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Abstract

A “Winner-take-all” network is a computational mechanism for picking an alternative with the largest excitatory input. This choice is far
from optimal when there is uncertainty in the strength of the inputs, and when information is available about how alternatives may be related.
For some time, the Social Choice community has recognized that many other procedures will yield more robust winners. The Borda Count and
the pair-wise Condorcet tally are among the most favored. If biological systems strive to optimize information aggregation, then it is of interest
to examine the complexity of networks that implement these procedures. We offer two biologically feasible implementations that are relatively
simple modifications of classical recurrent networks.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Information aggregation in neural networks is a form of
collective decision-making. The winner-take-all procedure is
a popular method of picking one of many choices among a
landscape of alternatives (Amari & Arbib, 1977; Maass, 2000).
In the social sciences, this is equivalent to choosing the plurality
winner, which is but one of a host of procedures that could be
used to choose winners from a set of alternatives. Saari (1994)
points out many undesirable characteristics of this procedure.
More importantly, in the presence of uncertainty about choices,
the plurality winner is not the maximum likelihood choice,
whereas either Borda or Condorcet are, depending upon
whether or not the entire social order is desired (Young, 1995).
To obtain a glimpse into some of the problems associated with
winner-take-all, consider the analogy where the biological input
is seen as a population of voters. Then the plurality winner
– that outcome shared by most of the voters – only needs to
receive more votes than any other alternative in the choice set.
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Hence it is possible for the winner to garner only a very small
percentage of the total votes cast. In this case, uncertainty and
errors in opinions can have a significant impact on outcomes,
such as when only a few “on-the-fence” voters switch choices
(Richards, 2005). We sketch two other procedures that yield
more reliable and robust winners, and illustrate how they may
be implemented in neural networks.

2. Plurality voting

To provide background, the winner-take-all procedure is
recast as a simple voting machine. Let there be n alternative
choices ai with vi of the voters preferring alternative ai . The
inputs to the n nodes in a neural network will then be the
number of voters vi sharing the same preference for a winner.
The outcome is

winner Plurality = argmaxi {vi } (1)

which can be found using a winner-take-all network based
on lateral inhibition. There are a number of implementations
of the winner-take-all network; examples can be found in
the references (Amari & Arbib, 1977; Xie, Hahnloser, &
Seung, 2001). Note that no information about any correlated
relationships among alternatives is captured in (1). In other
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Fig. 1. A Borda∗ Count network for the domain model Mn at left. The input
weights vi are analogous to the number of voters who favor alternative ai ,
which is represented as node i in the network. Each input node projects to
all nodes in another layer called “the winner’s circle”. The direct projection
to the node similarly labeled has weight two, as indicated by the bold double
arrows. The input nodes also project with weight one to the remaining n − 1
nodes in the winner’s circle, but some of these are inhibited by interneurons
in the intermediate edge assertion layer. The role of inhibition is to delete the
weight-one projections to the winner’s circle if there are no edges in the model
Mn . The nodes in the winner’s circle then carry out a WTA computation on the
selected inputs. (Not all recurrent connections are shown in the winner’s circle.)

words, if there are correlations among the alternative choices
ai , this information will be ignored in the Plurality tally.

3. Borda method

To improve the informativeness (and robustness) of
outcomes, we follow recommendations in Social Decision-
Making, and relax the constraint that only first choices will
be considered in the voting process. In Social Decision-
Making, this is equivalent to including second (or higher)
ranked preferences (Runkel, 1956; Saari, 1994; Saari &
Haunsberger, 1991). The Borda Count (Borda, 1784) includes
this information by assigning n − 1 points to a voter’s first
choice, n − 2 points to his second ranked alternative, and
generally n − k points to the kth ranked alternative. In the case
of ties in a sequence of rankings, points that would otherwise be
assigned to alternatives are averaged, and the average is given
to each member in that set of ties. The maximum of these
weighted sums is then taken as the winner. Note that implicit
in this procedure is that the voter’s ranking is an indication of
the similarity or correlations among the alternatives, from the
voter’s viewpoint. Our main assumption is that the similarities
or correlations among the n alternative choices are related by
a domain model Mn that is held in common by all voters. For
clarity, we take Mn to be an undirected graph, such as the one
in Fig. 1. The preference rankings used by voters vi are then
dictated by the digraph Di induced by Mn , with the root of the
digraph being the voter’s first choice, namely ai . In other words,
each voter’s ranking of alternatives is now not arbitrary, but
is also reflecting information about choice relationships in the
shared domain model Mn (Richards, 2001; Richards, McKay,
& Richards, 1998, 2002). In our simple example, there are five
voters favoring alternative a1, with second choices of a2 and
a3, and third choice a4, etc. Similarly there is only one voter
favoring a5, with second choice a4 and third choice a3. For
voter vi , the level in the preference ordering for a j is simply
the smallest number of edges in the digraph Di between ai and
a j .

In effect, the role of Mn is to place conditional priors on
relationships in the choice domain. Hence individual preference
rankings will not be independent. This has consequences for
how a Borda tally should be conducted. In the Appendix,
we justify a tally that assigns n − k points to each voter’s
kth choice, even when several alternatives have the same
preference rank. This revision of the accepted Borda method
is an important factor in insuring that prior information about
relations among alternatives captured by Mn will be utilized
to yield the best estimate of a true majority winner. We will
denote our modification as the Borda∗ method, to highlight its
difference from the classical Borda Count.

Although the shared model Mn has typically been
represented as a graph, Gn , it is more convenient to use the
matrix Mi j where the entry “1” indicates the presence of the
edge i j in Gn and 0 otherwise (Harary, 1969). For the graphical
model of Fig. 1, we would have:

Mi j =

0 1 1 0 0
1 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

. (2)

For simplicity, we assume that the edges of Mn are
undirected, meaning that if alternative a1 is similar to
alternative a2, then a2 is equally similar to a1. However,
directed edges, or the inclusion of weighted edges, require only
trivial modifications to the scheme. Again for simplicity, we
will also restrict our preference orders to first, second and third
choices. Because Mn is modeled here as a random graph, this
restriction has little practical consequence for large random
graphs; their diameter is almost always two (Harary, 1969),
and hence any voter will need no more than three levels of
preferences to rank all alternatives.

With Mn expressed as the matrix Mi j we can calculate
the new Borda∗ tally that includes second choice opinions by
defining a new voting weight v∗

i as

v∗

i = 2 vi +

∑
j

Mi j v j (3)

where now first-choice preferences are given twice the weight
of the second-ranked choices, and third or higher ranked
options have zero weight. The outcome is then

winner Borda∗
= argmaxi {v

∗

i }. (4)

A neural network that executes this tally is shown at the right
of Fig. 1. At the top (winner’s circle) is a standard winner-take-
all (WTA) layer. (The collection of WTA nodes in the “winner’s
circle” does not show all the recurrent connections.) Below this
is an “edge assertion layer” that embodies the model Mi j and
controls whether or not an input vi will contribute to another
node j such that j 6= i . Hence, in accord with the classical
Borda count, the i th WTA node receives a synapse of strength 2
from the i th input node, which in turn is driven by vi . This twice
weighted input to a WTA node is depicted by heavy double
arrows. The i th WTA node also receives synapses of strength
Mi j from the j th input. These inputs are depicted by the
slimmer arrows which are active only if there is an edge in Mn .
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This selection is carried out by the intermediate edge assertion
layer. Here we need nC2 neurons, each representing whether
or not there is an edge in Mn between nodes i and j , and
accordingly inhibiting inputs from vi to v j in the winner’s circle
if edge [vi , v j ] is not in Mn . This layer is the limiting factor in
the complexity of the network. For the model illustrated, the
highlighted WTA node 3 is the Borda∗ winner for the given
inputs vi . Note that the more common winner-take-all plurality
procedure would pick node 1.

4. Rank vector

A disadvantage of any Borda Count is that a weighting
on a voter’s preferences is imposed depending on rank, or,
equivalently, the minimum number of edge steps from a voter’s
first choice to another alternative. In our simple Borda∗ model
using only first and second choice preferences, a weight of 2
was given to the first choice and 1 for the second. Let this
bias be represented as the Borda∗ rank vector [2, 1, 0], or
equivalently, as the normalized form [1, 0.5, 0], where the 0
is the weight applied to all preferences ranked after second
choices. Then it is clear that the rank vector for the Plurality
method is [1, 0, 0]. But we could also invent another vector [1,
1, 0] that would weight the “Top Two” choices equally. More
generally, a normalized rank vector will have the form [1, b, c]
with 0 < b < 1 and c = 0 for our simplified preference
rankings. But now we see that the outcome of any Borda∗

procedure will depend on the choices for b, c. What justifies
one weighting scheme over another?

To avoid specifying values for b, alternatives can be
compared pairwise. Each voter would then simply pick the most
preferred alternative of each pair — the one with the higher
rank in his preference order. There are several procedures
using pairwise comparisons, with the outcome depending upon
whether or not there is one alternative that beats all others
(Condorcet, 1785; Dodgson, 1876; Klamler, 2004; Ratliff,
2002). Here we follow Condorcet’s proposal, where the winner
is that alternative beating all others.

Definition. Let di j be the minimum number of edge steps
between vertices i and j in Mn , where each vertex corresponds
to the alternatives ai and a j respectively.

Then a pairwise Condorcet score Si j between alternatives ai
and a j is given by

Si j =

∑
k

vkSign[d jk − dik] (5)

with the sign positive for the alternative ai or a j closer to ak .
Note that if ai or a j are equidistant from ak , then Sign = 0 and
the voting weight vk does not contribute to Si j .

Furthermore, as in the Borda∗ Count, we again impose a
maximum on the value of di j of 2, which means that third or
higher ranked alternatives do not enter into the tally.

A Condorcet winner is defined by

winner Condorcet = i iff Si j > 0 for all j such that j 6= i. (6)
Thus the Condorcet winner is a true majority outcome. But,
whereas there is always a Borda∗ winner in the absence of
ties, a unique Condorcet winner is not guaranteed. Failures
occur when there is a social cycle among the top three or more
alternatives.

Definition. A top cycle is present (and hence no unique winner)
if there is some set of alternatives such that ai beats a j , a j beats
ak , and ak beats ai , and every alternative not in the top cycle is
beaten by at least one alternative in the top cycle.

Thus, although the Condorcet tally also utilizes information
about relations among alternatives in the choice domain, it has
two disadvantages over the Borda∗ method. First, there is no
guaranteed winner (which may be appropriate if one seeks a
clear consensus), and second it comes at a computational cost.
For n alternatives, the Borda∗ computation is O(n) if Gn is
sparse and O(n2) if dense, whereas the Condorcet pair-wise
calculation is O(n3). Superficially, then one might expect a
neural network that calculates the Condorcet winner to be more
complex than that for the Borda∗ winner.

5. Condorcet network

To reduce the computational complexity to O(n2), the
trick is to choose a special subgraph of Gn , namely gk , with
k � n. Conceptually, the subgraph we choose is a ridge in the
landscape of Borda∗ weights. The ridge consists of the k nodes
in Gn with the highest Borda∗ scores (i.e. Eq. (3)). This choice
is based on the observation that for connected random graphs
of fixed edge probability with weights chosen from a uniform
distribution, simulations show there is near 100% likelihood
that the Condorcet winner will be among those alternatives
with the top five Borda∗ scores. (The Appendix elaborates this
observation.)

5.1. Specifics for the subgraph gk

Let the Borda∗ rank vector be [2, 1, 0] as before, with the
Borda∗ scores v∗

i for each vertex i in Gn . Without loss of
generality, label the vertices in Gn by the rank order of their
Borda∗ score, with vertex i = 1 having the largest score.
In cases where the Borda∗ scores are tied, simply choose the
indexing arbitrarily among the tied vertices to create a total
order.

Definition. gk is the spanning subgraph of Gn containing the
vertices with the top k Borda∗ scores.

Note that other definitions are possible. For example, we
could require that gk be a connected subgraph. In this case, for
some Gn , gk may not include all the top k Borda∗ scores.

5.2. Sketch of a neural network

Here, our objective is to obtain a crude sense of the
complexity of a plausible neural network that calculates a
winner for gk . There are three design challenges: (1) finding
gk , (2) computing the Condorcet winner for each pairwise
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comparison, and (3) to determine which alternative (node) beats
all others. We assume that the maximum Borda ridge (nodes in
gk) has already been found, perhaps using a scheme similar to
that shown in Fig. 1. If gk can be unconnected as defined, then
a clipping algorithm might suffice to identify the k nodes in
Gn with the highest Borda∗ scores. Alternatively, if we wish
to impose a connectivity constraint on gk , then some form
of a greedy algorithm beginning at vertex i = 1 would be
more appropriate. Simulations based on random graphs Gn ,
for n = 40 with edge probability 1/4 and weights chosen
from a uniform distribution show that in over 96% of cases,
the winners with k = 8 are the same regardless whether the
definition of gk is satisfied precisely, or found using a greedy
algorithm. This equivalence might be expected, because the
vertices with the highest Borda∗ scores will typically have the
largest vertex degrees and hence the greatest connectivity. In
either case, this step is of complexity O(n2).

The second challenge is to implement kC2 pairwise
comparisons [Eq. (5)]. (As before, third or higher ranked
alternatives will not enter into the tally.) The trick requires
noting whether the vertices being compared are adjacent or not.

Consider first the case where two vertices in gk are not
adjacent in Gn (and hence also not adjacent in gk). Then we
simply need to sum the weights of the neighbors to each vertex,
plus the weight of the vertex itself, and then compare these two
weight sums to determine the pairwise winner. Note that this
is equivalent to using a different rank vector for each vertex,
namely [1, 1, 0], and then picking that vertex with the largest
score. If the two vertices being contested are adjacent, however,
then note that the weight of each vertex will be added to the
score of the competing vertex. Hence the weights of the vertices
themselves will be cancelled if [1, 1, 0] rank vector is used. To
correct for this cancellation, the weights of each vertex in the
comparison must be doubled when these vertices are adjacent
(Richards et al., 2002). This is the Borda∗ rank vector [2, 1, 0].
Hence, when calculating each pairwise Condorcet score, the
rule is to use a Top-Two bias vector [1, 1, 0] when vertices are
non-adjacent in Gn , and to use the Borda∗ rank vector [2, 1, 0]
when adjacent. This requires making explicit whether or not the
kC2 edges in gk are adjacent or not in Gn .

The third challenge is to determine that node or vertex
beating all others. As will be seen below, this can be handled
easily by a logical AND of the WTA outputs from each pairwise
comparison.

Fig. 2 depicts a gk network with six layers. The computation
is carried out as follows:

(i) the k-maximum Borda∗ ridge (nodes in gk) is given, as
well as the neighborhood sums in Gn for each node in gk .

(ii) Activate the kC2 set of nodes in an “edge assertion” layer
to make explicit which edges in Mn are present in Gn (as
was done previously in the Borda∗ network). Note that this
activation controls inputs to both the neighborhood sums
layer, as well as to nodes in the comparator layer.

(iii) For every node in gk , find the sum of the weight of vertex i
and its neighbors (neighborhood sums). Again, this step is
analogous to that used in the Borda∗ network of Fig. 1,
except at this stage the sum uses the “Top-Two” bias
Fig. 2. In the upper left is a very simple domain model Gn relating nine
alternatives, with input weights vi . At the upper right is the reduced version
depicted as the subgraph gk with 4 nodes that correspond to the nodes in Gn
that have the four highest maximum Borda∗ scores. These nodes in gk continue
to receive weights from nodes adjacent in Gn , indicated by the unlabeled
dashed circles. However, only nodes in gk will be used in carrying out the
Condorcet tally. These nodes, with their augmented weights wi , are shown in
the network below as the “neighborhood sums”, which are the inputs vi to the
layer labeled “nodes in gk”. (These neighborhood sums must be made explicit
in the network.) The scheme then proceeds analogously to the Borda∗ network,
where each node in gk sends its input weight to a set of nC2 comparator nodes.
Between these two layers is, as before, another set of nC2 interneurons that
makes explicit through inhibition whether an edge in the domain model Gn is
present or not. Critical is whether nodes are adjacent in gk when weights are
being compared. If so, as discussed in the text, the weight of the gk node must
be doubled. This is the role of the back-projections of the interneuron “edge
assertion” layer onto the neighborhood sums (note small black circles depicting
inhibitory synapses). Finally, the loser of each pair-wise comparison in the
second highest layer (diamonds) sends an inhibitory signal to its namesake in
the winner’s circle (triangle), which shuts down this node, as it can not be the
Condorcet winner. If all nodes in the winner’s circle become inactivated, then
there must be a top-cycle.

vector [1, 1, 0]. The second input for the weight of vertex
i itself will be added in step (iv) depending upon edge
connectivity in Gn .

(iv) Project the activity of [1, 1, 0] neighborhood node sums
onto each member of a pair of nodes in the “comparator”
layer that has the same vertex label.

(v) Project the weight of vertex i itself onto the appropriate
member of all pairs in the comparator layer, but only if the
two vertices in the comparator layer are adjacent in gk (as
controlled by the edge assertion activations in (ii)).

(vi) Use a WTA procedure to select the winner of each pairwise
comparison in the comparator layer, and send either a “0”



W. Richards et al. / Neural Networks 19 (2006) 1161–1167 1165
(loser) or “1” (winner) signal into the appropriate node in
the “winner’s circle”.

(vii) Do a logical “AND” of the inputs to each of the k nodes
in the winner’s circle. If there is a unique winner, then
only one node will remain active. If there is no such unique
winner, then there is either a tie or a top-cycle. (See earlier
definition.)

Note that although there are only k nodes in the winner’s
circle, in the comparator layer there will be a much larger set
of roughly 2 × kC2 depending upon the tiling of neurons. This
comparator layer, and also the comparable edge assertion layer,
are the critical components that govern the size of the network.
If the diameter of Gn is very large, the connectivities required
become too distant. Some hint of this problem is given in Fig. 2
for k = 4. This depiction also makes clear that neither Gn
nor gk appear explicitly as graphs. Rather, the connectivity is
represented by the filled nodes that indicate whether the vector
[2, 1, 0] or [1, 1, 0] should be applied to the paired comparison
in the comparator module. This representational form has the
obvious benefit that weighted edges, i.e. correlations among
alternatives, can easily be incorporated by allowing analog,
rather than binary inhibition by the “edge assertion” nodes in
layer 3 (small circles).

6. Success of gk

Fig. 3 shows the success rate of the k-Condorcet procedure
for graphs of size n < 250, with different choices for k.
The models Mn used were connected random graphs with
edge probability 1/4. (Similar or better results are found for
higher edge probabilities.) A set of weights on the nodes was
chosen from a uniform distribution. Each point is based on a
minimum of 100 trials, with more trials included so that the
percent standard errors would be less than 5% of the ordinate
values, or 0.5% if the ordinate is less than 5%. Winners were
also calculated using both the Plurality (i.e. node with greatest
weight) and Borda∗ procedures for the same set of weights.
The ordinate of Fig. 3 indicates the failure rate of gk to yield
the same Condorcet winner as Gn . Also shown is the behavior
of the Plurality method (P) and the Borda∗ count, compared
with the Condorcet choice. Regardless of n, the Borda∗ and
Condorcet winners differ only about 10% of the time, as
indicated by the arrow at the right. A small fraction of this
percent is due to top cycles in Gn . Likewise, an important factor
for different winners for gk and Gn is the presence of additional
top cycles in gk . In other words, when gk picks a winner, this
winner is almost certainly the Gn winner (98+% for k > 8).
The approximation by gk is thus conservative: there are few
false positives, instead no winner is chosen, unlike any Borda
count.

7. Biological feasibility

Recently there has been an increasing interest in applying
decision-making tools and theories from economics, political
science and cognitive science to understand how neuronal
systems might function as optimal decision-makers (Glimcher,
Fig. 3. Winners for gk compared with winners for Gn . The numbers along the
curves indicate the values of k. Note that for k > 6, the smaller subgraph gk
does a very good job of finding the true Condorcet winner — roughly the same
as if only the Borda∗ winner were selected (arrow at left shows the Borda∗

success is about 90%). However, the Borda∗ procedure will not reveal the
top-cycle cases where there is no clear majority winner. Finally, note that the
Plurality winner (P), which is the maximum weight node in Gn , is rarely the
Condorcet or Borda∗ winner.

2003; Glimcher & Rustichini, 2004). Given this interest, one
naturally asks whether the simple and popular Plurality-WTA
network can be replaced by a more powerful information
aggregation and decision-making procedure, and if so at what
cost? Clearly the WTA method is very simple to implement,
the Borda∗ next, with the Condorcet network being the most
complex. Is the Condorcet network too complex? Is the
additional complexity worth the benefit? Surprisingly, from a
biological perspective, the Condorcet network is still rather
trivial (Marr, 1969). A more interesting issue then is how the
Condorcet network might actually be implemented in detail.
For example, should the network be broken into overlapping
modules or “receptive fields” of size k for the local calculation,
but with global inputs of size n? Local tilings of receptive fields
for k > 12 seem unlikely. But, as seen from Fig. 3, even
with k ∼ 12, similarity relations or correlations among over
one hundred alternatives or events could still be evaluated quite
successfully.

The Condorcet network has a rather surprising benefit over
the somewhat simpler Borda∗ network. Although each uses
information about alternatives or similar choices, the Condorcet
network explicitly finds correlations among the most significant
because it must make explicit whether edges in Mn are adjacent
or not. This design thus gives the network the potential to learn
priors on such correlations. Furthermore, it has a clear rejection
strategy during the learning phase, namely the presence of top-
cycles. No other method mentioned above has this kind of
built-in feedback mechanism because all others always output
a winner. Finally, it is not inconceivable to see the potential of
such a layered network design in primitive cortical areas, even
for the aggregation of rather simple features.
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Appendix

A crucial step for our networks is the choice of a revised
Borda rank vector that is likely to yield a true majority
winner, namely one that approximates the Condorcet winner.
In the absence of priors on relations among alternatives
imposed by a shared domain model, Young (1995) has shown
that the maximum likelihood estimate of the best social
choice is either the classical Borda Count or the Condorcet
tally, depending upon whether or not one seeks simply the
winning alternative (Borda), or rather the entire social order
(Condorcet). Obviously, in many cases the winners are the
same, or occupy close positions when both social orders are
compared. In our scenario with constrained preference orders,
however, the classical Borda Count typically yields social
outcomes and winners that depart wildly from the Condorcet
winner. To clarify the difference, consider only the top three
preference levels where Borda rank vectors will have the
normalized form [1, b, 0]. In the presence of Mn , the value
of b for the classical Borda Count will depend on the vertex
degree deg(i), associated with the voter’s first choice a1. Each
of this same individual’s second choices will then be assigned
0.5/deg(i) points. Hence the total weight given to all second
choices will be half the sum of the average weight of the second
choices. For the same b = 0.5, our Borda∗ tally, on the other
hand, would take half the sum of all the weights of the second
choices. The two weighted sums will thus differ by a factor
of deg(i). Never-the-less, our proposed Borda∗ rank vector of
[1, 0.5, 0] will give the best estimate of the Condorcet winner,
or equivalently the best estimate of the true majority winner and
one that can not be overturned in any pairwise contest.

Fig. 4 justifies this claim. In this figure, we chose 5000
random graphs of 100 nodes, with edge probabilities of 0.1, 0.2,
0.5 and 0.9, and with weights on nodes taken from a uniform
distribution. The abscissa shows the variation in the Borda∗

rank vector, with [1, 0, 0] corresponding to the Plurality tally,
and [1, 1, 0] another extreme where second choices are given
the same weight as first. Clearly the choice of [1, 0.5, 0] is the
best Borda∗ rank vector overall, except when the graphs are
very sparse.

An intuitive explanation underlying our decision to sum
over all second choice weights is that whenever alternatives
lie equidistant from two other alternatives being compared in a
Condorcet tally, then shared weights will cancel, as they should
(see Richards et al., 2002). This would not be the case if weights
were adjusted depending on vertex degrees.

Related to the above choice of the Borda∗ rank vector is
the agreement between Borda∗ and Condorcet winners when
the order of the social outcomes is considered. From Fig. 4,
first note that if Mn has the form of a random graph, then
with edge probability greater than 0.1, and with the rank vector
[1, 0.5, 0], over 89% of the Condorcet winners will agree with
the Borda∗ winner. For that residual percent where the winners
do not agree, simulations show that about 70% of the remainder
(i.e. 7% of the total) of the Condorcet winners will equal the
Borda∗ runner-up. More importantly, if n > 20, the Condorcet
winner is almost always in the top five of the Borda∗ social
Fig. 4. For Mn modeled as a random graph, with weights on nodes chosen
from a uniform distribution, the Borda∗ rank vector [1, 0.5, 0] provides the
best overall choice when the Borda∗ winner is used to predict the Condorcet
winner. Each curve is based on sampling 5000 random graphs with 100 nodes,
and the result smoothed. Edge probabilities were 0.1, 0.2, 0.5, and 0.9. The
results are representative of connected random graphs for n > 20. At [1, 0.5,
0], the ordinate values are respectively 0.89, 0.93, 0.97 and 0.999.

order, with the likelihood increasing as n increases. Hence gk
even for k = 12 is almost surely guaranteed to contain the
Condorcet winner for Gn .

References

Amari, S., & Arbib, M. A. (1977). Competition and cooperation in neural
nets. In J. Metzler (Ed.), Systems neuroscience (pp. 119–165). New York:
Academic Press.

Arrow, K. J. (1963). Social choice and individual values. New York: Wiley.

Borda, J. -C. (1784). Memoire sur les elections au Scrutin. Histoire de
l’Academie Royal des Sciences.

de Condorcet, M. (1785). Essai sur l’application de l’analyse a la probabilite
des decisions rendue a la pluralite des voix, Paris (see Arrow, 1963).

Dodgson, C. (1876). A method of taking votes on more than two issues.
In D. Black (Ed.), The theory of committees and elections (pp. 222–234).
Cambridge, UK: Cambridge University Press (1958).

Glimcher, P. W. (2003). Decisions, uncertainty and the brain: The science of
neuroeconomics. Cambridge, MA: MIT Press.

Glimcher, P. W., & Rustichini, A. (2004). Neuroeconomics: The consilience of
brain and decision. Science, 306, 447–452.

Harary, F. (1969). Graph theory. Reading, MA: Addison-Wesley.

Klamler, C. (2004). The Dodgson ranking and the Borda Count: A binary
comparison. Mathematical Social Sciences, 48, 103–108.

Maass, W. (2000). On the computational power of winner-take-all. Neural
Computation, 12, 2519–2636.

Marr, D. (1969). A theory of cerebellar cortex. Journal of Physiolology
(London), 202, 437–470.

Ratliff, T. C. (2002). A comparison of Dodgson’s method and the Borda Count.
Economic Theory, 20, 357–372.

Richards, D. (2001). Coordination and shared mental models. American
Journal of Political Science, 45, 250–276.

Richards, W. (2005). Collective choice with uncertain domain models.
AI-Memo 2005-54. Available at publications.csail.mit.edu/tmp/mit-
CSAIL-TR-2005-054.

http://publications.csail.mit.edu/tmp/mit-CSAIL-TR-2005-054
http://publications.csail.mit.edu/tmp/mit-CSAIL-TR-2005-054


W. Richards et al. / Neural Networks 19 (2006) 1161–1167 1167
Richards, D., McKay, B., & Richards, W. (1998). Collective choice and mutual
knowledge structures. Advances in Complex Systems, 1, 221–236.

Richards, W., McKay, B., & Richards, D. (2002). Probability of collective
choice with shared knowledge structures. Journal of Mathematical
Psychology, 46, 338–351.

Runkel, P. J. (1956). Cognitive similarity in facilitating communication.
Sociometry, 19, 178–191.

Saari, D. G. (1994). Geometry of voting. Berlin: Springer-Verlag.
Saari, D., & Haunsberger, D. (1991). The lack of consistency for statistical
decision procedures. The American Statistician, 45, 252–255.

Xie, X. -H., Hahnloser, R., & Seung, H. S. (2001). Learning winner-take-
all competitions between groups of neurons in lateral inhibiting networks.
In Advances in neural information processing: Vol. 13 (pp. 350–356).
Cambridge, MA: MIT Press.

Young, H. P. (1995). Optimal voting rules. Journal of Economic Perspectives,
9, 51–64.


	Neural voting machines
	Introduction
	Plurality voting
	Borda method
	Rank vector
	Condorcet network
	Specifics for the subgraph  gk 
	Sketch of a neural network

	Success of  gk 
	Biological feasibility
	Acknowledgements
	References


