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Part II

Animacy [Action Agents]

Periodic, cyclic behaviors are universal among all living systems. At
short time scales, cells pulsate, organisms breath and palpitate, hearts beat,
creatures walk, swim or fly. Classical cybernetics regards these activities as
oscillators with feedback control mechanisms. In the more complex systems,
there is typically a hierarchy of control. Cognitive capabilities are often
assumed to emerge from this complexity.

Anigrafs explores another possibility: the control of periodic activities are
exercised via rudimentary mental organisms. Each mental organism is
associated with its own mechanism that initiates a particular act or behavior.
Although these acts may be reflexive, like a knee-jerk, we infer there are agent-
like daemons who activate them. The set of these agents thus represents a
distinct level of description, being part of a less confined, social control network
that decides just how the system should behave. For this abstraction to be
plausible, there must be a competition for control. The next few sections show
that in the presence of such competition, periodic behaviors are possible even
for very simple organisms. These “social control mechanisms” distinguish
themselves by not requiring classical cybernetic governors.

24 Jul 07



21



22

Anigraf 1: Cells & Cycles
a breath of life

   

Fig 1.0. Characterization of pentagonal distortions arising from cyclic Condorcet outcomes.
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1.0 Bridging Cells and Societies

An obvious assertion is that the evolution of mental organisms parallels
their biological counterparts. Mischievous Daemons seem plausible only for
higher forms of life, whereas assigning mental attributes to single cell creatures
with reflexive behaviors seems quite implausible. Nevertheless, if even the most
simple animate systems are capable of a variety of behaviors, different
mechanisms must underlie each of these actions. A competition for control
then emerges: which of the several possible actions should the anigraf system
elect? The designs of the machinery for making such categorical choices will be
quite different from those that implement actions of body parts. The anigraf
captures the basic structure at this other level, of decision-making. The aim is
to make explicit how choices for actions are related and reached. The
abstraction allows us to view mental organisms not only as modules of a brain,
but also as distinguished components of very simple cellular systems.

Let us use the more neutral term “agent” to describe the operator that
controls the state of a physical actuator in a simple system. Each actuator
initiates an action or behavior that moves the system closer to a particular goal
state, which is the goal sought by its controlling agent. In the left panel of
Figure 1.1, we have five goal states [P,Q,R,S,T]. Associated with each goal is
an agent and an actuator. The graph shows how the goal states are seen as
related by the organism under consideration. Although one might attempt to
capture these same relationships as parts of each actuator, such a model would
confuse the two separate levels of description we wish to separate: the level of
the physical mechanism vs. the level of the relations between the types of
actions effected by these mechanisms. In our simple example, we illustrate with
two different groups of agents – one “male”, the other “female”  - both of
which have the same goals and actuators. The male organism relates the five
behavioral acts as a triangle with a tail, whereas the female sees the goal states
as related by a pentagon. These are but two of the twenty-one possible 5-agent
organisms.
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Fig 1.1 Left panel illustrates two anigraf forms,  with the same weights on corresponding
nodes. In the right panel, the weight on node R of the “female” anigraf has been diddled
slightly. The other weights remain as before. Without any further change in weights, the new
outcome is the cyclic sequence A,C,E,A,

How will these two graphical forms affect the choice outcomes? Note
that both have identical desires of their agents, as shown by the weights next to
the labeled nodes. Using the optimal Condorcet pair-wise tally (see procedure
in earlier chapter), we find that the male organism will choose action Q,
whereas the female’s choice is P. Not surprisingly, the form of the similarity
relations among agents depicted by the anigraf plays a major role in controlling
the behaviors of not only complex societies, but also of simple, cellular-like
organisms.

1.1 Dynamics
Even the simplest living systems exhibit periodic activities, such as

pulsation, which can be driven solely by internal forces. Can our small society
of anigraf agents do likewise, without invoking classical, homeostatic feedback
control mechanisms? If so, then this kind of cyclic activity should occur
without any changes in the strengths of the agent’s desires, and result simply
from the properties of the state and structure of the social network. Clearly, if
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the aggregation of the agents’ whims always yields a unique winner, then only
one action ensues. Hence tally procedures such as Plurality, Top Two, or Borda
described earlier are not appropriate. However, if agents conduct Condorcet
tallies using pair-wise comparisons, then cycles among choices are possible.
Specifically, selected weights on anigraf nodes can trigger a sequence of
actions, without any change in these weights. Such a dynamics allows anigrafs
to emerge from simple cause-effect, feedback-type reactions to behaviors with
a more choreographed repertoire of actions.

The pentagonal anigraf at the right of Fig 1.1 illustrates how cycles in
outcomes can emerge. This anigraf [A….E] is identical to the adjacent
“female” pentagonal  anigraf [P….T] in the left panel. The only difference is a
very small change in one of the input weights: Agent E has weight 2, rather
than the 0 weight held by the corresponding agent R. Because we might
expect the small weight change to have little consequence, the likely winner in
anigraf [A…E] is node “C”, which is comparable to the previous winning
node “P” in the female anigraf [P…T]. Indeed, as shown in the first rows of
table 1.1, C does beats A, B, and D in pair-wise contests. However, C fails to
beat alternative E (fourth row.) As we continue to examine the remaining pairs,
we see that A will beat E, and so will B and D beat E.  Hence there is at least a
three-cycle among pair-wise comparisons:  A beats E which in turn beats C,
which now beats A. Although there has been no change in the weights on

Table 1.1  Pair-wise Condorcet Tally (Pentagon)
Pairs  A(10)    B(4)    C(7)   D(8)   E(2) Total Winner
AvsC     10     0    -7    -8     2   -3  C>A
BvsC     10     4    -7    -8     0   -1  C>B
CvsD     0     4     7    -8    -2   +1  C>D
CvsE   -10     4     7     0    -2   -1  E>C
AvsB    10    -4    -7     0    +2  +1  A>B
AvsD    10     4    -7    -8     2   -1  A>D
AvsE    10     4     0    -8    -2   +4  A>E
BvsD    10     4     0    -8    -2   +4  B>D
BvsE      0     4     7    -8    -2  +1  B>E
DvsE    -10     0     7     8    -2  +3  D>E
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nodes, at each time click, one of these choices will dominate the cycle and the
behavior of the system will be perturbed. Such perturbations might, for
example, effect a change in shape of the physical system. Cast as one of
Braitenberg’s little vehicles resembling a pentagonal cell, we would have a
sequence of distortions such as those depicted on the front panel (Fig 1.0).
These dynamics would continue until a new set of weights were introduced.

Definition: A top-cycle among alternative choices occurs when there is an
alternative ai that beats ai, ai beats ak, and ak  beats ai, and every alternative
not in the top-cycle is beaten by at least one alternative in the top cycle.

Note that a Condorcet tally must lead to a top-cycle if no alternative beats all
remaining alternatives in the pair-wise comparison, excepting ties.
Furthermore, if there is a top-cycle in the outcome, then there must be at least
a three cycle, such as the example given above. Top cycles add a dynamics
that will play an important role in the behaviors that follow.   

Fig 1.2. Let weights on nodes be chosen from a uniform distribution. If the anigraf form is
ignored, then probability of top cycles rises rapidly as the number of alternative increases (top
curve.)  In contrast, if the anigraf form is respected when a tally is conducted, the probability
of top cycles can be controlled (bottom curve.)

1.2 From Cycles to Chaos
Cycles are typically a prelude to chaos. There are two obvious ways to

create chaotic sequences of outcomes. The first, and more difficult, is to choose
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appropriate weights on special graphs like the pentagon. A second method,
much simpler, is allow agents to vote haphazardly, ignoring the relations
among choices specified by their anigraf. Fig. 1.2 illustrates this second case.
Note that as the social system becomes larger and larger, cyclic outcomes
become more and more likely, with 1 as the asymptote. The probability of top
cycles is already 2/3rds for 6 agent systems and for a group of twelve agents,
90% of the weights on nodes that reflect agent desires, will result in a top cycle
among the choices. If now these weights are perturbed slightly from tally to
tally, the result is a chaotic sequence of outcomes.

 To introduce controlled behaviors with less likelihood of a chaos of
cycles, agents’ preference rankings must respect the anigraf form. But this, in
itself is still not sufficient.  Consider the ring anigraf as illustrated earlier by the

Why Chaos ?
To provide some insight into why chaos, we need a more detailed analysis of the

relationship between the preference orderings and the calculation of pairwise winners. The
functions of interest are an expansion of the set of pairwise outcomes [n|2] in the n unknown
weights for the agents. If each pairwise comparison is independent of another, as it would be
for random weight choices, then there will be [n|2] equations in n unknowns (the weights of n
agents.) The random assignment of weight to each row provides ample opportunity for
finding at least one case where any agent will be beaten by another in the pairwise
comparisons. Hence there will be no Condorcet winner, and cycles in outcomes emerge
(Saari, 1998.)

pentagon. The lower curve in Fig. 1.2 shows that as ring size increases, so does
the likelihood of top cycles, At worst, the top cycle will occur for about 12%
of the weights on nodes that reflect the desires of the agents – assuming these
weights are chosen from a uniform distribution. In general, if top cycles are
desired, then some non-arbitrary weights will be required. Other simple anigraf
forms that can lead to top-cycles are shown in Fig 1.3 (left). Whenever these
forms appear as components of an anigraf (e.g. an induced ring or induced
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“house”), top-cycles in outcomes may occur -- although the probability of
encountering a top-cycle is typically much less than for a ring anigraf.

    

Fig. 1.3. Graphical forms such as rings or a house can support top-cycles (left.) However,
other forms such as those illustrated on the right, have unique winners regardless of weights
on nodes.

One might now wonder whether there are graphical forms guaranteed
never to have cycles. The answer is YES, provided that agents discriminate all
choices in the Condorcet pair-wise comparisons. If the anigraf network is
completely connected or is “covered” (one node is adjacent to all others), or is
equivalent to a complete bi-partite graph, then there will be no Condorcet top
cycles given that each agent’s preference orderings are consistent with the
graph structure. Other examples are shown in the right panel of Fig 1.3. These
“stable” Anigraf forms can be contrasted with those having a high probability
of top-cycles, as shown in the left panel. Note that the addition or deletion of a
single link in the network can cause significant changes in whether the social
system can easily reach a unique consensus or not. The connectivity of the
network thus plays a key role in the potential for cyclic outcomes.
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1.3 Summary
 Anigrafs have a wide range of potential behaviors, ranging from unique,

stable outcomes (87%) to chaos when the Anigraf model relating alternatives is
ignored. For stable outcomes, an agent or mental organism’s ranking of
choices must be consistent with the anigraf form that relates these choices. This
form represents the shared, or common intrinsic knowledge about the choice
domain. Of special interest is that about 12% of the time, non-chaotic cyclic
outcomes can happen for certain choices of weights, even when the anigraf
form is respected and neighbor-only communications are in effect. In these
cases, the tally machine will deliver a cyclic sequence of outcomes until new
weights are entered. Even with random weight selections for agent desires, this
behavior occurs with a level of significance that provides some simple anigrafs,
such as rings and later, also chains, with the potential to achieve pulsating or
rhythmic activity typical of very simple animate cells. In contrast with classical
control systems, here it is not a physical feedback mechanism that underlies the
cyclic sequence, but rather the manner in which information is shared: who
talks to whom about the preferred next state for the system as a whole.  
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Plate 1:   Phase Plot Showing Winners for a House Anigraf with weights
(6, 3, x = 0-10, y = 0-10, 1). Vertices labeled clockwise beginning with tip of
roof.  Textured areas are topcycles. (T.J.Purtell, 2004)



30

2.  Anigraf2 : Swimmers
beginning to move

   

     Fig. 2.0 A collection of anigrafs, some with directed edges, another with filia appendages.

26 Jul 07
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2.0 Movement

Cell Anigrafs had very limited behaviors, constrained for didactic
purposes to simple ring forms. This simplification hid the potential complexity
of designs and behaviors that could be attributed to primitive life forms. Here
we begin to expand this repertoire. As before, we assume that the component
mental organisms, or “agents” will have access to different kinds of interfaces
to the environment, with interface hardware that affects the behavior of the
system as a whole. Agents will have control over those interfaces, and will
“vote” for the opportunity to exercise this control, depending upon the
strength of its desire to achieve a preferred goal. In effect, then, we are
formalizing a two tier system: one where the interface agent constitutes a
member of the social system of all other agents, and another, lower level where
each agent has its own sensory input and controls its own effector. However,
the activation of the effector can occur only when approved by the society of
all agents.

One of the most visible and prevalent effectors are flagella or hairy
muscular fibers. For example, the single-cell Euglena has a flagellum that
propels the creature forward. Another simple creature, the paramecium, has a
host of hairy superficial fibers that can generate wave-like motions. These
appendages can be entirely passive, with the movements initiated only at the
point of attachment to the cellular body. More complicated limbs may have
additional agents confined to “local” social enterprises that control special
sinusoidal motions, such as the movement of wings, fins, legs, and eventually
fingers. We begin first, however, with a description of a society of agents that
can generate chaotic-like flagellations typical of coelenterates. This little society
has simple objectives: to move one way or another.

2.1 Jellyfish
Coelenterates have very primitive neural nets that lie on the rim of a

funnel-like body. When activated, this network causes a wave-like motion of
tentacles attached to nodes on the rim. The jelly fish is an example. It has an
inverted cup-like form with many tentacles emerging from the rim of the cup.
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Typically the neural elements embedded in the ring appear in multiples of four.
Each neuron drives its own tentacle, causing it to flagellate. The anigraf analog
is thus a group of agents linked together in a ring-like configuration, such as
those illustrated in Fig. 2.1. Of primary interest is how likely this type of
anigraf will generate cycles among actions initiated by the constituent agents.

   

Fig. 2.1. Various anigraf ring-forms. The probability of a top cycle is shown below each,
assuming that weights on nodes are taken from a uniform distribution, and Kd=2. Arrows
indicate directed communications, or equivalently, weights added to one node but not vice
versa.

If the anigraf form is a simple ring with bidirectional edges and Kd=2,
then each agent communicates only with its two neighbors. The probability of
cycles was shown previously to reach a peak at 8 - 12 agents (Fig 1.2.) Let us
then consider design possibilities for an octagonal jellyfish anigraf, recognizing
that both cyclic and non-cyclic outcomes are useful. An example of a cyclic
outcome would be a top cycle that moved from one agent to another, rotating
around the ring, and hence initiating a circular wave of activity. A non-cyclic
outcome, on the other hand, might result in the coordinated constriction of the
rim of the coelenterate as it captures a food particle.

Figure 2.1 shows a few modifications of the simple ring, and the
probability of top cycles among outcomes using the Condorcet tally, where the
weights on nodes (i.e. the strength of the agent’s desires) are chosen from a
uniform distribution. If the ring is reconfigured to “wheel”, then the anigraf
has one vertex that is adjacent to all others (i.e. the graph is “covered”) and
there will never be cycles (p = 0.) The next configuration is a regular graph,
where each node has a degree of four. The top-cycle probability is about 6%,
which is roughly half the cycle probability of the simple ring. Unfortunately,
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none of these percentages may be high enough to insure that our jellyfish can
easily engage in complex, long-cycle flagellated movements.

A simple modification of our communication channels solves this
problem: make the communication channels directional. In other words, let the
weights of preferences be “passed on” from one agent to the neighboring
agent, but not vice versa.  Depending upon the directionality of the
communication channel, we also will have the great advantage of being able to
enforce either clockwise or counter-clockwise cycles among the rim agents.
For the jellyfish with a ring of eight agents, clockwise, directed communication
will produce clockwise cycles 68% of the time; for a ring of twelve agents, the
cycle probability rises to 80%. These numbers are approximated very closely
for n > 4 by cycle percentages shown earlier for random preference orderings.
(See also Fig. 2.3.) The difference, however, is that a shared (directional)
anigraf model is respected by all agents when ranking their preferences. Clearly
we have the beginnings of a social control system that mimics a physical
feedback controller, but here the condition of sharing social preferences is met.

A periodic wave of tentacle movements is but one of several actions that
the jellyfish might engage in. Even if the agents all have identical effectors, all
effectors need not perform identical movements, and consequently, all agents
need not have identical goals for the system.  Some agents might prefer that
the jellyfish move to another, more favorable region in its environment (more
“food” or perhaps “less hostile”.) Another might want to ingest nutrients,
another might wish to release a toxin. As in our primitive cell Anigraf1, some
of these actions might entail a change in shape -- perhaps to be carried out by
activating other internal fibers or membrane properties. In a very simple
scenario, there could be two types of agents on the coelenterate’s ring
network, X and Y, where X agents would create an inward current and Y
agents would create outward currents, or tighten the membrane supporting the
ring. All these choices entail societal consensus that is reached after conducting
the Condorcet tally among the agents. This coelenterate ring of agents can
easily be regarded as a very primitive brain.
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2.2 The Flagellum
Consider next yet another primitive creature, such as the sperm cell or

Euglena, where a single flagellum controls movement of a simple, cell-like
“body.” If this appendage itself is passive, driven by forces applied to its base,
the effect will be as if someone were whipping or twirling a cord. Such a cord
will have some kind of natural frequency of motion when torques are applied
at one end. As shown by Berg(1996), these simple creatures have a micron-
sized motor that whips the miniature tail. Referring to Fig. 2.2, let’s say agent
A is responsible for initiating movement of this flagellum, thus satisfying an
exploratory need to move forward. Then we know from Table 1.3 in the
previous chapter that if voting strengths of the agents are suitably chosen,

   

Fig. 2.2. Variations of cyclic outcomes for pentagonal and hexagonal Euglena. For rings with
even numbers of nodes, there are restrictions on possible cycles.

cyclic outcomes will occur that will include agent A’s preference for system
behavior. The little creature continues to flagellate until new voting strengths
are tallied.

A variety of cycles that include A are possible for our Euglena. A few are
illustrated in Fig. 2.2, including one that is excluded. Surprisingly, symmetric
cyclic patterns are not possible for any ring anigraf with an even number of
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nodes, and bi-directional edges. Hence our hexagonal (or octagonal) Euglena
must be content with asymmetric cyclic patterns, as shown on the right.
Symmetric top cycle activation of agents about the tail node seems the most
obvious choice for forward movement, whereas asymmetric cycles offer an
option for changing the directions. Our hexagonal anigraf must thus use a zig-zag
strategy for forward motion. Whether or not both members of a symmetric top
cycle are adjacent or non-adjacent to A may also have consequences. For
example, when neighbors of A are part of the top cycle, then agents such as C
and D in the pentagon, or C and F in the hexagon, are free to reinforce each
other’s goals. A further, perhaps unforeseen, benefit of including agents nearest to
A is that there is a 10 fold greater possibility of top-cycle activity. Clearly, even
for our little anigraf Euglena, many different movements seem possible, capable
of supporting a variety of behavioral goals.  For eight node rings, the possibilities
jump 5-fold.

2.3 “Smart” Tails
To create creatures with more complex locomotor abilities, we may wish to

control the amplitude or form of the wave of the tail, or bias its body angle to
change heading. These effects cannot be accomplished easily by a single, simple
agent at the point of attachment of a passive appendage. Let us then break the tail
into segments, simultaneously creating a chain of agents, each of whom controls
the activation of one segment.  Let one of these agents, say A, be selected as the
“head”, using bold upper case to make this designation. (Fig 2.3.)

   

       Fig 2.3. A 5-chain appendage, with node A designated as the head.

Because a chain is just a broken ring, the top cycle behavior of chains is very
similar to that of rings, provided the agents only communicate with their
neighbors (i.e. Kd = 2.) Our objective is to create a cycle of activity over one
part of the A,b….e  chain. In turn, this cycle among agents will effect a
physical movement of the tail or body, such as when a fish swims or a snake
crawls. We assume that the agents are embedded within a flexible shell that
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contains contractile tissue such that when an agent is active, muscular springs
will contract to create part of a wave motion. A cycle among agents, say
agents A, b, d or b, c, e can drive this kind of behavior.

It is easy to show that if there is no sharing of information between
agents, then there can be no cyclic behavior. Intuitively, if all agents are
independent, then in a pair-wise competition among choices, the agent with
maximum clout will win. Similarly, although less obvious, if all agents share
make distinction among all alternatives, and consequently place a preference
ordering on all alternatives, then again there can be no cyclic behavior. (Black,
1958; Richards et al, 2002.) Cycles among agent choices are most likely when
information is shared only among immediate neighbors. Furthermore, like the
jellyfish, cycles will become even more common if the communication channels
are directional.

   

Fig. 2.4. Replacing bi-directional edges with directional edges raises the odds for top cycle by 6-
fold or more (top curve, plusses and circles.)  However, inhibiting weights on the nodes can push
the top cycle probability back down towards that found for bidirectional chains (lower curves.)

Figure 2.4 illustrates. With undirected communications between
neighboring agents, the top-cycle probability reaches a maximum of about
15% for a chain of 10 – 12 agents (diamonds.) If directionality is introduced
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into the social network (plusses), then cycle probability rises 5-fold to 60 –
70%, increasing further as the chain length increases, eventually reaching 1 as
the asymptote. Directed ring anigrafs behave similarly (dashed line, open
circles.) Anigraf social networks composed of chains thus have a high potential
for eliciting periodic activities. Even rather small 8-chain anigraf worms with
directional communications can initiate 5-cycle waves such as AbdecA.

2.4 Cooperative vs Competitive Networks

Anigrafs with directed, rather than with bi-directional communication
channels come at a cost. Such networks marginalize one of our key
assumptions about social awareness. Because information is passed only one
way and not back and forth, the sharing of knowledge and preferences within
the system is quite limited. Such networks resemble those with feedback loops.
As a species, anigraf creatures with directed networks thus are second-class
citizens and lie somewhere between a fully aware (bi-directional) anigraf and
Braitenberg’s more reflexive vehicles.

To clarify this connection, consider how we might shut down or control
top-cycle activity, especially if it leads to chaos. Rather than removing
directionality, a simpler solution is to shut down the voting weights of the
agents (or, equivalently, assign equal weights.) This is easy to implement
through either global inhibition or inhibitory feedback loops among agents. As
the exchange of information among agents is reduced to zero, the probability
of top cycles decreases and can be driven below the bi-directional result shown
in Fig 2.4.  (The inhibitory case plotted shows the attenuation effects, but not
the limiting result.) The more agents whose clouts have been reduced to zero,
the greater the chance of one agent getting its way.  Our directed anigraf has
then been morphed into a kind of hybrid between a Braitenberg vehicle and
the truly social, bidirectional anigraf.
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Plate 2:   Phase Plot showing Winners for a directed 5-Chain Anigraf  with weights (x = 0-
10, 6, y = 0-10, 2, 6.)  Textured areas are topcycles.

2.5 Brain Types
An obvious extension to swimmers (or crawlers) is to modify the neural

network at the “head” end of the undulating chain. Already we have seen that
simple head designs, such as pentagons or hexagons, terminate tail motion
simply by setting the voting power of agent A to zero (Fig 2.2.) In Fig. 2.5 we
illustrate further anigraf forms for “heads” attached to smart tails that consist
of a chain of three or four agents. Consider the forked head. The notion is that
activation of the left (G) or the right (F) member of the fork will tighten a
muscle and cause the head to turn. Let this change in “head orientation”
happen in the presence of the Acd cycle which is driving the anigraf forward.



39

Hence we need either an Acd cycle in the presence of a dominant G
activation. Possibilities are AGcd, AcGd, or AcdG.

To set up the first of these cycles, the following Condorcet comparisons
must result when the votes are tallied:

    A > d;  G > A;  c > G;  d > c; {A, G,c,d} > b, F.
To mimic a very simple voting system, let the strengths of the agent’s desires
take on one of three levels: noise, middle, saturated, or 1, 3, 6. (See appendix 3
for an elaboration using three continuous distribution functions with analogous
mean values.) One voting regime that satisfies these conditions is  {1,6,3,1,1,6}
respectively for agents {A, G, F, b, c, d}.  However, for this scheme to work,

    

Fig. 2.5. A variety of swimmers or crawlers with different head designs for their smart
(directed) tails. Plate 2 shows the richness of top cycles for a the simplest case on the left.

the preference orderings for each agent need to be restricted to two levels: first
choice and second choice(s), with all other choices being equally indifferent (i.e.
Kd =2.) In other words, the agents can only distinguish goals favored by their
neighbors in the anigraf (and obviously the difference between these and their
own goal.)

Even with alternatives limited by Kd=2, there are many varieties of
behaviors possible for our little creatures with smart tails, and little brain-like
“heads”. A three-fork at the head of an appendage could activate not only
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turning to the left of right, but also perhaps local lunging by the middle agent
H in the presence of the Abd swim. Such activation weights correspond to
lunging forward to grasp a prey. More complex pentagonal networks that
include “houses” might provide potential for agents with sensory apparatus
that could trigger a host of body or tail movements once the adequate stimulus
is sensed. Another obvious manipulation of the “head” is to add edges that
join symmetric agents/nodes.  In a Hexagon Anigraf (see front-piece),  adding
the edge BF will affect the preference orderings not only for B and F, but also
C and E as well. Consequently, the cyclic probabilities change because agent’s
preference orders are altered. If the edge BE is added instead, bisecting the
Hexagon, then we have a symmetry between ABC and FED, and we obtain
still another behavior. Surprisingly,  this latter addition will prohibit cycles,
whereas the first increases the cyclic possibilities. Even with only six-node
heads, there are over 100 possible anigraf designs. This number explodes to
over 10,000 if 8-node graphs are considered. Hence there are many routes for
Darwinian selection in a variety of contexts. Appendix 4 and Chapter 8 touch
on some of these issues.

For very large rings, a potentially useful modification is to add edges
that create local bridges, as in regular graphs, or distant bridges to create
"small world rings." Each has quite different cyclic behavior. Another weird
brain design might be to have two directional rings as illustrated in the front
panel, with bridges between pairs of nodes on each ring. Or, two directional
rings joined like Siamese twins. Turning rings on or off could cause opposite
cycles, asymmetric body movements, etc. But even with such more complex
“brains”, these swimmers or crawlers execute only with wave-like movements
of their chain-like tails. The specific “brain type” will have marginal influence
on this coordination. Hence, when all is said and done, these anigraf swimmers
have only a modicum of social consciousness among its network of agents.

.
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    Anigraf3: Walkers
syncopated limbs

   

      Fig. 3.0. Depiction of two types of legged anigrafs.  As before, the nodes correspond to
agents, with the small nodes located on limb segments. The open circles in the “centipede”
control corresponding left-right pairs of “leg” agents.

28 Jul 07
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3.0 Adding Limbs
Our most advanced swimmers locomote with wave-like motions of a

segmented body. Resident within each segment was an individual agent. A
chain of these agents guided a wave motion of the body or limb segments. To
enhance the behavioral repertoire of such anigrafs, an obvious next step is to
add more limbs. Alternatively, the chain of agents itself can be augmented,
such as adding branches so the anigraf resembles a simple tree. Such additions
place significant demands on the control structure of the anigraf “brain”
required to coordinate the various agent activities. To illustrate these problems,
we begin with creatures having many legs. As before, each leg has its own set
of low-level agents that govern the type of movement of the limb. Movements
of these separate appendages, or more specifically, the activity of these
independent sets of low level agents, must then be coordinated to create a
sequence of limb movements. The pattern of these sequences is a gait.

To solve the difficult problem of retaining body stability under gravity,
we begin with six or more agent-controlled limbs, or legs. The most common
gait is to lift successive pairs of limbs in a wave-like motion, thus insuring that
most of the legs continue to support the body. This is a first step in an
exploration of whether realistic gait patterns can be created in a single chain of
body agents, or whether a control structure having two linked chains, such as a
spinal cord, is more plausible.

3.1 Centipede Anigrafs
Imagine a creature with many limbs on each side of an elongated, cigar-

shaped body (such as the sixteen-legged anigraf illustrated in the front panel).
From head to tail, label these pairs of legs {al, ar},{bl, br},{cl, cr},...{nl, nr}.
The notation indicates that the left and right legs in each pair are moved
together. Hencewe can place the N controlling agents in a central chain, or
“cord” (such as is implied by the open circles in Fig. 3.0.) Then a wave-like
motion of the limbs requires an N cycle among the agents, ordered
sequentially, as in a cascade. But already we know from Anigraf2 that if N > 6
or certainly 8, almost surely a directed chain of communications between
neighboring agents will be needed. Furthermore, for large N, only a very
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restricted set of voting weights will create the desired wave. In effect, the
anigraf construction has been reduced to a reflexive machine. Although a small
group of agents located at the head of the cord could trigger a wave motion, to
date we have found no social network can create a traveling wave that
propagates down a cord with many segments. Social networks that control gait
patterns appear to be limited to small numbers of agents. This implies that the
creatures should have no more than about eight limbs, or, at most, six or eight
states if pairs or triples of limbs are linked together.
   

Fig. 3.1. Two different legged anigrafs: a cockroach and a quadruped.. Upper case indicates a
gait control node; lower case, or small nodes are agents on limb segments. Two gaits for the
cockroach are indicated (see text.)

3.2 Cockroach Anigraf
This six legged creature has two gaits: one is a wave, the other is called

the “tripod”. The wave gait is the same as in the centipede, but with fewer
legs: first the front two limbs are moved, then the middle two, and finally the
last two. The tripod gait, on the other hand, simultaneously moves three limbs
located at asymmetric positions, as illustrated in Fig 3.1 by the solid and open
nodes. Both schemes preserve balance.

Like the centipede, either the cockroach wave-gait or the tripod gait
could be produced by some simpler reflexive automaton, activated when a
social network of “head” agents picked either agent “T” (tripod) or agent
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“W” (wave) as the winner. On the other hand, unlike the centipede, the
cockroach has only six legs. Now only four agents are needed along a central
cord to create the wave gait, because we only need at most a three cycle that
activates one of three pairs of legs (or a pause if the tripod gait is selected.)
Furthermore, many different top-cycles can be created. This opens the door to
a socially-based anigraf network for innervating limb motions. We can move
still further away from automata-like systems by positioning one more agents
on each of the six limbs, as shown by the lower case nodes in Fig. 3.1. These
“second-tier” agents, a - f, can serve two functions: (1) they can provide a
basis for invoking local cycles such as B, C, c, D, B, as well as (2) having the
potential to bend a two-segment limb.

3.2.1 Limb Configurations
Although we could proceed as before, and determine the voting

strengths needed to generate sequential limb motions, it is more productive to
consider first each limb in isolation, driven by its own local cycle. With
neighbor-only communications (Kd = 2), the minimum number of agents
needed to create cycles is five if the agents are networked by a ring or a tree,
and four if they are networked by a chain. Obviously at least one of the agents
must be part of the body, because this will be the agent that is activated by
consensus with the other body agents.

Fig 3.2 illustrates some of the minimal arrangements for agents that
could govern limb control. Cycles for the simple chain and ring have already
been elaborated in Chapt. 2. In each case we have incorporated the top agent
(large circle) as a member of the anigraf’s social repertoire. However, such
agents must also be linked to others having the same social status. Hence a
possible variant is to have two agents, rather than one, as part of the body
structure (middle illustration.) But if two agents are on the body, then the limb
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Fig. 3.2.  Designs for local control over limb agents.

must have at least two segments. This follows because a one-segment limb
would have a total of only 4 agents, with one connected (or covering) the
remaining three. Hence we need a minimum of five agents, which is satisfied
with a two-segment limb.

Placing two agents on the body creates a possibly awkward triangle
arrangement at the head of the limb. A more agreeable configuration is to have
three agents at the top, with two other agents on the limb, thereby forming a
“Y” or a “T” - tree as shown in the last two illustrations. Now all three of the
top agents can belong to the body set of agents, or, alternatively, only one of
these agents is part of the body set and the remaining two are lower-level,
being part of the limb activation system, which here we represent as an
upward arrow configuration (far right in Fig. 3.2). Unfortunately, in all cases,
the probability for achieving cycles using random voting is only 1 - 2 % for
undirected graphs. However, with a three-level restriction on five weight
choices (e.g. mid,hi,lo,lo,hi ), the range of levels used earlier for directed chains
in Chapt. 2 will yield a 40% or higher probability of certain 4-cycles. (See Plate
2 for a slice through this 5-dimensional phase space.) Now, with weights “d”
and “e” restricted appropriately, either an AedB or and AedC cycle can be
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activated simply by raising agent A’s clout from zero to the upper third of the
range of weights.

3.2.2 Spinal Cord Configurations
In animate forms, limb movements are sequenced in part by activity that

moves down a spinal chord. A set of stacked “Y-trees” or “T” – trees
resembles this spinal configuration.  In Fig 3.3 a three-level chord is illustrated
at the far left. This chord has four sets of limb segment agents (open circles,
attached at positions A, B, D, E.) The bilateral symmetry of the chord is forced
by the need to place limb segments on opposite sides of the anigraf. Activating
local cycles in each limb segment is now trivial: First we freeze weights for the
limb agents, choosing suitable values for cycles. Then we need only activate A,
B, D, or E in the chord. A more abstract version of this chain can be obtained
by unfolding the chord, and is illustrated to the right.

   

Fig 3.3. Spinal chord construction (left.) Possible modifications of local structures within the
chord are shown at the right, with the probability of top cycles indicated if weights chosen
from a uniform distribution.

Other, probably less attractive modifications to the spinal chord
configurations would include closing the spinal chain to form a ring, or joining
bilateral components of the chord to create a “house” graph. We can also
influence the type of cycle desired by changing the graph structure. To generate
“figure 8” cycles, nodes should be connected in a criss-cross manner as illustrated
at the far right of Fig. 3.3. In each case, the cycle can be turned on or off by
appropriate settings of the weight or clout of a body agent. Clearly, directed
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channels play a key role in setting up the desired cycle. To re-iterate, with
undirected channels, the odds for a 4-cycle are typically only 1 or 2 percent; with
directed channels, about 10 to 20% of random weight selections will be
successful, with still further improvements using three-levels of voting strengths.
The combination of both methods can insure that over 80% of the voting weights
will yield an abde cycle for the simple chain. Thus, three factors govern how
easily 4-cycles can be generated using social networks: (i) the configuration of the
graph, (ii) the choice of which edges (channels) are directed, and (iii) whether
voting strength is chosen from uniform distributions, or from one of three ranges
(e.g. lo, mid, hi.)

3.3 Quadraped Gaits
Generating cyclic movements for four (or two) limbed anigrafs appears

plausible using one of several variations of spinal chord networks described. A
remaining issue is to control the sequence dynamically to maintain balance, as
the transfer of power moves through the chord. Surprisingly, Raibert(1988)
has shown that a rather simple machinery suffices if the limb (and body)
motions satisfy certain “sinusoidal” constraints. The problem is then the
coordination of the cyclic activities: we must have a sequence that runs off a
clock and interleaves the limb movements properly.

 To engage in a walk, a minimum of a four-cycle among agents is
required, even if we have a biped anigraf. (There can be no two-cycles.) For
our minimal quadraped to maintain balance, the right front (Rf) and left rear
(Lr) limbs should move together, and similarly for the two remaining limbs (Lf,
Rr.) Hence only two sets of limbs need be controlled, together with two
appropriate pauses between movements. Alternatively, we eliminate the pauses
altogether and use each agent to activate limbs in sequence. This would
generate a Lf, Rf, Rr, Lr sequence, for example.

Table 3.1 lists other gaits possible with the simple 4-cycles. How can this
set of gaits be generated using one social network? Ideally, we would like to
envision the top-cycle sequence of agent activities as having a simple mapping
to the desired movements. To accomplish this, the anigraf map of the similarity
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relationships between agents need to have both left-right and rostral-caudal
symmetry, because this is a property of the gait sequence. The pentagon or

Table 3.1
Gait Type Sequence
walk  Lf & Rl  pause  Rf & Rr  pause
jump  Lf & Rf  pause  Lr & Rr  pause
cantor  Lf & Lr  pause  Rf & Rr  pause
run  Lf  Rr  Rf  Lr
bound  Lf  Rf  Lr  Rr
gallop  Lf  Rf  Rr  Lr

 “house” with directed communication channels are the simplest anigrafs that
satisfy this condition. As shown in at the right of Fig 3.3, paths through these
directed graphs correlate nicely with the resultant sequence of the legs. Hence,
unlike most linear networks with resonant modes (Greene, 1962), we have a
pleasant mapping between how agents view their relationships to one another -
- a cognitive stance -- and the cycles among the limbs effected by the agents --
a physical consequence.

Note that the above proposal also requires a two-tier system: a set of
(five) body agents, or mental controllers, that specify the sequence of limb
movements, and another sub-set of three or four “robo-agents” that activate
the bending movements of each individual limb. These local agents should be
seen as part of the lower tier “Y” or “T” network, with at least one of the
body agents lying at the junction of the network. This latter agent is in a key
position: its vote can simultaneously either activate or shut down both the cycle
among the body agents as well as the local cycle among the “robo-agents in
the limb. Hence both the activation of the limb as well as its own bending
movements are coordinated in the sense that there is one “body” agent in
common.
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3.4 Gait Switching
One of the great benefits of a social computation is that behavior can be

changed dramatically, yet predictably, by one vote. For example, we may wish
to change the quadraped’s gait from a “walk” to a “gallop”, or perhaps
simply change a walk from forward to backward. One obvious scheme for gait
switching is to change directed channels in the graph, such as from a “house”
to a “criss-cross” construction (See Fig 3.3.) However, more preferable would
be to leave the network unaltered, and simply change the voting power of one
or more agents. The use of three-level weight selections makes gait switching
even easier.

A precursor to simple, but sophisticated gait switching is already present
in the limb segment. The top of a Y or T network has three agents, at least one
of which is a body agent. Cycles involve either the right or left arms of the Y
or T, but not both. If the Y configuration is used with three body agents, then
each of the two cycles could make slightly different adjustments of the limb
position, as would be necessary for either forward of backward movement.
Similarly, if a T configuration is used to control limb motion, then the two
different local cycles might effect a small lateral adjustment of a limb motion, as
would be needed for turning either left or right.

More complex gait changes involve going from a walk to a run, or to a
gallop. Referring to Table 3.1, a “run” maps into a 4-cycle around the lower
square portion of a house (see Fig 3.3), whereas the “gallop” requires a criss-
cross sequence shown in the adjacent graph. To obtain both 4-cycles using the
same network, and for a significant portion of the weight space, it is convenient
to add a sixth agent. One suitable configuration is a hexagon with two directed
diameters, as illustrated in Fig 3.4.  Another is a directed k-partite graph (right.)
For the modified hexagon, two relevant 4-cycles are bcde... (gallop) and
bcde...(run). Only about 3 percent of the weight space will support these 4-
cycles. However, once again, the use of three range levels of weights will yield
cycles 30% of the time, or more if the range of each level is narrowed. One
suitable set of weights for becd and bcde cycles are (lo,mid,hi, hi, mid,lo)
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Fig. 3.4. Anigraf patterns that can elicit 4-cycles, Percentages are for weights taken from a
uniform distribution, excepting the 30% in parentheses, which uses only the three levels. The
second pattern is used in Plate 3.

and (lo,hi,mid,hi,mid,lo.) Note that the difference is simply a switch in the
voting strengths for the second and third agents.

Other configurations of interest include the pentagon with a sixth node
added to the interior. With channels directed as illustrated in Fig 3.4, we can
obtain either an abfe or a bedc cycle.  The latter corresponds to the customary
4-legged quadraped walk. The abfe cycle, however, engages only two of the
four limbs. Various roles can be assigned to agents A and B. One intriguing
possibility is if they controlled both body stance and balance as well as a
“pause”. Then the abfe cycle would allow an “erect” anigraf to engage in a
walk, while the bedc cycle for the same anigraf would control a four-legged
run.  In each case, suitable weights for these cycles are potentially accessible
using a three-levels of voting strengths.

Approximately 18 different gaits have been observed in quadrapeds
(Hillebrand, 1966.) With five agents, we have about 300 possible acyclic
connected digraphs; with six agents, about 6,000 possibilities, and with eight
agents, over 20 million. So there are many configurations available to generate
18 different gaits. But it is quite difficult for any given configuration to
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generate more than a few 4-cycles, over a significant range of weights. If 6 or
8 cycles are required, then plausible solutions almost vanish. One would have
to overlay several different graph structures and then activate each
independently, or allow “on-line” modifications of the structure of the digraph.
These properties are quite unlike linear resonant networks that have many
[O(n^2)] solutions for any one 4-cycle. Curiously, in real animate creatures, the
most gaits seen is about six.

Plate 3. Phase plot for second anigraf from left in Fig. 3.4 showing a range of 4-cycles as a
textured streak rising to right from middle of panel. Weights are (1, 3, x = 0 – 6, y = 0 – 6, 3, 1).
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3.5 From Gaits to Goals
For very simple Anigrafs -- those we regard as akin to the minds of

insects or other reflexive creatures, we have a situation not unlike our five
daemons trying to control a vehicle. Specific goals such as “flee”, “approach”,
or “avoid” are closely associated with particular locomotive movements such
as “run”, “walk”, or “turn”. In these cases where there is a simple one-to-one
relation between the gait and goal, we can assign specific goal states to each
gait agent. To illustrate, let the set of goals be “flee”, “attack”, “approach”,
“avoid”, “reflect/watch”, “retreat”, each be associated with the movements of
run-away (R-), sprint forward (S), walk (W), turn (Tr, Tl), halt (H), backup (B).
How the creature behaves in a given context will then depend on how these
movements and their associated goals are related.

   

Fig. 3.5.  High level anigraf that relates different types of movements, reminiscent of the
puppet’s options considered in the Preliminaries.
.

One possible relationship for these behavioral acts is the anigraf show in
Fig. 3.5. Fast attack (sprint forward) is seen related to an approach (walk
forward), backing up is a form of retreat, with fleeing the extreme version.
Turns are usually executed at low speeds while walking, or when stationary.
Although cast in terms of movements, the controlling agents now are engaged
in another level of social consciousness, one having a clear emotional content.
Flee implies fear, approach implies curiosity; attacking is an aggression. These
agents have a character one might associate with the daemon-like mental
organisms. Cognitive capabilities are emerging.
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                    ‘Tree-like” Forms (from P. Gunkel, the Ideonomy Project.)


