
by linear combinations of a small number of fixed basis functions
[7, 24], the problem becomes manageable [9, 12, 14, 15, 35, 37].

Finlayson recently removed the assumption of linear model of
the ambient light by instead requiring surface observations un-
der two different illuminants [9]. However, all of those works
do not, at least explicitly, address the problem for 3D surfaces.
Thus, we tentatively conclude that conventional color constancy
algorithms cannot be used for recognizing a 3D world as pre-
sented. Contrastively, the invariant property to be presented here
is effectively computed from the images at the same time as ge-
ometrical features are extracted.

2.2. Novel Color Invariants

Let S(x, λ) be the spectral reflectance function of the object
surface atx, that is the property one has to recover in color
constancy, letE(x, λ) be the spectral power distribution of the
ambient light, and letRk(λ) be the spectral sensitivity of thekth
sensor, thenρk(x), the scalar response of thekth sensor channel
to be observed, is described as

ρk(x) =
∫

S(x, λ)E(x, λ)Rk(λ) dλ, (1)

where, generally,S can be an arbitrary function describing ge-
ometric and spectral properties of the surface atx andE could
also be an arbitrary function ofx andλ. The integral is taken
over the visible spectrum (usually from 380 to 800 nm). The
geometric factor of the object surface, that is usually considered
to include the surface normal and the relative angle of the in-
cident and reflecting light direction with respect to the surface
normal, is very crucial in the 3D world [20], which makes the
color constancy more confounding for 3D surfaces. Since it is
known that a spectrum distribution of the surface reflectance of
many materials depends very little on the surface geometry [26],
we may break up the surface reflectance functionS(x, λ) into the
product of geometryG(x) and spectrum propertyL(x, λ) such
thatS(x, λ) = G(x)L(x, λ). Then, Eq. (1) becomes

ρk(x) =
∫

G(x)L(x, λ)E(x, λ)Rk(λ) dλ

= G(x)
∫

L(x, λ)E(x, λ)Rk(λ) dλ. (2)

Assumption AE1: Constant ambient light assumption over the
entire surface. If we assume that the ambient light spectrum
distribution is constant over the entire surface of the objects,E
becomes simply a function of wavelengthλ. This assumption is
justified when the lighting source is sufficiently far away from
the object relative to the size of the object surface, and mutual
illumination and shadowing are not significant. This yields

ρk(x) = G(x)
∫

L(x, λ)E(λ)Rk(λ) dλ. (3)

Taking the ratios between two (i, j ) channel responses elimi-
nates the geometric factorG(x) which depends on the relative
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orientation of the object surface with respect to the camera and/or
the lighting source,

γi j ≡ ρi (x)

ρ j (x)
=
∫

L(x, λ)E(λ)Ri (λ) dλ∫
L(x, λ)E(λ)Rj (λ) dλ

. (4)

By the same reasoning, we have a similar form after the motion of
the object with respect to the camera and/or the lighting source,

γ ′i j ≡
ρ ′i (x

′)
ρ ′j (x′)

=
∫

L ′(x′, λ)E′(λ)Ri (λ) dλ∫
L ′(x′, λ)E′(λ)Rj (λ) dλ

, (5)

where primes show the function after the motion, and this prime
notation applies to any symbol expressing some quantity after
the motion of the object in the rest of this paper unless oth-
erwise described. In the following, we show that under some
assumptions on camera sensors or ambient light properties we
can derive photometric invariants fromγ ′s defined above that
can be used for recognizing 3D objects.

Assumption AS1: Frequency-selecting sensor assumption.
When we approximate the spectral absorption functionsR by
frequency-selective filtersR′ such that

R′i ≡
∫ βi

αi

δ(λ− u)Ri (u) du, (6)

that is centered around the peak wavelengthλi of the sensor
Ri , whereαi andβi (αi <λi <βi ) are lower and upper cut-off
wavelengths, respectively, we have

ρi (x) ≈
∫

L(x, λ)E(λ)R′i (λ) dλ (7)

=
∫

L(x, λ)E(λ)

[ ∫ βi

αi

δ(λ− u)Ri (u) du

]
dλ (8)

=
∫ βi

αi

[ ∫
L(x, λ)E(λ)δ(λ− u) dλ

]
Ri (u) du, (9)

where the geometrical termG has been omitted, and in the last
step the order of integrals has been interchanged.

Assumption AE2: Slow spectral variation of ambient light
assumption. Here, if we can assume that the spectral variation
of the ambient light is slow enough with respect to the effective
range of wavelength, i.e.,αi ≤ λ ≤ βi such thatE(λ) ≈ E(λi )
for αi ≤ λ ≤ βi , we have

ρi (x) = E(λi )
∫ βi

αi

L(x, u)Ri (u) du. (10)

Therefore, we obtain

γi j (x) ≈ E(λi )
∫ βi

αi
L(x, u)Ri (u) du

E(λ j )
∫ β j

α j
L(x, u)Rj (u) du

(11)

γ ′i j (x
′) ≈ E′(λi )

∫ βi

αi
L ′(x′, u)Ri (u) du

E′(λ j )
∫ β j

α j
L ′(x′, u)Rj (u) du

. (12)

Note thatL(x, λ) = L ′(x′, λ), because the spectrum property
of the surface reflectance would not be affected by the object
motion. Taking the ratio ofγ ’s before and after the motion and/or
the change of lighting conditions yields

γi j (x)

γ ′i j (x′)
≈ εi j , (13)

where

εi j = E(λi )

E(λ j )

/
E′(λi )

E′(λ j )
. (14)

As ε′s are independent of the position on the surface, Eqs. (13)
and (14) show that under the assumptions AE1, AE2, and AS1,
we obtain a photometric propertyγ that is invariant within a
consistent scaleε to the changes of the spectral property of the
ambient light and the orientations of the object surfaces. It is very
important to note that the assumption of slow spectral variation
of the ambient light must be used in conjunction with that of the
frequency selective filter. This is because as demonstrated above
“slow variation” is required only for the range of the wavelength
for which the sensors are effective. For instance, when we look
at the spectral components of the sun’s radiation observed on
the ground, the power is fairly constant above the wavelength
500 nm that is the ranges covered by Green and Red channels
in standard cameras [23].

Assumption AS2: Narrow band sensor assumption.Instead
of assuming slow spectral variation of the ambient light and
approximating the sensor by frequency-selective sensor, if we
place a narrow band filter in front of the camera sensor or when
we approximate the spectral absorption functionsR by narrow
band filters such thatRi (λ) ≈ si δ(λi−λ), wheresi is the channel
sensitivity and theλi is the peak of the spectral sensitivity of the
i th channel, we obtain ratios from (4) and (5):

γi j (x) ≡ ρi (x)

ρ j (x)
≈ si L(x, λi )E(λi )

sj L(x, λ j )E(λ j )
(15)

γ ′i j (x
′) ≡ ρ ′i (x

′)
ρ ′j (x′)

≈ si L(x, λi )E′(λi )

sj L(x, λ j )E′(λ j )
. (16)

Since the bandwidth over which a real camera sensor responds
varies from camera to camera, and the standard ones may not be
too narrow, this is only an approximation if we do not actually
use ones. Taking the ratio ofγ ’s before and after the motion
and/or the change of lighting conditions yields

γi j (x)

γ ′i j (x′)
≈ εi j , (17)
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where

εi j = E(λi )

E(λ j )

/
E′(λi )

E′(λ j )
. (18)

Again,εi j is independent of the position on the surface and de-
pends only on the incident light. Therefore, under the assump-
tions AE1 and AS2,γi j (x) can be regarded as approximately
invariant to the changes of illuminant conditions and to the mo-
tions of the object within a consistent scale factor over the object
surface.

In order to useγ ′s thus derived in Eqs. (11), (12) and (15),
(16) for object recognition, we might need to normalize its dis-
tribution because generally it is invariant only within a scale
factorε. As we describe in the next section, considering also the
correlative property betweenγi j ’s of natural objects, obtained
using different channel pairs (i, j ), we normalizeγ ’s by decor-
relating their joint distributions. This allows us to make full use
of the information fromγ ’s as well as to remove the scale factor
thus deriving an invariant.

Assumption AE3: Only locally constant ambient light
assumption. Now, let us assume only a locally constant ambi-
ent light spectrum distribution, instead of the globally constant
one over the object surface:E(xl , λ)= E(xm, λ) for nearby po-
sitions xl , xm. Then, accordingly, Eqs. (11) and (12) must be
modified, respectively, as

γi j (x) ≈ E(x, λi )
∫ βi

αi
L(x, u)Ri (u) du

E(x, λ j )
∫ β j

α j
L(x, u)Rj (u) du

(19)

γ ′i j (x
′) ≈ E′(x′, λi )

∫ βi

αi
L ′(x′, u)Ri (u) du

E′(x′, λ j )
∫ β j

α j
L ′(x′, u)Rj (u) du

. (20)

By the same reason, Eqs. (15) and (16) should be

γi j (x) ≡ ρi (x)

ρ j (x)
≈ si L(x, λi )E(x, λi )

sj L(x, λ j )E(x, λ j )
(21)

γ ′i j (x
′) ≡ ρ ′i (x

′)
ρ ′j (x′)

≈ si L(x, λi )E′(x′, λi )

sj L(x, λ j )E′(x′, λ j )
. (22)

Incorporating the assumption, that is,E(xl , λ)= E(xm, λ) and
E′(x′l , λ)= E′(x′m, λ), we again have the following invariantψ lm

i j
for both cases; i.e., under the assumptions AE1, AE2, and AS1
(Eqs. (11), (12)),

ψ lm
i j ≡

γi j (xl )

γi j (xm)

≈
∫ βi

αi
L(xl , u)Ri (u) du∫ β j

α j
L(xl , u)Rj (u) du

/∫ βi

αi
L(xm, u)Ri (u) du∫ β j

α j
L(xm, u)Rj (u) du

, (23)

and under AE1 and AS2 (Eqs. (15), (16)),

ψ lm
i j ≡

γi j (xl )

γi j (xm)
≈ L(xl , λi )

L(xl , λ j )

/
L(xm, λi )

L(xm, λ j )
. (24)

The quantityψ is invariant, that isψ lm
i j ≈ ψ lm′

i j , because it de-
pends only on surface properties that remain unchanged:
L(x, λ) = L ′(x′, λ).However,ψ lm

i j is obviously sensitive to per-
turbations contained in the image signals, especially when one
makes the values ofγi j (xm) (the denominator in (23) or (24))
close to zero. To stabilize this, we adopt a normalized measure
in place ofψ itself:

ϕlm
i j ≡

γi j (xl )

γi j (xm)+ γi j (xl )
. (25)

It is easy to seeϕ ≈ ϕ′, that is,ϕ is approximately invariant to
the change of illumination conditions and of orientations of the
object surfaces. Note that forγi j we cannot derive this kind of
normalized invariant formula.

An important thing to remember here is that in order to make
ϕ useful, the surface reflectance properties associated with two
nearby positionsxl , xm to be picked must be sufficiently differ-
ent from each other. Otherwise, even if an invariant ofϕ in (25)
holds true, as theγ ’s tend to have the same value forxl , xm,
theϕ’s always return values that are close to 0.5, so that it does
not provide any useful information involved in their color prop-
erties. Fortunately, as we describe later, when color properties
are picked from different sides of brightness boundaries, this
situation may often be avoided.

In summary, we have derived two ratiosγ, ϕwhich are general
values that are distinctive to the objects from which they arise
and are not influenced by environmental factors such as lighting.
They both correspond to simple ratios, which are easily extracted
from imagery. It may be claimed that we could show a way to
derive them using only frequency selective sensor assumption
for the ambient light of slow spectral variation, without nessesar-
ily using narrow band sensors as are often assumed in deriving
conventional invariants. This combination of the assumptions
can also be used for those other invariants which are described
in the next section [11, 30], allowing them to derive invariants
without using narrow band filters. We will actually demonstrate
the performance of the proposed invariant computed using the
RGB outputs of the usual camera sensors in the experiments.

2.3. Related Photometric Invariants

A related invariant to our photometric invariants was pro-
posed earlier based on anopponent color modelby Faugeras for
image processing applications [8]. The opponent color model
was first introduced by Hering [19] to describe the mecha-
nism of human color sensation. He advocated that the three
pairs Red–Green, Blue–Yellow, White–Black form the basis of
human color perception. A simple mathematical formulation
of this [3], which is a linear transformation ofR,G, B, was
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used as a color invariant in [31, 32] for indexing 3D objects:
[R-G,Bl-Y ,W-Bk]T = L[R,G,B]T , whereL is a linear trans-
formation. A similar formalization of an opponent color model
was also used for the correspondence process in color stereopsis
[5]. However, there are no theoretical explanations of the linear
transformation model for the full 3D object surfaces, because,
as we noted in the derivation of our invariants, the surface ori-
entation in 3D space with respect to the lighting source and the
camera is an unignorable factor (see also [20]) in deriving in-
variants for a 3D world, and it is never removed by any linear
transformation.

Unlike this linear transformation case, Faugeras’ form is the
logarithm of the ratios between different channel responses for a
chromatic model, so is similar to ours, and is the logarithm of the
products of threeR,G, B responses but with low-pass filtering
accounting for lateral inhibition for achromatic responses.

In [4] a unique illuminant-invariant was proposed which, as-
suming the existence of at least four local distinct color surfaces,
uses the volumetric ratio invariant of the parallel pipe generated
by the responses of the three receptors. It seems to us, how-
ever, that the assumption of four local distinct color surfaces is
demanding too much in practice.

Recently, a new photometric invariant was proposed for ob-
ject recognition by Nayar and Bolle [30]. When its application
was limited to only geometrically continuous smooth surfaces,
it used as an invariant the ratio between the channel intensities
of two adjacent points through a narrow band filter. This invari-
ant ratio is almost identical to our invariantψ that is actually
the ratio of theirs in two channels. The effect of taking the ra-
tio in different color channels is that it removes the geometric
factor of the surface reflectance, so the surface smoothness is
not required. Another new invariant was proposed by Funt and

FIG. 1. Tests of invariant on convex polyhedron. The pictures show the convex polyhedron in different poses: left posePA, right posePB. This object is composed
of 6 planar surface patches each with different surface orientation. On each side of the boundary of adjacent surfaces, several matte patches with different colors
were pasted. Then, we picked corresponding positions manually within each colored patch in both pictures. The selected positions within patches are depicted by
crosses.

Finlayson for use in indexing [11]. This invariant is defined ei-
ther as the first derivative or the Laplacian of the logarithm of
a single color channel, which in essence is the color ratios be-
tween neighboring points, so it is basically the same as Nayar
and Bolles’.

2.4. Experiments

Experiments were conducted to examine the accuracy of the
proposed photometric invariants. The goal here is to show that
the ratios we described remain invariant over changes in image
acquisition and thus are indicative of properties of the object,
not the environment.

Figure 1 shows pictures of a man-made convex polyhedron
composed of six planar surfaces each with a different surface
orientation. The left picture is a front view of the polyhedron,
hereafter posePA, while in the right picture the object is rotated
around the vertical axis (y-axis) by about 30◦, hereafter pose
PB. On each side of the boundary of adjacent surfaces, several
matte patches with different colors were pasted. Then, we picked
corresponding positions manually within each colored patch in
the pictures for the poses (PA, PB). The selected positions within
patches are depicted by crosses in the pictures. We used manually
selected points because we want to verify that our invariants
perform correctly given a correct point correspondence. Later,
we will worry about the performance when there is error or
uncertainty in the correspondence.

To test the accuracy of the proposed invariantsγ, ϕ under
varying illuminant conditions and surface orientations of the
object with respect to the illuminant and the camera, we took
three pictures: the first at the posePA under the usual lighting
conditions (PA and LU ), the second at the posePB under a
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greenish light (PB andLG), and the third at the posePB but under
a bluish light (PB andL B). To change the source light spectrum,
i.e., to get greenish or bluish light, we covered a tungsten halogen
lamp with cellophane of colors green and blue.

Forϕ, the surface positions within planar patches facing over
the boundaries of planar surfaces were used as neighboring po-
sitions to satisfy the requirement of (locally) constant ambient
light. To compute the invariants in practice, we used the ratios
G/R, B/R for γ andϕ1 = (G1/R1)/(G1/R1 + G2/R2), ϕ2 =
(B1/R1)/(B1/R1+B2/R2) forϕ, whereR,G, B are the outputs
from the sensor channels, respectively, of Red, Green, Blue, and
the indices attached toR,G, B show the sides of the surfaces
used for computingϕ’s with respect to their boundaries.

As described previously, in our theory, when we use the
RG Bchannel outputs to compute invariants, instead of outputs
through the exact narrow band filters, the assumption of slow
spectral variation of the ambient light together with frequency
selective filter of the sensor must be satisfied or an extreme ap-
proximation of the sensors by narrow band filters must be taken.
The following results show that the values ofγ andϕ computed
using RG Bare fairly invariant to the changes of the illumina-
tion conditions as well as the surface orientations and demon-
strate that some of those requirement we have described may be
satisfied.

In Table 1, the correlation coefficients between the sets of
values for each invariant measure computed at corresponding
positions in different pictures are given, that are measured by
the formula

TABLE 1
Correlation Coefficients between the Sets of the Values of the

Color Properties from Different Pictures of Test-Object

PA andLU − PA andLU −
PB andLG PB andL B

R 0.988368 0.989877
G 0.967951 0.974081
B 0.946251 0.882816
R− G 0.985398 0.985687
B− Y 0.935039 0.908867
$1 = (R1 − R2)/(R1 + R2) 0.991229 0.958538
$2 = (G1 − G2)/(G1 + G2) 0.988581 0.961559
$3 = (B1 − B2)/(B1 + B2) 0.979000 0.945734
γ = G/R 0.978163 0.988289
γ = B/R 0.962186 0.907126
ϕ1 = (G1/R1)/(G1/R1 + G2/R2) 0.997766 0.997532
ϕ2 = (B1/R1)/(B1/R1 + B2/R2) 0.991843 0.988893

Note. The correlation coefficients between the sets of values of the proposed
invariants from pictures taken under different light conditions and at the different
poses of the object are given to show how much they remain unchanged within a
consistent scale. For comparison, other color properties including raw (R,G, B),
a linear-transformation implementation of the opponent color model [3], and the
invariant$ proposed by Nayar and Bolle [30], which was computed usingRG B
output as$1= (R1−R2)/(R1+R2),$2= (G1−G2)/(G1+G2),$3= (B1−
B2)/(B1 + B2), are also included.

√
C2
αα′

CααCα′α′
, (26)

where theCab’s (a, b ∈ {α, α′}) are the covariances between
the sets of the values of the measureα (e.g.,γ ) before (α) and
after (α′) the motion of the objects or the changes of the lighting
conditions, which is defined by

Cab =
∑

P(a, b)(a− ā)(b− b̄), (27)

wherex̄ is the average of the measurex, P(a, b) is the probabil-
ity density function, and the sum is taken over all corresponding
values of the measuresa, b. A high correlation, that gives a
value close to 1, shows that the proposed invariant measures
remained unchanged within a consistent scale over the set of
positions between the two pictures, while a low correlation, that
gives a value close to 0, means that the values of the measures
changed in an irregular manner. For comparison, other color
properties including raw (R,G, B), a linear-transformation im-
plementation of the opponent color model [3], and the invari-
ant$ proposed by Nayar and Bolle [30], which is defined by
$ = (ρ1 − ρ2)/(ρ1 + ρ2), whereρi is ideally a narrow band
filter output at positioni , are also included. In this experiment,
to implement$ , we simply used the RGB output from the same
pair of positions used to compute our invariantϕ, instead of the
narrow band filter output:$1 = (R1 − R2)/(R1 + R2),$2 =
(G1 − G2)/(G1 + G2),$3 = (B1 − B2)/(B1 + B2). Since the
two faces of the convex polyhedrom used for computing$ have
some jumps of the orientation on their boundaries though the in-
variant$ is designed to be used for locally smooth surfaces, this
is only a test of how it can tolerate against the rough surfaces.
From the table, we note between the first and the second pictures
the invariantsϕ and$ performed perfectly, though other prop-
ertiesR,G, B, R−G, B−Y, γ = G/R, B/R, were also good.
This means those properties may have been changed but only
within a consistent scale between the different pictures (recall
the property ofγ being invariant within a scale factor). Looking
at the results using the first and third pictures, however, we note
that the property$ degraded, whileϕ was almost perfect. To
see how far the color properties remained unchanged in addi-
tion to the correlative relation, in Fig. 2 the actual distribution
of the color properties are plotted, where the horizontal axes
are the values for the posePA, while the vertical axes are those
for the posePB. If the color measures remained unchanged be-
tween the two pictures before and after the motions of the ob-
ject and/or the changes of the light conditions, the distributions
should present linear shapes, and their slopes should be close to
1. Indeed, the measureϕ is certainly found to remain almost un-
changed under varying light conditions, while the propertyγ =
G/R, B/R is found to change. The property$ also remains
almost unchanged. The biases of the slopes ofγ either toward
the horizontal or vertical axes indicate that the light spectrum
has been changed between the two compared pictures.
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FIG. 2. Distributions of invariants on convex polyhedron. The left two columns are from pictures taken underPA and LU (horizontal axis) andPB and LG

(vertical axis), and the right two columns are from pictures taken underPA andLU (horizontal axis) andPB andL B (vertical axis). The rows in each of the two
columns are, respectively, top left and right,$2 = (G1 −G2)/(G1 +G2) and$3 = (B1 − B2)/(B1 + B2); middle left and right,G/R andB/R; bottom left and
right,ϕ1 = (G1/R1)/(G1/R1 + G2/R2) andϕ2 = (B1/R1)/(B1/R1 + B2/R2).

Figure 3 shows the performance ofγ constancy against the
change of the object pose, under the same lighting conditions. In
other words, unlike in the last experiments, this time the ambient
light has not been changed for both of the two pictures, and
only the object pose has been changed. For comparison, the
performance ofB− Y (linear-trans implementation for blue vs
yellow, the second figure from the left) as well as rawB (blue,
the first one) are also shown. Note that what should be observed
here is how the slopes of the distributions are close to 1. Except
for the two samples in the upper area in the figure (the fourth
picture),γ = B/R is found to be almost unchanged between the
two pictures. The two exceptional samples were from patches
with almost saturated blue channel in the picture at posePB. The
performance ofγ =G/R (the third figure) is almost perfect. On
the other hand,B − Y andB are perturbed around the slope of

1, which is probably caused by the perturbed orientations of the
patches. This suggests thatγ may be used for object recognition
without applying any normalization process, so that extracting
object regions might not be a prerequisite, as long as the lighting
conditions are not changed.

Similarly, in Table 2 the results of the similar tests as above but
on a natural object, a doll which is shown in Fig. 4, are given, for
which both the ambient light and the object pose were changed.
We refer to the pose of the doll similarly to the above tests on
the test-object: left posePA, right posePB. The first picture was
taken under a usual lighting conditions from the oblique angle
(PA andLU ), the second and third were taken, respectively, un-
der a greenish and a bluish light from the front angle (PB and
LG, PB and L B). Corresponding positions were picked manu-
ally as done in the previous tests. As the surface colors varied
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FIG. 3. Tests ofγ at different poses of object but under the same illuminant conditions. The first from the left, distribution of Blue; the second,B− Y (Blue vs
Yellow); the third,G/R; the fourth,B/R. The horizontal axis is for the posePA and the vertical axis is for the posePB. Except for the two samples in the upper
right area of the distribution,γ = B/R is found to be almost unchanged in both of the pictures because the slope is almost 1, whileB − Y andB are perturbed
around the slope of 1. Those two exceptional samples were from patches with almost saturated blue channel in the picture at posePB. The distribution ofγ = G/R
is almost perfect. This gives the evidence thatγ may be used for object recognition without applying any normalization process, so that extracting object regions
might not be a prerequisite as long as the lighting conditions are not changed.

smoothly, we cannot expect that we could pick up corresponding
points accurately. Thus, unwanted errors could be introduced in
this operation. This time forϕ, two positions which are closest
to each other among the selected points are used. The property
$ is not included in this test, since it was very hard to find a pair
of positions where surface normals do not have a big change but
have a change of colors (Note. The values of invariant$ such
asϕ will be close to 0 in places where colors do not change).
In these tests,R,G, B performed poorly. The linear model
R−G, B−Y, andγ =G/R, B/Rperformed well again, though
γ was better. The measureϕ is quite stable again. Unlike the re-
sults on the test-object, however, since the surface of the doll,
especially in the body parts, had similar surface colors in nearby

TABLE 2
Correlation Coefficients between the Sets of the Values of the

Color Properties from Different Pictures of the Doll

PA andLU− PA andLU−
PB andLG PB andL B

R 0.764343 0.819267
G 0.588161 0.881416
B 0.936572 0.843604
R− G 0.764240 0.939152
B− Y 0.948642 0.877519
G/R 0.779377 0.944164
B/R 0.962186 0.895180
ϕ1 = (G1/R1)/(G1/R1 + G2/R2) 0.996245 0.998781
ϕ2 = (B1/R1)/(B1/R1 + B2/R2) 0.988840 0.983675

Note. The results on a natural object, a doll, are given. The first picture was
taken under usual lighting conditions from the oblique angle (PA and LU ),
the second and third were taken, respectively, under a greenish and a bluish
light from the front angle (PB and LG, PB and L B). This time forϕ (i.e.,
ϕ1= (G1/R1)/(G1/R1+G2/R2), ϕ2= (B1/R1)/(B1/R1+ B2/R2)) two po-
sitions which are closest to each other are used. In this test,R,G, B were very un-
stable. The linear modelR−G, B−Y, γ =G/R, B/R did perform well again,
thoughγ was better. The measureϕ is quite stable again.

positions, the distribution ofϕ (i.e., ϕ1= (G1/R1)/(G1/R1 +
G2/R2), ϕ2= (B1/R1)/(B1/R1+ B2/R2)) did not spread very
well, thus having a weak selectivity photometrically, as seen
in Fig. 5. Therefore, when picking two nearby positions forϕ

for object recognition, it is important that they have different
spectral reflectance. This will also be true in using the invariant
proposed by Nayar and Bolle. We should note that the property
γ does not require this condition, though in terms of invariance
it is not superior to$ or ϕ. For comparison, the values ofγ are
also plotted in Fig. 5.

2.5. Sensing Limitations

As we note in the examination above, the invariant properties
γ, ϕ are sometimes perturbed around the ideal values which sup-
port our theories. This is caused mainly by the limited dynamic
range of the sensors of the camera. These effects includecolor
clipping and bloomingas argued carefully in [26]. When the
incident light is too strong and exceeds the dynamic range of the
sensor, the sensor cannot respond to that much input and thus
clips the upper level beyond the range. This means the sensor
no longer correctly reflects the intensity of the light. Note that
this is very serious for our invariants, because bothγ andϕ are
ratio invariant, and a basis of their theory is, whether locally or
globally, the consistency of the amount of light falling onto the
concerning positions on the object surfaces. Here, our natural
and important assumption is that this consistency is correctly
reflected in the responses of the sensors. Therefore, if the sensor
response does not meet this assumption, our theory no longer
holds. The same arguments also hold for the blooming effect.
When the incoming light is too strong to be received by the sen-
sor element of the CCD camera, the overloaded charge will travel
to the nearby pixels, thus crippling the responses of such pixels.

2.6. Summary

In this section, we have developed two different photometric
invariants and demonstrated their accuracy on a set of natural
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FIG. 4. Tests of invariant on natural pictures. The pictures show a doll at different poses: left pose A, right pose B. We picked corresponding positions in both
views. The selected positions are depicted by crosses.

images. In the next section, we turn to the question of how to
utilize these photometric constraints in conjunction with geo-
metric constraints, for use in recognition.

3. COMBINING PHOTOMETRIC AND GEOMETRIC
CONSTRAINTS FOR 3D OBJECT RECOGNITION

In this section, we describe how we can exploit the photomet-
ric invariant developed in the preceding section for recognizing

FIG. 5. The distributions of invariant measures on Doll pictures. The left two columns are from pictures taken underPA and LU (horizontal axis) andPB

andLG (vertical axis), and the right two columns are from pictures taken underPA andLU (horizontal axis) andPB andL B (vertical axis). The rows in each
two columns are, respectively, top left and right,H andS; middle left and right,G/R and B/R; bottom left and right,ϕ1 = (G1/R1)/(G1/R1 + G2/R2) and
ϕ2 = (B1/R1)/(B1/R1 + B2/R2).

3D objects. The basic idea is to combine it with the centroid
alignment approach we recently proposed in [28].

3.1. Centroid Invariant of Geometric Feature Groups

We argued in [28] that when an object undergoes a linear trans-
formation caused by its motion, the centroid of a group of 3D
surface points is transformed by the same linear transformation.
Thus, it was shown that under an orthographic projection model,
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centroids of 2D image geometric features always correspond
over different views regardless of the 3D pose of the 3D ob-
ject in space. This is true for any object surfaces (without self-
occlusion). Note that this property is very useful, because if
we have some way to obtain corresponding feature groups over
different views, we can replace simple local features used for
defining alignment in conventional methods by those groups,
thereby reducing computational cost. We demonstrated the ef-
fectiveness of this approach to object recognition on natural as
well as simulation data [28].

3.2. Grouping by Photometric and Geometric Constraints

While the idea of using centroids of similar groups dramat-
ically reduces the complexity of alignment-style recognition
schemes, we need to find reliable ways of extracting such groups.
One set of methods was described in [28]. Here we focus on
amplifying this approach by utilizing our photometric invari-
ants to obtain corresponding groups of 2D geometric featu-
res.

In [28], to obtain corresponding geometric feature groups, a
clustering operation, in which the clustering criterion was rota-
tionally invariant, was applied in the coordinates which had been
normalized up to a rotation prior to a clustering. This time, we
again use a clustering technique to obtain corresponding geo-
metric feature groups in different views. Our intention is to yield
corresponding cluster configurations using a criterion incorpo-
rating spatial proximity constraints of geometric features and
the invariance of their associated photometric invariants. There-
fore, we assume that surface colors (surface spectral reflectance)
vary mostly from place to place. In other words, within some
local areas surface colors are almost consistent. Note that this
assumption should be justified for most object surfaces, because
otherwise we must always be seeing diffused colors over the
surface and thus always having difficulty in trying to distinguish
surfaces.

When we are provided with geometric and photometric fea-
ture sets from almost corresponding model and data points, we
normalize those feature distributions using the decor-relating
transformation presented in [28]. This operation performs invari-
ance between the model and data features and brings stability in
the results of clustering. As we will see in the experiments, how-
ever, the requirement of correspondences of feature sets proves
not so strict. The distribution of geometric features are normal-
ized using the same transformation used in [28]. This operation
has been confirmed, both mathematically and empirically, to
generate a unique distribution up to a rotation, for feature sets
from a planar surface on the object, regardless of the surface
orientation in 3D space. We note that even 3D object surfaces
often tend to become planar in their visible surfaces, thus jus-
tifying the use of our transformation for 3D object surface. We
also decorrelate the joint distributions of the different photo-
metric invariants by a transformation defined similarly to that
for geometric features. The reason of this is, as we will see in
the experiments, that the distribution of different photometric
invariants may be jointly highly correlative (for instance, see

the second row of Fig. 6), which, from the information theo-
retic point of view, means that if they are used directly they are
less informative than they could be, as a result of reducing the
dimension of the distributions.

Thus, we define the extended feature vectorf for clustering
as

f = [ f T
g , s fT

p

]T
, (28)

where fg is the 2D geometric feature composed of spatial co-
ordinatesfg= (x, y)T of a feature point in thexy image plane,
f p is the vector of photometric invariant properties we proposed
in the preceding sections, ands is a balancing parameter. Then,
the distribution of this featuref is transformed (normalized) by
a decorrelating transformationD= diag{Tg, Tp} whereTg, Tp

are the matrices defined as follows and, respectively, decorrelate
the distributions offg and f p,

T = 3−1/28T , (29)

where8 and3 are eigenvector and eigenvalue matrices of the
covariance matrix offg or f p, [·]− 1

2 denotes the square root
matrix of a positive definite matrix, and [·]T is the matrix trans-
pose. It should be noted that the invariance of the distribution
of f p, which is composed ofγ or ϕ, up to a rotation is never
damaged through this operation. Moreover, by this normalizing
operation all the physical dimensions included in the geometric
and photometric features, such as image resolution and power
of the light energy, are removed. Therefore, in constructing a
high dimensional feature vector for clustering, we can provide a
consistency between the physical dimensions of the components
of features. So, in theory, even when the physical properties of
the image change, the balancing parameters may not have to be
readjusted.

3.3. Implementation

We employ theKmeanclustering algorithm, in which the cri-
terion is rotationally invariant, to obtain corresponding feature
groups in the feature set from different views. Note that what
we ultimately need here is simply the configuration of geomet-
ric features, that isfg, in the clustering results, and the pho-
tometric invariant is used only as a cue in performing cluster-
ing.

After the clustering, an alignment process starts by using cen-
troids of clusters so derived to recover the transformation which
generated a novel view, the image data, from the model. It is
known that only 3-point correspondences suffice to recover the
transformation either by using linear combination of the models
[36] or a full 3D object model [22]. Therefore, we examine ev-
ery possible combination of triples of cluster centroids of models
and data that are generated by clustering and select the best-fit
transformation to generate the data from the model in terms of
their match. In our testing, which we will see later, this num-
ber of clusters could be suppressed to less than ten. Further, we
should note that we only need to consider the combination of
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model and data cluster centroids which have compatible val-
ues ofγ or ϕ. This means that adding photometric properties
contributes not only to the clustering but also to the selectivity
of the features (cluster centroids). Therefore, considering the
computational complexity of conventional alignment approach
to recognition, this should bring a noticeable computational im-
provement.

4. EMPIRICAL RESULTS

In this section, we show experimental results of our algo-
rithm for identifying corresponding positions in different views.
Tests were conducted on natural pictures including 3D unoc-
cluded/occluded objects to be recognized, which are taken under
varying light conditions and poses of objects.

4.1. Preliminaries

Geometric features used for our algorithm can be extracted as
follows:

1. Use an edge detector [6] after preliminary smoothing to
obtain edge points from the original gray level images.

2. Link individual edge points to form edge curve contours.
3. Using local curvatures along the contours, identify fea-

tures as corners and inflection points, respectively, by detecting
high curvature points and zero crossings based on the method
described in [22]. Before actually detecting such features, we
smooth the curvatures along the curves [2].

In obtaining color attributes from corresponding positions we
should note that the positions of the geometric features thus ex-
tracted in different views do not always correspond exactly in
discrete image coordinate space. This is not only due to quan-
tization error, but also because edges detected to derive feature
points can shift to the other side of the surface beyond the bound-
ary under an object rotation within an image plane. Note that this
is serious because the occurrences of gray level edges often tend
to coincide with color edges [5]. So, we cannot simply use the
color attributes of the geometrical feature points derived from
gray level edges. To solve this problem, we picked color val-
ues from two positions over the gray level boundary, which are
away from the geometric feature positions in the opposite direc-
tions along the local normals of the contours. Then, we used two
color values from both of the two positions. As we do not know
which side of an edge in one picture corresponds to which side in
another, the distance metric between the photometric invariant
vectors associated with two different feature positions should
be independent of the correspondences of those sides of the sur-
faces. Thus, the actual measure used for photometric invariant
vector f p and the distance metric for two of those (that are used
for computing the values for clustering criterion) are designed
such that they support the symmetry on the sides of the surfaces
over the boundariesf p = [ f 1T

p , f 2T

p ]T , where

f i
p = (Gi /Ri , Bi /Ri )

for γ ,

f i
p =

(
(Gi /Ri )

(Gi /Ri +G j /Rj )
,

(G j /Rj )

(Gi /Ri +G j /Rj )
,

(Bi /Ri )

(Bi /Ri + B j /Rj )
,

(B j /Rj )

(Bi /Ri + B j /Rj )

)
for ϕ, indices (i, j ) ∈ {(1, 2), (2, 1)} show the sides of the sur-
faces with respect to their boundaries, and the distance metric
betweenf p1 and f p2 for geometric feature positions 1, 2 is

| f p1− f p2|2 = min
{∥∥ f 1

p1− f 1
p2

∥∥2+ ∥∥ f 2
p1− f 2

p2

∥∥2
,∥∥ f 1

p1− f 2
p2

∥∥2+ ∥∥ f 2
p1− f 1

p2

∥∥2}
, (30)

where‖·‖ denotes Euclidean distance. This apparently supports
the symmetry on the sides of the surfaces over the boundaries
of the gray level and is invariant to the rotation of the objects
within an image plane. The following experiments test our algo-
rithm with both of the proposed invariantsγ, ϕ. For each feature
position, the associated invariantϕ was computed using color at-
tributes of those two points mentioned above, that is, two points a
little away from the geometrical feature points along the contour
normals in the opposite directions. As described earlier, since
gray level edges tend to coincide with color edges, the color
values collected from those two positions facing across the gray
level edges are usually quite different, thereby producingϕ dis-
tributions that spread over the feature space.

4.2. Tests on Images without Occlusion

The first experiment tests our algorithm on feature sets from
almost corresponding model and data regions. The region ex-
traction was done manually though we expect that this could
be done automatically using several cues such as motion, color,
and texture (see, e.g., [31–34]). Then, through the normalization
process of the distribution ofγ as well as geometric features as
described,γ becomes a complete invariant. Note that, however,
in usingϕ these processes, i.e., region extraction and normal-
ization, are not necessarily required, as long as the background
in the picture happened to have different colors than the object.
This is becauseϕ is a complete invariant, unlikeγ which needs
normalization to remove scale factors. This is also true forγ

when the ambient light has not been changed before and after
the motion of the objects.

It would not be hard to see that identifying corresponding
positions perfectly is not an easy task, because in doing that
we must fight against two different kinds of instabilities: one in
extracting geometric features, the most serious of which is miss-
ing features and the other substantially contained in photometric
properties of the image, such as the ones described in the argu-
ments for sensing limitations. Remember that, however, for our
ultimate objective, which is recognizing objects using the iden-
tified positions, only three correspondences are sufficient under
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FIG. 6. Tests withγ on Bandage-box pictures. Edge maps are shown with extracted geometric features superimposed on them in the first row. The first picture
(from the left) was taken under usual light conditions. The second and third pictures were taken, respectively, under a greenish and a bluish light at a different pose.
Identified corresponding positions using our algorithm are also superimposed by large closed circles. The figures in the second and third rows show the respective
original and normalized distributions ofγ . The intermediate results of clustering are shown in the fourth row figures in their normalized coordinate of the geometric
features.

orthographic projection model [36] or weak perspective projec-
tion model [22]. Therefore, what must be observed in the follow-
ing results is whether our algorithm could identify at least this
minimum number of correspondences or not. First, the results
of usingγ as the photometric invariant are shown.

Usingγ for photometric invariant. Figure 6 shows the re-
sults of obtaining feature group centroids on Bandage-box pic-
tures, which includes characters of some different colors on a
white base on the surface. All the pictures were taken to involve
the same three surfaces of the box, which are to be used for the
recognition. The figures in the first row from the top show the
edge maps, with extracted geometric features superimposed on
them with small closed circles. The first from the left (hereafter,
first) picture was taken under usual light conditions. The second
from the left (hereafter, second) and third from the left (hereafter,

third) pictures were taken, respectively, under a greenish and a
bluish light at a different pose from the first one. Throughout
the rest of the paper, we refer to the figures by the order they are
presented from the left as above. The lighting conditions were
changed by the same way as in the experiments presented in
Section 2.4. The figures in the second and the third rows show
the respective original and normalized distributions ofγ . In the
second row, the horizontal axes of the figures are forG/R while
the vertical axes are forB/R. These figures show how the in-
variant propertyγ remained unchanged between the different
pictures. When it performs well, the original distributions ofγ

should show similar shape over different views except for some
scale change along the axes. Then, those scale distortions (e.g.,
dilation) should be corrected by the decorrelating process of the
distribution, thus ideally showing the same distribution within
rotations. Note that even if the shape of theγ distributions are
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distorted in addition to the dilation, we cannot conclude that the
proposed invariants performed poorly. This is because unstable
results of the geometrical feature extraction will also distort the
shape of the distribution of the photometric properties.

This intermediate results of clustering are shown in the fourth
row in their normalized coordinate of the geometric features. In
the figures of the first row, identified corresponding positions
using our algorithm are superimposed by large closed circles.
Therein, the accuracy of our algorithm is found to be fairly good.
Apparently perturbations of identified positions were caused
partly by the unstable results of feature extraction, e.g., missing
features, rather than by clustering errors or incompleteness of
the proposed photometric invariant. Note again that what is re-
quired is that at least three of these features correspond between
pairs of views. As seen in Fig. 6, there are five common features
between the first two views, seven common features between
the first and third view, and four common features between the
second and third views. Thus an alignment method will eas-
ily correctly identify the pose base on the pairings of common
triples of features and will reject poses based on other pairings.
More importantly, the number of pairings to be tested has been
drastically reduced, without losing the correct answer.

In Fig. 7, results on Spaghetti-box pictures taken in the same
way as the Bandage-box pictures are given. The surfaces of this
box include some textures including large/small characters. This
is a lightly cluttered texture compared with the Bandage-box
surface. The first row shows the edges with extracted geomet-
ric features superimposed on them. The first picture was taken
under usual light conditions. The second and the third pictures
were taken, respectively, under a greenish and a bluish light
at different poses. The second and the third row figures show
the respective original and normalized distribution ofγ . The
algorithm could perform identification of the corresponding po-
sitions fairly accurately as we see in the top figures. Similar to
the previous case, between any pair of views there are either five,
six, or seven common features, so that an alignment method will
correctly find the true pose.

Similarly, in Fig. 8 the results on Doll (the same one used in
Section 2.4) pictures are presented. Unlike the last two exam-
ples, the surface of this doll does not have man-made texture
such as characters, but only has color/brightness changes partly
due to the change of materials and partly due to depth variations.
The surface is mostly smooth except for some parts including
hair, face, and finger parts. The pictures in the first row show the
edges with extracted geometric features superimposed on them.
The first and second pictures were taken under usual light con-
ditions, but at different poses of the doll. The third picture was
taken under a moderate greenish light plus usual room light. For
the fourth picture, we used an extremely strong tungsten halo-
gen lamp with a bluish cellophane covering it. The second and
the third row figures show the respective original and normalized
distributions ofγ . Comparing the shapes of original and normal-
ized distributions ofγ for the first and the second pictures, we
can confirm that when the light conditions have not been changed

FIG. 7. Tests withγ on Spaghetti-box pictures. The surface of this box include
some colored textures including large/small characters. The pictures in the first
row show the edges with extracted geometric features superimposed on it. The
first picture (from the left) was taken under usual light conditions. The second
and third pictures were taken, respectively, under a greenish and a bluish light at
a different pose from the first one. The second and third rows show the respective
orignal and normalized distributions ofγ . The identified positions are depicted
by large closed circles in the figures of the first row. The algorithm could perform
identification of the corresponding positions fairly accurately as we see in the
upper figures.

the distributions ofγ are not affected by the change of pose of
the object. The algorithm could perform identification of the cor-
responding positions fairly accurately as we see in the pictures.

Usingϕ. The results of usingϕ as a photometric invariant
on the same pictures used forγ are shown. Figure 9 presents the
results on Bandage-box pictures. The first row shows the edge
maps with extracted geometric features superimposed on them
with closed circles. In the second row, respective distributions
of ϕ are shown. The horizontal axes are for (Gi /Ri )/(Gi /Ri +
G j /Rj ), while the vertical axes are for (Bi /Ri )/(Bi /Ri + B j /

Rj ), where (i, j ) ∈ {(1, 2), (2, 1)}. As described already, since
we do not know the correspondences of the sides of the surface
over the edges (contours), we included properties from both
sides of the edges. Consequently, we had 2-fold symmetric dis-
tributions ofϕ around its centroid as noted in the second row
figures (see Eq. (25)). Whenϕ performs well as an invariant, this
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FIG. 8. Tests withγ on Doll pictures. The surface of this doll does not have man-made texture like characters, but only has color/brightness variation partly due
to the changes of materials and partly due to depth variations. The surface is mostly smooth except for some parts including hairs, face, and finger parts. The first
row shows the edge maps with the extracted geometrical features superimposed on it with small closed circles. The first and second pictures (from the left) were
taken under usual light conditions, but at different poses of the doll. The third picture was taken under a moderate greenish light plus usual room light. For the fourth
picture, we used an extremely strong tungsten halogen lamp with bluish cellophane covering it. The second and the third rows show the respective original and
normalized distributions ofγ . The identified positions are depicted by large closed circles in the figures of the first row. The algorithm could perform identification
of the corresponding positions fairly accurately as we see in the figures.

distribution should remain unchanged over different pictures.
Thus, the second row figures demonstrate a fairly good perfor-
mance for this picture. The third row shows their decorrelated
distributions. The intermediate results of clustering are given
in the fourth row figures in their normalized coordinate of the
geometric features. In the figures of the first row, identified cor-
responding positions using our algorithm are also superimposed
by large closed circles. Thus, the accuracy of our algorithm is
found to be fairly good.

In Fig. 10 the results withϕ on Spaghetti-box are given. The
first row shows the extracted geometric features. The second and
the third rows show the original and the decorrelated distribu-
tions ofϕ. The performance ofϕ is almost perfect. As we see in
the pictures, the algorithm withϕ could perform identification
of the corresponding positions very well.

Figure 11 presents the results on Doll pictures. In the first row,
the edge maps with extracted geometric features superimposed

on them are shown. The second and the third rows show the the
respective original and the decorrelated distributions ofϕ. Since
for the fourth picture we used extremely intensive blue light,
the blue channel of many pixels were saturated. As a conse-
quence, the distribution ofϕ was shrunk in the vertical direction
as noted in the fourth picture of the second row. For these doll
pictures, generally, the results of identifying corresponding po-
sitions withϕwere not as good as those withγ , though they were
not very bad. This is probably because as the surface colors of
the doll vary quite smoothly in most parts, the distribution ofϕ

did not spread well, so that it did not work so well to separate
clusters in terms of colors.

4.3. Tests on Images with Occlusion

In the following experiment we examine the tolerance of the
algorithm against occlusions of local data parts. In this test,
occlusion was produced by manually removing nearly 20 to 35%
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FIG. 9. Tests withϕ on Bandage-box pictures. The pictures in the top show the edge maps with extracted geometric features superimposed on them. The first
picture (from the left) was taken under usual light conditions. The second and third pictures were taken, respectively, under a greenish and a bluish light at a different
pose from the first one. The second and the third row figures show the respective original and decorrelated distributions ofϕ. The fourth row shows the intermediate
results of the clustering. The identified positions are depicted by large closed circles in the figures of the first row. The algorithm could perform identification of
the corresponding positions fairly accurately as we see in the upper figures.

of the whole object region. After extracing the photometric and
geometric features out of remaining regions, those features were
decorrelated in the same way as in the tests on almost complete
data sets. Theoretically, in this case the invariance of the features
between the different views no longer hold if we decorrelate
the distributions, due to the collapse of the correspondences.
However, we will see that this does not have a significant effect
on the results of clustering, as long as the percentage of the

dropped region was not so large, e.g., up to around 35%, and the
object surface has enough variety of colors.

Usingγ for photometric invariant. Figure 12 shows the re-
sults on the Bandage-box pictures which are the same as those
used for the first experiments, except that input image data have
drops of the local regions. In the top, for our convenience, we
again include the result of a picture without any dropping of
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FIG. 10. Tests withϕ on Spaghetti-box pictures. The surface of this box in-
cludes some colored textures including large/small characters. Top pictures show
the edges with extracted geometric features superimposed on it. The first pic-
ture was taken under usual light conditions. The second and third pictures were
taken, respectively, under a greenish and a bluish light and at a different pose.
The second and the third figures show the respective original and decorrelated
distributions ofϕ. The identified positions are depicted by large closed circles
in the figures of the upper row. The algorithm could perform identification of
the corresponding positions fairly accurately as we see in the upper figures.

regions. In the bottom left picture, the lower right corner of the
object region was dropped, which was nearly 35% of the whole
object area, which included about 20% of the feature points.
The picture in the bottom right has a drop of the upper left cor-
ner which was almost 20% of the whole region and included
23% feature points. Comparing with the results on the almost
complete data sets presented in Fig. 6, we note the accuracy of
detecting the salient feature positions, i.e., cluster centroids, in
the remaining feature sets is almost the same, providing cor-
responding salient features sufficient to subsequent matching
process. The reason for this stability in spite of the break of the
invariance of the features is explained as follows: As argued in
our previous work [28], since the clustering algorithmKmean
we employed tries to detect local parts in which features are
concentrated. As long as those concentrations are not damaged
by occlusions, it can still be detected no matter how other re-
mote local areas are devastated. In terms of this, looking at the

surface of the object Bandage-box, we note it has some local
regions having dense feature distributions with consistent col-
ors coming from the man-made textures. Thus, those local parts
are stably detected even in the presence of occlusions of other
remote areas.

Similarly, Fig. 13 shows the results on occluded Doll pictures.
The top figure is the result on the complete object view, while
in the bottom figures results are given in which almost 20% of
the whole object regions are occluded: in the first view upper
right part is dropped losing about 32% of the whole features, in
the second view the lower left is dropped losing 12% features,
and in the third the upper left is removed which included 27%
features. Although the object Doll’s surface has almost regular
feature patterns rather than locally dense ones, the results of
extracting the salient points correspond well over the different
views.

From those results, we conclude that by using the invariantγ

we can provide an algorithm that can still tolerate occlusions of
the object surfaces despite the fact that we can no longer support
the complete invariance of the features.

Usingϕ. Similar tests are conducted usingϕ as invariant.
We use the same set of pictures including the occluded ob-
jects as used in the tests forγ . In Fig. 14, we note the results
of detecting the salient features are fairly good, providing still
enough commonality: four common features between the first
(top figure) and the second (bottom left figure), three between
second and third (bottom right), and six between the first and the
third.

In Fig. 15, however, the accuracy of the correspondences of
the extracted features degrades. Specifically, between the second
(bottom left) and the third (bottom middle) views only one or two
plausible correspondences were obtained which is not enough
for alignment style recognition algorithm, though in other pairs
of the views at least three correspondences were obtained. This
decrease in accuracy will be due to the fact that the surface of
the object Doll has almost regular geometric feature distribu-
tions in the image space and that the color varies only in small
areas on the surface: the color changes only on the boundaries
of hair and face, face and body, and body and arms and legs.
As we argued in the derivation ofϕ since it provides no selec-
tivity in places where color does not change, always returning
the same value 0.5, it does not contribute to clustering in such
places.

Thus, from this experiment forϕ, it is not robust against oc-
clusions when the surface of the object does not have enough
color variations from place to place.

5. DISCUSSION AND CONCLUSION

We argued that by combining the proposed photometric in-
variants with geometric constraints, we can realize efficient and
reliable recognition of 3D objects. Specifically, we conducted
experiments of identifying the corresponding feature positions
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FIG. 11. Tests withϕ on Doll pictures. The surface of this doll does not have man-made texture like characters, but only has color/brightness variation due to
the change of material. The surface is mostly smooth except for some parts including hairs, face, and finger parts. The pictures in the top row show the edges with
extracted geometric features superimposed on it. The first and second pictures were taken under usual light conditions, but at different poses of the doll. The third
picture was taken under a moderate greenish light and the fourth picture was taken under an extremely bright bluish light. The figures in the second and the third
row show the respective original and decorrelated distributions ofϕ. The identified positions are depicted by large closed circles in the figures of the upper row.
The algorithm could perform identification of the corresponding positions fairly well as we see in the pictures.

over the different views taken under different conditions. In our
method, we apply a geometric and photometric normalization to
bring features into a coordinate frame in which they are invariant
up to a rotation in the feature space, and we use these invariant
properties to yield the same cluster configurations in the clus-
tering results. The centroids of those groups can then be used as
input to an alignment style recognition system, such as [22] or
the linear combination of the model [36]. We note that the fea-
ture groups obtained (as shown by the large circles in the figures)
are not perfect but in each case there was sufficient commonality
of the extracted feature groups so that an alignment technique
would correctly identify the pose of the object. Of course, this
assumes that alignment will also be able to use verification of
the full model to distinguish correct from incorrect index sets,
as was demonstrated in [28].

In the experiments, we showed that our methods could tol-
erate considerable occlusions in addition to the perturbations

of color and geometric properties and could provide at least
a minimum number of correspondences of positions necessary
for object recognitions. Although generally it might be better to
extract object regions prior to feature detection and clustering
processes, we stress again that, as demonstrated, our method
does not require the accuracy of those preliminary processes
so strictly. Moreover, as long as the background has different
colors from the object, we can useϕ without any preliminary
processing for region extraction. This also holds true forγ when
the ambient light has remained unchanged. The weakness ofϕ

comes out when the discontinuities of gray level do not coincide
with the discontinuities of colors. In this case, the distribution of
ϕ does not spread very well. This emerged in the body parts of the
doll. Compared with the conventional approaches of matching
local features of which the number is of the order of several hun-
dreds, the computational cost of our approach for recognizing
3D objects should be very small. The time for identifying (about
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FIG. 12. Tests withγ on occluded Bandage-box pictures. The result of a
picture without any drop of regions is given on the top. In the bottom left picture,
the lower right corner of the object region was dropped, which was nearly 35%
of the whole object area, which included about 20% of the feature points. The
picture in the bottom right has a drop of the upper left corner which was almost
20% of the whole region and included 23% of the feature points.

10) corresponding feature positions, i.e., cluster centroids, was
around 0.2 s for pictures with several hundreds of features. In
addition, we can use the invariant photometric values in search-
ing for the correspondences between the derived feature points
in the model and the image, so that needless searches could be
further suppressed. As for the stability of our algorithm against
the change of the parameters included in the algorithm, we ac-
tually noted that when we changed the weights which balances
geometry and photometry in forming the extended features, the
clustering configuration perturbed slightly. This kind of instabil-
ity always accompanies when one includes a clustering process
in the algorithm. However, in alignment-style recognition this
can also be handled in its consistent framework by simply treat-
ing those perturbed candidates as just another candidate, thus
increasing the search space by just a few scale.

The differences and similarities of our approach and Nayar’s
are as follows. Their method used invariant photometric prop-
erties designed for neighboring points for regions each with
a consistent and a different color, so that the color segmenta-
tion is a prerequisite. In our view, this color segmentation is
an essential process to reduce the size of the search space for
correspondences, and the photometric invariant was used only
for further limiting possible matches between the model and
the data regions. Unfortunately, however, achieving complete
color segmentation is often quite hard and time consuming [33].

Of course, it can still contribute to reducing the computational
cost, since in general the number of color regions included in
the entire image could still be on the order of some tens. But,
it appears to be less of a contribution than color segmentation
to the reduction of computational cost. On the other hand, our
method in some cases does not require color segmentation and
in others requires only rough extraction of the object region.
As far as we have experienced, the feature detection that is not
required of Nayar’s method is not a hard task, and is not time
consuming, as long as we do not require high accuracy. After
those preliminary processes, since the color invariant proper-
ties are passed to the following clustering plus feature centroid
alignment process, our method can tolerate many confounding
factors, such as inaccuracies of region and/or feature extraction,
happening in the application to the real world. The clustering
plus feature centroid alignment process is very suitable for com-
pensating those uncertainties. We should also point out that, to
be theoretical, the region centroids which they used for match-
ing cannot be used for 3D surfaces, while our feature centroids
can.

The weakness of both our and Nayar’s methods will be against
large occlusions, especially on objects having small color varia-
tions. Since both try to produce corresponding partitions, whether

FIG. 13. Tests withγ on occluded Doll pictures. The top figure is the result on
the complete object view, while in the bottom figures results are given in which
almost 20% of the whole object regions are occluded: in the first view the upper
right part is dropped losing about 32% of the whole features, in the second view
the lower left is dropped losing 12% features, and in the third the upper left is
removed which included 27% of the features.
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in feature space or in image space, if the whole object area is
damaged significantly we will never be able to obtain corre-
sponding groupings. Also, their method and ours using the in-
variantϕwill not work well on objects which do not have enough
variety of colors on the surfaces, as those invariants would pro-
vide no information except on the color bounraries. In our exper-
iments usingϕ on occluded Doll pictures, this happened exactly
and the accuracy of the correspondences of extracted features
degraded.

An alternative way of using the proposed photometric invari-
ant in recognition is just to incorporate it into the conventional
framework of recognition. For example, in selecting features
to form hypothesized corresponding triples of features between
the model and the data, photometric properties can be used to
limit the possible matches between the model and the data fea-
tures, trimming a bunch of needless combinations in the search
space, thereby effectively reducing the computational cost. This
kind of idea has been used in [30] for matching corresponding
regions.

FIG. 14. Tests withϕ on occluded Bandage-box pictures. The result of a
picture without any drop of regions is given on the top. In the bottom left picture,
the lower right corner of the object region was dropped which was nearly 35%
of the whole object area, which included about 20% of the feature points. The
picture in the bottom right has a drop of the upper left corner which was almost
20% of the whole region and included 23% of the feature points. We note that
the results of detecting the salient features are fairly good, providing still enough
commonality: four common features between the first (top) figure and the second
(bottom left) figure, three between the second and third (bottom right), and six
between the first and the third.

FIG. 15. Tests withϕ on occluded Doll pictures. The top figure is the result
on the complete object view, while in the bottom figures results are given in
which almost 20% of the whole object regions are occluded: in the first view
the upper right part is dropped losing about 32% of the whole features, in the
second view the lower left is dropped losing 12% of the features, and in the third
the upper left is removed which included 27% of the features. The accuracy
of the correspondences of the extracted features degrades: only one or two
correspondences were obtained between the second (bottom left) and the third
(bottom middle) views.
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