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The assumptions underlying the science of colorimetry are examined in order to generalize the color‑matching technique so that it may be used to study a wide range of sensory attributes. The simplest test of the generalized matching method allows the experimenter to estimate the number of "channels" that sample a given sensory dimension. More elaborate experiments can then proceed to determine the form of these "channels," again using an extension of the color‑matching method. System linearity is not required. Examples of the general matching technique are given for flicker and visual texture, and its application to auditory and tactile sensations is outlined.

Color matching is the experimental arm of the science of colorimetry, which describes spectral sources that will appear identical to a representative human observer. The success of colorimetry lies in the fact that color perception in man is based upon only three different types of "filters," specifically the absorption spectra of three different receptors. Whenever these three types of receptors are equally stimulated by two physically different spectral lights, then these two lights will be indistinguishable perceptually.

The power of colorimetry is illustrated not only by its practical successes in color rendition and reproduction, but also by the advances it provided in understanding the nature of human color vision. Even the crude matching techniques used by Maxwell (1855) were sufficient to illustrate the basic trichromacy of color vision, and provided the first quantitative description of the nature of colorblindness. Given some simple assumptions about the nature of the phototransduction process, the reduced, two‑variable matching functions of the colorblind observer provided the first estimates of the absorption characteristics of the normal human pigments (Helmholtz, 1962). The method of colorimetry thus not only identified the number of filters used by man to sample the wavelength continuum, but also characterized their properties by examining reduced cases. Although matching methods and equipment have improved considerably since these early measurements, the basic technique has not and the major results still stand2 (Wyszecki & Stiles, 1967). How can this powerful psychophysical method be adapted for more general use?

Surprisingly, there has been little attempt to extend the method of colorimetry to study other dimensions.3 Before such an extension can be proposed, however, the assumptions on which the color‑matching technique is based must be stated explicitly. Here we are concerned not with the choice of the actual measurement procedure (method of adjustment, forced‑choice, or staircase), but rather with assumptions that are made about the general nature of the underlying response mechanisms. This is the heart of the development of a generalized color‑matching technique. Examples then follow to illustrate the scope of possible applications.

1. PRINCIPAL FEATURES OF COLORIMETRIC APPROACH

To proceed to develop a generalized colorimetry, we first point out four important constraints upon the method. These constraints deal in part with the concept of "color‑matching functions" that are the primary measurements of colorimetry. In color analysis, a matching function shows the amount (radiance) of a fixed wavelength "primary" that is needed to create a "match" to any arbitrary test wavelength of one unit strength. Thus, at each test wavelength, the value of the matching function shows the contribution of the "primary" wavelength to a match that will look like the test wavelength. Three such matching functions are needed to specify how all possible wavelengths may be "matched" by adding together the fixed primaries in the appropriate amounts.

An important feature of the colorimetric approach is that once the match to any wavelength is specified, then any spectral source can be matched merely by adding together the matches to its wavelength components. By the same token, the set of primaries can be changed by the appropriate addition or subtraction of the original set of matching functions. The underlying receptor sensitivities represent one such linear transformation.

For the success of the colorimetric approach, therefore, we may identify the following constraints:

(i) Equivalence Dimension

Wavelength provides a stimulus dimension along which each different stimulus shares a common sensory attribute (i.e., "color"). Thus a single measure of response sensitivity (flux) can be applied appropriately to all points along the continuum.

(ii) Uniqueness Property

Members of the human population all draw their cone pigments (i.e., "filters") from the same common bank of "filters," which have fixed, unique characteristics that are stable over time.

(iii) Linearity Property

Alternative matching functions can be derived by adding or subtracting the original individual matching functions. (This is a crude restatement of Grassman's Laws, 1853, which state that lights equivalent in color can be added [or subtracted] to yield sums [differences] that are also equivalent.)

(iv) Intensive Property

The spectral sensitivity of any single (cone) mechanism depends solely upon the total incident flux and not upon its distribution in space or time. Hence, changes in the spatial and temporal extent of the stimulus will not change the basic spectral descriptions of the "filters."

For the success of the Generalized Colorimetric Method, a dimension for constructing matches or Equivalences (i) must be available and (ii) the sensory attribute to be studied must be built from filters or channels that sample this dimension Uniquely. As we shall see, it is not always necessary that Linearity (iii) hold exactly nor for the sensory variable to be Intensive (iv), although the interpretation is simpler and the analytical power greater when (iii) and (iv) are also valid.

Given the above assumptions, the generalized colorimetric technique proceeds in two steps: First, we determine the minimum number of narrow‑band stimuli necessary to create an equivalence to a broad‑band distribution. This is analogous to finding the minimum number of wavelengths needed to "match" a "white." Next, the matching functions are measured.

2. GENERALIZED COMPLEMENTS: A SHORT‑CUT METHOD FOR COUNTING "CHANNELS"

Complementary lights are pairs of different spectral sources which mixed together will produce a "white." Because color is a three‑variable system, complementary pairs of stimuli can be found that appear identical to a broad‑band stimulus. The fact that many such pairs can be found demonstrates, given our assumptions above, that the human color processing is based upon no more than three different "filtered" samples of the wavelength dimension.

To show the relation between the number of complements and the underlying response or matching functions, refer to Fig. 1. In the top illustration, the sensitivities of two filters or response functions are shown along an arbitrary Equivalence dimension characterized by a horizontal line. A broad‑band stimulus with a flat distribution along this dimension would innervate both response functions equally. But a narrow‑band stimulus located at the intersection of the two sensitivity distributions (arrow) will also activate each response function equally. Hence, for two independent, overlapping filters or response functions, only one narrow‑band stimulus is needed to create an equivalent sensation, and this choice is unique for a given "white."

Clearly, even if the areas under each response function were unequal, a match" could still be found between a flat broad‑band source and a simple narrow‑band stimulus. The position of the narrow‑band stimulus need only be moved toward the side of the function having the least area so that the ratio of the vertical line intercepts of the two functions equals the ratio of the convolutions of the source with the two response functions. The strength of the narrow-band stimulus can then be adjusted appropriately. In a similar manner, any arbitrary broad-band source can be shown to be “matched” by a single, unique narrow-band stimulus, regardless of the nature of the waveform of the “white.”

It is also not necessary that the filters or response functions have unimodal distributions for a unique solution. However, other narrow-band stimuli might be found to match certain broad-band sources under three circumstances:

(a) The continuum or Equivalence Dimension is closed (such as if it were a circular locus), or

(b) The matching narrow-band stimulus lies between the modes of one response function, or

(c) The response functions do not overlap, in which case two narrow-band stimuli will be required to match broad-band sources.

For the top illustration, a closed continuum would always lead to two possible solutions if both ends of each response function overlapped. At present, to simplify the preliminary analysis we will assume that the Equivalence Dimensions are not closed and that the response functions are unimodal with no more than two functions overlapping at once (as in Fig. 1).

Consider next the case where three overlapping response functions are used to sample a continuum, as in color vision. Here. As shown by the second illustration in Fig. 1, many pairs of narrow-band stimuli can be found to stimulate both functions equally (only the two most obvious pairs are shown). However, although the number of complementary pairs is unlimited, the range over which they may occur is not. For example, as an extreme leftmost (lower) stimulus encroaches more and more into the middle response function, the lower right arrow must move to the right to reduce its stimulation of the same middle response function until finally the lower pair of arrows will match the position of the upper pair. But the opposite argument applies to the upper pair of arrows, which must move to the left. Hence, stimuli lying in the central portion of the middle response function have no complements, unless the Equivalence dimension is closed. (See Appendix I for a proof regarding restrictions on the locations of complements and the extent of overlap of the response functions.)

The last and lowermost illustration in Fig. 1 shows the case where the continuum is sampled by four response functions. In this case, only one solution for narrow‑band complements occurs at the intersections of the two leftmost and two rightmost response functions, at least for a flat broad‑band "white."

From Fig. 1, it should now be clear that whenever an even number N of overlapping response functions sample a continuum that is not closed, then the minimum number of narrow‑band stimuli needed to match a broad‑band "white" will be N/2. The solution will be unique with the stimuli located at the intersections of pairs of response functions.

When the number N of response functions is odd, however, the minimum number of narrow‑band stimuli will be the integer value of N/2. For example, in the case of five response functions, at least three narrow‑band stimuli will be required. In terms of Fig. 1 the solution for the five‑channel case may be visualized better either as the solution for two pairs of functions plus one [where one narrow‑band stimulus is located at an isolated tail of a response function], or as one pair of functions plus three. Note that the solutions for an odd number of response channels will not be unique, thus distinguishing the even and odd cases where the integer value of [N/2] is equal.

It now should be clear that by appropriate pairing of the response functions, complementary narrow‑band stimuli can always be found. In the case where the number of overlapping response functions is even, merely pair the first two response functions and apply Appendix Eq. (3). Then proceed to the next two and repeat the procedure, etc. For an odd number of response functions, either treat the last, unpaired response function in isolation by stimulating its "tail," or determine the solution for the last triplet by using Appendix Eq. (11). Note that although the use of the equations may require linearity in the input‑output relations of the underlying "channels," solutions can still be found by iterative trial and error even if these relations are nonlinear, provided that the response functions overlap only with their immediate neighbors as in Fig. 1. The Linearity Property becomes important only if transformations between matching functions are to be made.

Finally, in the trivial case where the response functions are nonoverlapping, as determined by "blind" regions in the spectrum (or sensory dimension), then the minimum number of narrow‑band stimuli will be the same as the number of response functions. The maximum number of channels sampling a continuum will therefore never exceed twice the number of narrow‑band stimuli needed to match a "white."

To summarize, for an open Equivalence dimension sampled by N overlapping response functions or "channels," the minimum number of narrow‑band stimuli matching a broad‑band "white" will be the integer value of N/2. If the solution does not require unique (in the sense of highly restricted) narrow‑band stimuli, then the minimum number of sensory filters sampling the continuum is not greater than twice the number of matching narrow‑band stimuli, less one.

3. RELAXATION OF THE INTENSIVE PROPERTY

A key factor in color matching that permits exact matches to be made between different physical stimuli is the intensive nature of light. For any stimulus field, the spectral components of the stimulus can be superimposed one upon the other no matter how small the field size, nor how short the stimulus duration. For a homogeneous isotropic region of the retina, therefore, metameric matches made between two fields will still hold even as the two fields are shrunk together to two points. There is nothing intrinsic to the colorimetric analysis that makes it dependent on the duration, size, or exact location of the two fields to be matched in color.4 Such an independence cannot be expected for the analysis of the spatial and temporal response functions, however, where their very (extensive) nature confounds the stimulus variable of interest. How can this limitation be overcome in order that the colorimetric method can be applied generally to examine the shape and structure of spatial ‑temporal response functions?

Consider the textures illustrated in Fig. 2. Although each of the four panels differ in the coarseness of the pattern, any one panel looks fairly homogeneous. Within any one panel (with the possible exception of the lower right), the texture throughout the panel appears to be drawn from the same population (i.e., as if it were all part of the same rug). In fact, the left half of each panel contains 64 gray levels randomly selected whereas the right half has only 3 gray levels (Richards & Riley, 1977). Thus we have a texture match between two nonidentical distributions of gray levels. Such a match is not an identity as in color, yet there is the strong implication that the population of such textures created from many random gray level samples is equivalent to a second population containing only 3 gray levels. When such matches occur between two different populations, the populations can be said to be equivalent and the matches will be called "quasimetamers." 

Thus, a "quasi‑metamer" is a pair of stimuli randomly drawn from two different stimulus populations such that the observer is unable to determine from which population each member of the pair belongs.5
In the above example that examines texture metamers, we clearly have the obvious problem that as the total number of bars in each half decreases, the two halves must look more and more different. This is a problem inherent in examining the equivalence between any two texture patterns that occupy spatial extent. We have two choices: either show many small samples or alternatively show only a few samples that cover a greater extent. (These are not theoretically equivalent.) The demonstration in Fig. 2 has elected the second option. The implication of this figure is that any random selection of gray levels on the left will generate a pattern whose population statistic cannot be discriminated from that based upon a random assortment of three preselected gray levels (i.e., the right half of the panels).

Clearly, the idea of "quasi‑metamerism" is not restricted to the spatial domain, but can be extended to include temporal sampling of populations, as it will when flicker metamers are discussed.

EXAMPLES OF APPLYING THE GENERALIZED COMPLEMENT TECHNIQUE

Texture Metamers

Quasi‑metamerism between textures has already been described and illustrated in Fig. 2. In each panel, the left half of the figure corresponds to "white noise" where the gray levels are randomly chosen with equal probability from 64 gray levels. The right half of the figure corresponds to the narrow‑band stimuli, which in this case are limited to only three preselected gray levels. (The exact choice of grays is not important within a certain range.) Because the left and right halves of the upper two panels are not discriminably different, we have evidence that suggests quasi‑metamerism. (A more rigorous test would involve a force‑choice comparison that would require the observer to identify which half of the texture was taken from the "white noise" population.) Because only three gray levels appear sufficient to "match" the white noise distribution, the implication is that the human visual system is "filtering" this kind of noisy texture information. Along a gray scale continuum, the Generalized Color‑Matching approach would suggest that at most only five gray level response functions are required to characterize these matches. (In fact, probably only three are being used, with the extra gray being required to create a more appropriate spatial frequency match. See also qualifier in Appendix I.)

FIG. 2. Texture matches using bars of fixed width (as shown beneath the figures), but variable gray levels. The left half of each picture contains randomly chosen grays. The right half has only three gray levels (0.16, 0.50, 0.80) chosen with equal probability.

[image: image12..pict]

Orientation Discrimination

As another example of the power and generality of the method, consider the question "How many orientation 'channels' participate in the global perception of textural structure?" The dimension along which these channels can be represented is obviously closed, with values 0 to 180' for simple line elements. A suitable broad‑band stimulus is merely a texture constructed from line elements having random orientations (left portion of Fig. 3A). A narrow‑band stimulus is represented by line segments at a single orientation. As shown by the right portion of Fig. 3A, two such narrow‑band stimuli are unlikely ever to yield a match to the "white" regardless of the choice of orientations or relative density of the line elements. Figure 3B compares a broad‑band "white" texture with one constructed from elements of three orientations. A match is still not possible with this choice of orientations and density. However, a slight increase in density of the right pair might yield a successful match if the patterns are not scrutinized.

Figure 3C illustrates that four orientations can yield a successful match, and experiment has shown that many different quadruples will work (Riley, 1977). Thus, we suspect that for any given broad‑band pattern of line‑segment orientations, there will be only one set of triplets that will yield quasi‑metamer equivalence. Our preliminary estimate of the maximum number of channels used for this

FIG. 3. The generalized colorimetric technique applied to the orientation of texture elements. Each panel from top to bottom has, respectively, two, three, and four orientations. (Adapted from M. Riley, 1977, by A. Witkin.)




task is therefore six. This result would suggest a "channel" width of about 30°‑‑a value consistent with other psychophysical studies (Campbell & Kulikowski, 1966).

Flicker Discrimination

White noise temporal flicker can be matched by an approximate combination of two sinusoidally flickering lights. Depending upon the sampling time, either many solutions are possible if the time is short, or few if the time is long. This result would imply that three or four flicker "channels" are used to sample the temporal frequency spectrum. (We shall see shortly that three response functions yield good flicker matches under most conditions.)

Clearly, we have here with flicker matching a case of quasi‑metamerism in the temporal domain, for each member of the matching pair is not identical, but only appears to come from similar populations. Unless the time interval is very short so that the stimulus is a pulse, the phase differences between the components of the matching pairs will produce a flickering light that will differ at any given moment. A rigorous test for quasi‑metamers must therefore require forced‑choice decisions as to whether a stimulus comes from the "white noise" or from the narrow‑band populations. The present intent of this paper is not to prove that there are only three or four flicker (or spatial frequency) channels, but only to outline how such "channels" may be counted (and described) although the Intensive Requirement for a sensory dimension may be violated.

4. DERIVATION OF MATCHING FUNCTIONS: UTILIZING THE FULL COLORIMETRIC PROCEDURE

After an estimate of the number of response functions sampling a sensory continuum has been obtained, the next step is to characterize their shape and location. Once again, we will follow the guidelines of colorimetry to determine a set of "matching" (distribution) functions that are isomorphic with the underlying response functions or "channels." These matching functions describe the amounts of fixed (narrow‑band) primaries that are required to create metameric matches to (narrow‑band) stimuli located anywhere on the continuum of interest. An upper bound on the number of primaries required is set first by the matches to "white noise," as described in the previous section. When the Intensive Requirement for a sensory dimension is violated, it should be understood that only "quasi‑meteramerism" is possible and that the matches describe population properties and not identities. This will be the case for the estimates of the underlying spatial and temporal response functions that are to follow.

To determine the location of the narrow‑band primaries needed to explore a sensory dimension, we must begin with a trial and error search. Furthermore, the linearity assumption must be invoked, permitting the "desaturation" of any narrow‑band test stimulus by one or more of the primaries. When a stimulus is desaturated by a primary, the amount of the primary used is given a negative sign in the equivalence relation. Thus,

Si (i)=ai*P1(1)+bi*P2(2)-ci*P3(3)
(1)

indicates that to create an equivalence between the stimulus Si located at i and the two fixed primaries P1 and P2, the third primary P3 must be added in amount ci to the test stimulus Si.

If marked nonlinearities are present, then the color‑matching technique will fail, as indicated by the discovery that the number of fixed primaries required to match all portions of the continuum will exceed the upper bound imposed by the "white noise" matches.

The presence of small nonlinearities, however, is no obstacle and may even become an asset. For example, if the primaries are chosen to be near the peaks of the underlying response functions, then the range of amplitudes of the dominant primary in this region will be smaller than if the "tail" of the response function is stimulated. In the last case, a considerable amount of the primary may be required to create a match to the test stimulus located near the peak sensitivity of that same response function, and the nonlinear effect will become more marked, as evidenced by excessive desaturants. As a general rule, therefore, primaries should be chosen to maximize the saturation of the test stimulus and to minimize the amounts of desaturants required.6 With this strategy, the matching functions are more likely to reflect the sensitivity profiles of the underlying response functions. The more the desaturation required in the matches, the greater will be the dependence placed on the linearity assumption in order to transform the empirical matching functions to a representative set of all‑positive response functions.

One of the more difficult problems in finding suitable primaries is to determine their spacing along the dimension of interest. This task can be simplified in two ways: First, the location of the "complementary" stimuli required to make "white noise" matches provides some cue to the location of optimal primaries. At least one and sometimes two of the best primaries will lie in between the adjacent complements, as can be seen by inspecting Fig. 1. A second method of simplification is to recognize that at any given primary, the amounts of all other primaries required for a match is zero. These zero crossings of the matching functions thus impose a constraint on the waveform of the matching functions. By assuming a waveform, a relation between the matching properties of those stimuli located intermediate between any two primaries can be determined. An example of such a construction is given in Appendix II.

5. EXAMPLES OF DERIVATION OF RESPONSE FUNCTIONS IN VISION

(i) Temporal Frequency Matching

The inset to Fig. 4 shows the configuration used to present two adjacent fields of spatially homogeneous flickering white lights. One panel contained the test flicker frequency, modulated sinusoidally with an amplitude of 0.5. A desaturation primary could be added to this test signal. The remaining two primaries, chosen from the set of 10, 2.7, or 0.7 c/sec, appeared in the remaining field. These flicker primaries were chosen after extensive pilot studies, using the selection strategy outlined previously. From "white" noise matches, we know that three or four, at most, flicker primaries would be sufficient to create flicker‑matching equivalences for all flicker frequencies.

The task of the subject, in all "matching" experiments, is to adjust the modulation amplitudes of the primaries until each field appears to have the same flicker quality. In this case, because of phase differences between the components of the stimuli, identity cannot usually be achieved and a time‑averaged judgment of quasi‑metamerism was made.7 All of the adjustments of the sums of the sinusoidal components were accomplished by a computer which controlled the CRT display. Fixation was midway between the two panels (Richards, 1975).

The three curves in Fig. 4 summarize the flicker‑matching results for three subjects. (The fourth point is the average across subjects.) Note that over the range of 0.5 to 30 c/deg, little desaturation is required in most cases, and thus these matching functions probably come close to representing the underlying flicker "channels." One striking characteristic not obvious until these matching functions were measured is that all high frequencies above 12 c/sec can be made to look the same by an appropriate adjustment of contrast.

(ii) Spatial Frequency (Texture)

The first step in describing color equivalencies was the recognition of the dimension of wavelength into which the visual scientist could map the components of all spectral lights. Texture may also be described in exactly the same way

FIG. 4. Flicker‑matching functions for three observers (the fourth point is the mean value), using primaries of 10.2, 2.7, and 0.7 Hz.
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except the relevant dimension is now spatial frequency (DePalma & Lowry, 1962; Robson, 1966; Bryngdahl, 1966; Campbell & Robson, 1968). Thus, if at the onset only one‑dimensional textures are considered, then Fourier's theorem states that any such texture may be adequately described by the magnitude of its sinusoidal components. These components are of course merely sine‑wave gratings which when added together in suitable proportions will physically recreate the onedimensional texture pattern. Thus, the dimension of spatial frequency can be used to describe all possible one‑dimensional textures in exactly the same manner that chromatic wavelength is used to describe all possible colors.

Complex patterns containing any finite number of sine‑wave components were generated using a special graphics system controlled by a PDP 11/10 computer (Richards, 1978). The display consisted of two independently controlled 14‑in. video monitors with 440 x 440 element resolution and a 64‑level gray scale with a P4 white phosphor. The mean luminance level was 20 cd/m2. The viewing distance was 200 cm. For any field, up to six waveforms would be amplitude modulated on‑line by the subject merely by adjusting the appropriate pot on a hand‑held control box.

For all texture matches, the task of the subject was to adjust the contrast of the sinusoidal components of the pattern in both the left and right fields so that both fields (or panels) looked equivalent. Because the patterns have a limited extent, our concept of equivalence is broader than just identity and the matches are thus "quasi‑metamers." To aid the subject in judging equivalence between two texture patterns, we asked him "to make both panels look like they had been cut out from different regions of the same rug." Or, alternately, "would he consider that one texture is an extension of the other?" It was necessary to stress that equivalence did not mean physical identity whereby the phases and number of cycles matched exactly in each panel. If the textures in the two panels were judged not to be equivalent, then the contrasts of the components of one or both textures were altered by the subject until the best texture match was obtained. On a scale from poor, fair, good, very good, and excellent, over 90% of the final texture matches were based on "very good" or better ratings.

From previous work (Richards & Polit, 1974), we had already determined that very good matches to texture "white noise" could be obtained using mixtures of only three spatial frequencies. Figure 5 is an example taken from the earlier study. Thus, no more than five (or at most six) primaries should be required to match all spatial frequency patterns.

Whether or not eye movements are allowed makes a big difference regarding the number of primary frequencies needed to match all combinations of sinusoidal gratings. With eye movements, six primary spatial frequencies are needed. Two sets of matching functions suitable for the free viewing condition have been presented elsewhere (Richards, 1978; Richards & Polit, 1974). An example of one such match to a spatial frequency of 2.2 c/deg is shown in Fig. 6, using two 6 x 3˚ fields.

If no eye movements are allowed, then temporal information about the texture pattern is lost. Under these conditions, low spatial frequency sensitivity is impaired (especially because large eye movements are necessary to produce a significant contrast change), and the number of primaries is reduced from six to four. Table 1 gives distribution functions for four sinusoidal primaries that cover the range from 1/6 to 30 c/deg. These functions apply to a field 3˚ wide by 2˚ high, centered 1‑5/6˚ off the fovea. The general form of these functions can be seen more clearly by inspecting Fig. 7. [The same set of four primaries will also suffice for fields that are 7˚ wide (Richards, 1978).]
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FIG. 5. The pattern to the left contains noise restricted to the range 0.2 = 20 c/deg when viewed at 30 cm. The texture on the right, which is considered a texture metamer, contains only three frequency components, 0.53, 2.4, and 6.5 c/deg.
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FIG. 6. Texture match to 2.2 c/deg made with free viewing. Each contrast used is followed by its spatial frequency given in parentheses. Values are selected from Table 1. Proper viewing distance is 30 cm.

These functions of Table 1 are more representative of the true spatial filtering properties of central human vision than are the earlier functions obtained with eye movements and free viewing. With eye movements minimized, the matching results are not as confounded by temporal and motion cues that help the observer enumerate the components of the textures. However, these data of Table I apply only to "blurred" or "fuzzy" textures that are typical of patterns constructed from a small number of sinusoids having random‑phase relations.

The last two columns of Table 1 compare the contrast thresholds for the test frequencies predicted from the spatial frequency distribution functions. This comparison is a test of the linearity of the matching system. A truly linear system
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FIG. 7. Texture‑matching functions averaged over five observers, using vertical sinusoid grating test patterns of contrast 0.5 and no eye movements. Crosses are matches to textures oriented at 45˚ for WR, with frequency scale adjusted by a factor of 0.6x.
should allow the envelope of the spatial frequency sensitivity curve to be reconstructed exactly from a weighted sum of the four distribution functions. The weight from each distribution function is merely the reciprocal of the contrast threshold for its primary. Once this weight is applied to all values of that distribution function, the new values are added together at each test frequency and inverted. As can be seen by comparing the last column of Table 1 with the measured thresholds given in the next to last column, the agreement is within 20%‑‑a value consistent with experimental error.

To summarize, when minimal eye movements are allowed, only four spatial frequency primaries are needed to match textures constructed from vertical sinusoidal gratings ranging from 1/6 to 31 c/deg. Drawing upon the analogy with color matching, we thus infer that central texture vision utilizes only four low level spatial filters of "channels" at any given orientation (Harvey & Gervais (1978) Wilson & Bergen (1978) have reached similar conclusions using independent techniques). Because the same set of primaries suffices for texture matches made with 7 x 2˚ as well as for 3 x 2˚, these four low‑level channels do not change size appreciably with retinal eccentricity within the central 10' of vision. Thus, although spatial frequency matching involves an extensive variable, the number of primaries needed for any field size within the central 10' never exceeds four.8 We conclude, therefore, that no more than four spatial channels sample any given retinal position. Based upon other evidence (Richards & Polit, 1974; Spitzberg & Richards, 1975; Richards, 1978), we expect the peaks of these "channels" to be near 1, 3, 6, and I I c/deg, with a band width at half‑height of about 1.5 to 2 octaves. Again, we should stress that these results should be considered preliminary, subject to a more rigorous test for the observer's inability to discriminate between stimulus samples of random spatial phase drawn from the test and primary populations.

TABLE 1

Texture Matches to Vertical Sinusoidsa
Test frequency (c/deg)
Primary frequency (c/deg)
Threshold contrast


10.7
6.3
3.2
0.93
Measured
Predicted

31
+0.06(0.04)
-0.01(0.02)
+0.01(0.01)
0(0)
0.91(0.05)
0.94

22.5
+0.24(0.03)
-0.09(0.03)
+0.05(0.02)
-0.04(0.03)
0.44(0.13)
0.49

15.5
+0.37(0.05)
-0.12(0.04)
+0.06(0.04)
-0.01(0.02)
0.20(0.10)
0.24

10.7
0.50



0.115(0.05)
0.115

9.5
+0.52(0.06)
+0.08(0.03)
-0.03(0.02)
0(0)
0.107(0.05)
0.093

8.1
+0.37(0.11)
+0.24(0.13)
-0.15(0.07)
+0.02(0.04)
0.079(0.03)
0.098

7.0
+0.13(0.06)
+0.44(0.02)
-0.10(0.03)
+0.02(0.03)
0.068(0.04)
0.068

6.3

0.50


0.053(0.03)
0.057

5.4
-0.09(0.07)
+0.53(0.06)
+0.12(0.04)
-0.04(0.03)
0.052(0.02)
0.049

4.5
-0.10(0.05)
+0.43(0.03)
+0.21(0.07)
-0.05(0.03)
0.052(0.03)
0.052

3.8
-0.05(0.04)
+0.17(0.10)
+0.44(0.04)
-0.09(0.07)
0.057(0.03)
0.055

3.2


0.50

0.055(0.03)
0.058

2.7
+0.07(0.04)
-0.08(0.03)
+0.44(0.07)
+0.18(0.11)
0.052(0.03)
0.058

2.2
+0.12(0.07)
-0.19(0.05)
+0.41(0.05)
+0.37(0.06)
0.051(0.02)
0.058

1.8
+0.10(0.04)
-0.17(0.03)
+0.39(0.05
+0.45(0.07)
0.053(0.02)
0.054

1.5
+0.12(0.06)
-0.14(0.05)
+0.29(0.10)
+0.42(0.07)
0.069(0.03
0.063

1.2
+0.07(0.06)
-0.10(0.05)
+0.17(0.08)
+0.50(0.07)
0.082(0.03)
0.072

0.93



0.50
0.096(0.03)
0.096

0.66
-0.05(0.02)
+0.06(0.04)
-0.08(0.06)
+0.42(0.04)
0.114(0.03)
0.138*

0.57
-0.06(0.03)
+0.07(0.03)
-0.07(0.05)
+0.32(0.05)
0.15(0.03)
0.18

0.41
-0.10(0.01)
+0.12(0.03)
-0.10(0.04)
+0.27(0.07)
0.23(0.09)
0.21

0.30
-0.07(0.02)
+0.09(0.03)
-0.08(0.03)
+0.27(0.07)
0.39(0.15)
0.21*

0.22
-0.04(0.03)
+0.07(0.03)
-0.07(0.03)
+0.13(0.07)
0.41(0.12)
0.48

0.16
-0.02(0.02)
+0.04(0.03)
-0.03(0.03)
+0.08(0.05)
0.56(0.16)
0.59

a 3 x 2˚ field—no eye movements. Values in parentheses indicate one-third the range of the observer’s settings. N =5. Asterisks indicate failures in linearity test.
6. EXAMPLES OF DERIVATION OF NONVISUAL RESPONSE FUNCTIONS

To illustrate the truly general nature of the matching technique, it is helpful to show how it can be applied to modalities other than vision.

(i) Audition: Tone‑Matching

In direct analogy to the previous sections on spatial and temporal (flicker) matching, we can consider sinusoidal tones as the stimulus dimension that underlies pitch perception. Our first question, therefore, is "how many pure tones are required to create the sensation of acoustic white noise?" Twice this number of tones then sets the upper bound on the number of "channels" or primaries needed to match all acoustic waveforms.

Consider the broad‑band noise stimulus formed by an air blast such as the command "to be quiet":

Shshshshsh ...

Now, imagine trying to approximate this sound on a piano. No matter how closely spaced the notes, the "Shshsh" sound is impossible to reproduce. The phase relations between the notes are too difficult to randomize. If instead, an electric organ is used to produce a continuous sound, then the closest approximation of a noise stimulus required striking at least five out of seven notes in each octave, at the same time:
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where G and B may be omitted.

Thus, even "narrow‑band noise" requires tones separated by only about onesixth an octave. If the range of acute hearing is taken as 200 to 4800 Hz, or six octaves, then at least 36 primaries or channels will be required to match all acoustic stimuli or combinations of tones, assuming nonoverlapping channels (and twice this if overlapping). Of course, this large number is no surprise, for the auditory system has been known for a long time to break down the acoustic waveform with narrow band‑pass "filters" (Helmholtz, 1962; Licklider, 1951; Evans, 1968; Geldard, 1972).

Although the generalized matching technique is not useful for identifying the "channels" for pitch discriminations, this does not rule out its value for analyzing other dimensions of auditory sensations. If confusions between physically different sounds occur, then we know that along some stimulus dimension there are "channels" that are innervated equally. (Schouten's studies on the residue pitch are examples‑see de Boer, 1976). The problem is to identify that dimension. For complex sounds this task may not be as hopeless as one might image at first. Consider the recent successes of electronics in creating an "equivalent" musical instrument. Here the key to simulating the instrument is the nature of the "attack." If the "attacks" of the various wind, string, or percussive instruments could be ordered along a single stimulus dimension, then the generalized matching method could be used to describe the "channels" that sample this dimension. A similar strategy might also be applied to phonemes to identify a set of phonemic “primaries." (See Yilmaz, 1968, for example.)

(ii) Somesthesis: Texture Matching

As we draw our fingers across a surface, we judge its texture as being fine (smooth) or coarse (rough). Generally, such experiments utilize sandpapers of different grit size, which is a dimension suitable for making equivalence judgements. Once again, the first question to be answered is "how many grit sizes are needed to create a surface that feels as if it is the same as a surface containing all grit sizes?"

Although to my knowledge data are not available to answer this question, the number of grit sizes is probably very small‑perhaps as small as two. Since roughness is perceived accurately only when the finger moves across a surface, the vibration set up between the skin and the surface is important (Taylor, Lederman, & Gibson, 1973). Thus a primary component of the roughness sensation may be the vibratory energy transmitted to the fingertip. Mountcastle, Talbot, DarienSmith, and Kornhuber (1967) have shown that in both monkey and man, the sensitivity to vibration in the finger is mediated by two classes of fibers, each with a different temporal frequency response. It is quite possible that judgements of surface roughness compare activities in these two classes of fibers, just as color sensations arise from a pair‑wise comparison of different spectral sensitivity functions. For surface texture, after adding two other unknown sensitivity profiles to those of Mountcastle's, we still would have a wide margin for error for the conjecture that only two grit sizes might be sufficient to match a surface constructed from a random mixture of grits. Once this test has been made, we can then proceed to select appropriate grit sizes for primaries and determine the matching functions. Or, alternatively vibration sensitivity functions can be determined more directly.
7. LEVELS OF PROCESSING AND MATCHING FUNCTIONS

All sensory systems are constructed in a hierarchical fashion, where the outputs of one level serve as the input to the next. It should be noted that if this mapping from one sensory level to the next is completely linear, then the measured matching functions can be applied equally to two levels in the hierarchy. Thus, unique fundamental response functions for each level cannot be found. Fortunately, most sensory systems map in a nonlinear manner from one level to the next (including color). Such nonlinear transformations have the effect of creating new (and partially independent) sensory dimensions which allow the generalized color‑matching technique to be applied to a higher level in the hierarchy. Two examples illustrate this point.

First, textures created from sine‑wave gratings almost always result in "fuzzy" or "blurred" patterns that lack sharp edges. (This is especially true when phase is randomized.) The resulting matching functions reflect constraints imposed by fairly linear, broad‑band "channels." If, however, sharp patterns that emphasize edges and lines are created (as in Fig. 2), then a new set of primaries with a different waveform is required (Richards, 1978). This new set of "square‑wave" matching functions is not predicted from a simple linear sum of the sinusoidal matching functions. Hence we infer that a new level of sensory processing has been tapped‑an inference made possible only because either the stimulus or the sensory transformation from one level to the next was nonlinear.9
As a second example, consider the possible equivalencies between phonemic waveform packets and their Fourier representation based upon combinations of pure tones. If pure tones are used as a dimension to characterize phonemic waveforms, then many primaries will be required (see section 6i). On the other hand, if some aspect of the phonemic waveform packets themselves can be used to define a set of primaries, then the number of primaries may be greatly reduced. As long as this new level in the stimulus or sensory hierarchy is not simply an additive, linear version of sinusoidal tonal discrimination, then we have the possibility of creating a new independent dimension amenable to the generalized colorimetry approach. Of course, in this case, we immediately recognize an analogy to distinctive feature analysis.

APPENDIX I

To formalize the relation between the number of response functions and the minimum number of narrow‑band stimuli needed to match a broad‑band "white," two cases will be considered: (a) two "channels" and (b) three "channels."

(A) Two‑Channel Case

Referring to Fig. 1, let the two overlapping response functions be symbolized as Ri() and the narrow‑band stimuli be designated as Sj(() For an arbitrary energy source, E((), we have
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where Ci is the output of the response function of "channel" activity. Let the ratio of activity of the two channels be

C1 : C2 = k
(2)

Now choose S(() such that R1(() : R2 (()= k. Such a ( can be found because all possible ratios of R1/R2 exist since RI (() (0 at the tails. Next find the amplitude, A, of S(() such that

A * R1(() = C1 
(3)

Then substitution in Eq. (2) shows that

A * R2(() = C2
(4)
and hence, A * S(() will match E(() since each stimulate the response functions Ri to the same extent. [Note that we do not require linearity in the scaling of R2(() for this solution. If nonlinearities in the amplitude scaling occur, then these can be offset by choosing another S (().]
(B) Three‑Channel Case

To examine under what conditions a narrow‑band stimulus S1(() has a complement, given three response functions Ri ((), i =1,3, let the three channel activities Ci be given by:

C1=S1(() • R(() + B • S2(() • Ri((),
(5)

where ( is the proposed location for the complement to S1, and B is the relative amount of this second complementary stimulus. At location (, the ratio of the response function sensitivites is given by:

R2(() : R1(() = k2 ,





(6)

R3(() : R1(() = k3 . 

Suppose that at location (, the relative sensitivities are such that

R1(() : R3(() = k1 ,
(7)

R2(() : R1(() = k4 .
The appropriate complement S2(() will be such that C1 = C2 = C3 for some amount of S2(() equal to B, with the units Of S2(() measured with respect to a unit amount of S1((). Setting C2 = C3:

R2(() + B • R2(() = R3(() + B • R3(()
or

k2 •R1(() + B • k4 • R3(() = k3 • R1(() + B •  R3(()

Combining terms, we find that

(k2 – k3) • R1(() = B • (1 – k4) • R3(()

Similarly, setting C1 = C2 :

R1(() + B • R1(() = R2(() + B • R2(()



(8)
or

R1(() + B • k1 • R3(() = R1(() + B • k4 • R3(()
then

(1 – k2) • R1(() = B • (k4 – k1) • R3(() 



(9)
Dividing (8) by (9) and solving for k4, we find that
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(10)

However, as long as k4 depends upon kl, the response functions cannot be independent if a complementary pair is to be found. The obvious restriction is to require k1 to be zero, or alternatively, that a second complement be sought only in the range where R1(() is zero. [See relation (7).] In this case, the appropriate location for S2(() is such that
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(11)
To obtain a match to "white," S2(() is then scaled by amount B.

If the restriction that S2(() not stimulate R1 be relaxed, then the complementary wavelength cannot always be found for many arbitrary stimuli S1(() even though R1(() > R2(() and R3(() > R2((). For example, if the tail of the R1 response function is included in the selection of S2(() using the above procedure (Eq. 11), then the final value of C1 will be too large, or C2 will be too small. In this case, one more narrow‑band stimulus must be used and the estimate of the minimum number of "channels" will be too high.

APPENDIX II

To determine the location and exact number of the primaries required, a fixed form of a (texture) primary can be assumed, as characterized by the inset at the top of Fig. 8. Along a log spatial frequency axis, the primary function has one positive lobe flanked by two negative lobes. (Both lobes have been found to be necessary to create texture metamers.) We can now ask the experimental question of how large a separation may be present between the location of adjacent primaries for texture equivalence to hold. The answer is obtained by measuring the acceptability of texture matches between frequency f (a variable) and the primaries which bear a fixed relation to f. The relation is

0.5 (f) + A (k3/2f) + B (-3/2f) ( C (k1/2f) + D (k-1/2f),


(1)

where the contrast of f is held fixed at 0.5 and A ‑ D are the measured contrasts of the primary frequencies (k rf ).

Figure 8 shows the values of the coefficients A ‑D for values off ranging from 1/4 to 20 c/deg. These values do not change much as k is altered from 2 to 3, but the acceptability of the texture matches does. If free eye movements and viewing are allowed, excellent texture equivalences can be obtained only if k is less than 2.4. Thus, the "half‑width" of a primary is of this magnitude, and four primaries can span a range of only 2.44 = 3 1. For practical purposes, however, this range is quite acceptable, covering all patterns except those with luminance "gradients" less than 25% per degree.

Note that all coefficients have constant values over a wide portion of the range examined. This important property permits a further simplification, for if the coefficient values were flat everywhere, then texture matches would be invariant



FIG. 8. Test to determine the minimum bandwidth necessary for texture primaries. The wave form of the primaries is shown in the inset. See Appendix II Eq. (1), for the description of the relations between the primaries. Each graph shows the contrast of a primary needed to match the spatial frequencies given on the abscissa.

___________________________________

over visual angle or fixation distance. At the lower spatial frequencies, a partial size constancy is obtained. At higher spatial frequencies, the failure in constancy is due to failures in the resolution of the highest spatial frequency components.

The above constraints together with further pilot studies then led to the following choice of spatial frequency primaries under free viewing conditions: 11, 6.3, 3.2, 1.5, 0.9, 0.3, c/deg.

Without eye movements, the above set could be reduced to: 11, 6.3, 3.2, 0.9 c/deg.

NOTES

1. Dr. H. K. Nishihara provided helpful comments on the initial generalization attempts. Also, I was fortunate that M. D. Riley was studying texture discrimination at MIT (with D. Marr), and that these studies provided very good examples of the first step in the Generalized Colorimetric Method. Support for this study came from AFOSR (Contract F44620‑74‑C‑0076, ARPA Order 2765) and from NSF (Grant 77‑07569‑MCS). C. J. Papineau provided helpful technical assistance. Many thanks also to the fine reviewers of Sensory Processes who helped sharpen some of the concepts and ideas in this paper.

2. More recently, evidence for rod effects on color matches have been studied, raising questions about the sufficiency of trichromacy for all photopic conditions (Palmer, 1978).

3. A reviewer kindly pointed out that von Skramlik (1926) was able to match the complex taste of different salts by the weighted sum of four taste "primaries." (See p. 85 of Pfaffmann et al., 1971) Further work along these lines would be in the spirit of this paper. See" also Yilmaz, 1968.

4. Although in principle the duration, size, and location of the spectral stimuli should not affect a color match, in practice these factors can lead to large changes in the matching functions due to the inhomogeneity of the retina. For example, see Moreland (1972) and Palmer (1978).

5. Although the concept and implications of quasi‑matamerism have been known to me for some time, I am indebted to a reviewer who suggested that the implicit idea be made more explicit.

6. If the system is linear, matches can be made to either a maximally saturated field (Wright, 1928) or to a minimally saturated "white" field (Guild, 1931) and the results will be identical. In other words, one set of functions can be obtained by a linear transformation of the other.

7. More recently, this problem of the differing phase relations has been overcome by creating a flickering checkerboard with each check having a random phase but identical waveform.

8. Even with free viewing and eye movements, no more than four primaries are needed to match any test frequency. The result illustrates a technique for setting bounds on the number of primaries needed for extensive variables (see Richards, 1978).

9.  This new level appears to represent a nonlinear differencing operation imposed upon the activities of the broad‑band "channels" that serve as their inputs.
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