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When a shape moves behind a very narrow window, or “slit,” the entire shape can be recog-
nized, although at any instant only meaningless fragments are visible. In some manner, the hu-
man visual system has the ability to piece together these sequential fragments into a coherent
shape that is seen as moving across the largely occluded field. As a first step toward understand-
ing how this feat may be accomplished, we show some minimal conditions for recovering the direc-
tion and speed of motion of an unknown shape moving behind a slit. Two important conditions
are that the object be rigid and that its motion be a simple transition in the image plane.

When animals and objects move about in our visual
world, they are often partially occluded by other objects,
such as trees, streetlights, buildings, and so forth. Rarely
do we see for long periods a shape in its entirety. In the
extreme case, when an animal creeps through a forest,
it may be almost totally occluded except for fleeting ““slit-
like’’ views. In 1965, Parks mimicked this extreme case
by passing a shape behind a narrow window, or slit
(Figure 1). Surprisingly, the shape could be recognized
although at any instant only a sequence of meaningless
fragments were visible—an observation first reported by
Zollner in 1862. The strength of this perception can be
seen by viewing a person or object that moves behind a
door that is slightly ajar. How can a visual system recover
a shape that is almost totally occluded?

Several computational problems are raised by Parks’s
slit paradigm (Rock, 1981). The most obvious is that the
fragmented views must somehow be stored in memory
and integrated into a whole. However, such an integra-
tion process cannot proceed successfully by using only
the available image information. Quite simply, the space-
time locus of integration must be specified. In particular,
we must know in which direction and at what speed the
occluded object is moving in order to piece together cor-
rectly the fragments of the outline. If integration is
achieved by a smooth pursuit movement of the eye, as
proposed by the ‘‘retinal painting theory’” (Haber, 1968;
Haber & Nathanson, 1968), then to recover the correct
shape, the eye must move in the same direction as the
object, and at the object’s angular speed. An eye move-
ment at any other rate or direction will produce a distor-
tion of the true shape. Similarly, internal scan models will
suffer the same fate, unless the object’s velocity is known.
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Figure 1. Recovery of a moving shape from slit views.

In general, regardless of one’s model for the integration
process, without knowledge of an object’s speed and
direction, there is a many-to-one mapping between the
observed sequence of fragments and possible shapes. For
example, Figure 2 shows three different shapes and mo-
tions that will produce identical slit views. [Our percep-
tion, however, is as in (A), of a tented shape translating
horizontally.] This simple result suggests that two impor-
tant constraints upon the recovery process are that the
shape be rigid and that it move at constant speed and direc-
tion. Our first immediate computational problem is thus
to explore the conditions under which the direction and
speed of motion of a rigid shape can be recovered from
slit viewing.

COMPUTATIONAL ANALYSIS

Let a rigid shape move behind a vertical slit with speed
V, and at an angle ¢, as shown in Figure 3. Depending
upon the width of the slit, the observed contour will have
an orientation §; and curvature k, at time ¢,, or simply
appear as a ‘‘point’’ undergoing up-and-down motion if
the slit is very narrow. We will show first that this last
extreme case, in which only points in motion are seen,
will not permit the correct recovery of the shape and its
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Figure 2. Ambiguity in slit views: original shape and motion.
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Figure 3. Geometrical relationships and definitions. V., Velocity
of translational motion in direction ¢; V¥, perceived velocity; 6%,
angle of contour at time ¢,; 6}, contour angle at ¢,. The asterisks
indicate an observable value.

motion. However, if the slit width is increased so the slope
of the contour is available, then two slit views of two tan-
gents will be sufficient to recover the direction of trans-
lational motion (Fennema & Thompson, 1979). Finally,
we show that contour curvature does not provide much
additional information of use unless the curvature is very
high (i.e., a “‘cusp”).

Points in Motion

We are given as visual input a stream of points and their
instantaneous velocities, namely y(f) and y(r). We will
represent these continuous functions in a discrete form,’
as if the visual system took a sequence of ‘‘snapshots”’
of the object seen through a narrow slit. Our data are thus
a sequence of positions, y¥, y¥, y¥..., and their associated
velocities, y(t,) = V¥, y(t) = V¥, y(t) = V¥, . .. (where
the asterisk indicates an observable—see Figure 3). From
this input, the task is to recover the shape that generated
the sequence, assuming the shape is rigid and translates
at constant velocity. A simple counterexample, depicted
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in Figure 4A, will show that this cannot be done. Let the
shape be a parallelogram with sides at a 60° angle to the
vertical slit and moving horizontally at 1 unit/sec. Then
the vertical motion seen through the slit will be +1//3
units/sec. This motion can be mimicked, however, by con-
structing another (two) parallelograms with sides sepa-
rated by 25° and moving 1.9 units/sec at either +45° to
the slit, as illustrated in Figure 4B. Specifically, the ob-
served velocity, V*, of the contour seen as a point through
the slit will be

V¥ =V, sin(¢ — 6)/cos 9, 1

where V, is the object’s speed in direction ¢ and 6 is the
orientation of the contour. Because V,, ¢, and 6 are all
unknowns, we can offset speeds V,, with angles ¢ and 0
to keep the image velocity, V*, the same. Not surpris-
ingly, this result agrees with psychophysical observations
that when the slit becomes so narrow that only points in
motion are seen, the shape (and direction) of the occluded
object cannot be recovered.

Tangents in Motion

As the slit widens, the orientation of the contour, a8,
becomes visible. Most psychophysical and physiological
evidence provide support for using this feature as an in-
put (Adelson & Movshon, 1983; Andrews, 1967; Frisby,
1980; Hubel & Wiesel, 1962, 1968; Movshon, Adelson,
Gizzi, & Newsome, 1985; Schiller, Finley, & Volkman,
1976a, 1976b). Not so clear, however, is whether the in-
stantaneous motion perpendicular to the contour is known.
Several investigators (Hildreth, 1984a, 1984b; Marr &
Ullman, 1981; Waxman & Wohn, 1985) assume that the
magnitude of this perpendicular component is available.
However, we will elect the more conservative option that
it is not, and that only the speed parallel to the slit is avail-
able. (This is as if the receptive fields for speed were

—> {unit/sec
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Figure 4. Two different parallelograms whose motion can gener-
ate the same sequence of points seen through a narrow slit. A mir-
ror reflection of case B about the horizontal axis will also create iden-
tical point motions in the slit.
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larger than the receptive fields that detect orientation.)
Our givens are therefore the position of the contour at
a given instant, y(#.) = y:, and its orientation, 6(z;) = 0..
To calculate the observed speed V¥, we will consider dis-
crete position samples y, and y, taken at #, and #,. As-
sociated with each sample will be two independent orien-
tations, 6% and 0% (see Figure 3). Our knowns, or
observables, are thus V¥, 0, and 65. Appendix 1 shows
that the observed speed V¥ will be given by

. %
V¥ = V, cos [—tand> + tan (0‘ ;0?)], @

where V, and ¢ are the unknown speeds and directions
of motion of the object. For simple translation, we ob-
tain two such equations from two ‘‘views’’ (or two sets
of samples), which can be solved for ¢ and V, (see Ap-

pendix 1):
(B3] — v
¢ = atn 3)
V¥ — V¥
v, = o @
* 05 +05\]
cos¢* | —tan¢* + tan >

where 0%, 0% are the two orientations associated with V§
and 0%, 0% are the two contour orientations associated
with V#. Note that this solution for the velocity (speed
and direction) of the translating object does not require
explicit knowledge of the contour position, but only its
observed orientation, %, and speed, V*, along the slit.?

To obtain two independent equations (2), we can use
either the top and bottom portions of the shape as they
simultaneously pass through the slit or, alternatively, two
“‘snapshots’” of only one contour seen at different times.
Because the translating shape of a single contour can be
recovered correctly by the human observer, even if the
contour is not continuous, the latter scheme is physiolog-
ically plausible. Computationally, this might be expected,
for several ‘‘snapshots’ allow the observer to check
whether his assumption about a constant direction of mo-
tion of the shape is valid.

Curvature

As the slit widens, the curvature of the contour becomes
apparent (Watt & Andrews, 1982). Because curvature is
the rate of change of the tangent, in principle the velocity
of the occluded translating object could be recovered from
a single view of a curved segment plus its speed along
the two edges of the slit. Rock (1981) reports that under
these conditions the correct shape may be inferred.
However, both our observations and those of S. Tsuzaki
(personal communication, 1985) suggest that the human
visual system does not have this capability, probably be-
cause the sampling rate and spatial resolution for curva-
ture are too low for the given V, and slit width (Nakayama
& Silverman, 1983; Wilson, 1985). The exception is when

a “‘corner’’ passes a wide slit (Andrews, Butcher, & Buck-
ley, 1973). Then two tangents are visible and the solu-
tion is the same as in the previous section. We suggest
that Rock’s observations really relied on large curvature
changes that could be viewed as a ‘‘two-tangent’’ solu-
tion. Further experimental work is needed here to clarify
the role, if any, of curvature.

Rotation Constraint

Translation is simply a degenerate case of rotation, with
the center of rotation at infinity. Is it possible, then, to
recover correctly a rigid shape when it is rotated behind
the slit? Now our unknowns are an angular velocity, o,
and the center of rotation, x,, yo. Appendix 2 shows that
given only the orientation of the contour ¥ and speeds
V#, this recovery is difficult, although possible in some
special cases. Adding knowledge about the local shape
of the contour will help, but then the slit must be widened
so extensively that the local, instantaneous velocity field
along the contour can be measured (Hildreth, 1984a,
1984b; Waxman & Wohn, 1985).

Psychophysical observations support our conclusion that
a shape undergoing rotation behind a slit will not be per-
ceived correctly (Anstis & Atkinson, 1967; Roget, 1824,
cited in Boring, 1942). Figure 5 illustrates one example.
When the pattern is under rotation behind the slit, as
shown in Figure 5A, a distorted pattern would be
predicted if: (1) the translation constraint was used, and
(2) the positions of the line segments were simply replot-
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Figure 5. Rotation. The stimulus is shown in A. Three different
centers of rotation of this shape give slightly different perceptions,
as illustrated in B. The observations are consistent with the assump-
tion that the shape behind the slit is undergoing a simple translation.



ted along the recovered direction of the motion to recon-
struct the shape. Figure 5B shows a series of qualitative
observations by the authors and four naive subjects. The
topmost figure is the perception when the radius of the
arc is shorter than the radius of rotation [(1) in Figure 5A].
There is an obvious distortion, but the arc still has the
same sign of curvature. The middle figure illustrates the
perception when the radius of the arc is exactly the same
as that of the rotation [(2) in Figure 5A]. If the local cur-
vature is completely neglected and the shape is recovered
only by the stored positional information and the com-
putationally recovered ¢ and V,, then the arc would be
expected to appear as a straight line. Since the perceived
line still has a slight curvature, this cannot be the case.
The most interesting condition occurs when the radius of
the ‘arc is made longer than that of rotation [(3) in
Figure 5A]. Now, as observed by all 6 subjects, the sign
of the curvature becomes reversed, as shown in the bot-
tommost figure of 5B. Thus, even if it is not totally
negligible, the local curvature is not a major cue to the
recovery of shape.® The higher the velocity, the larger
the shrinkage effect, just as in the case of translation (Z5ll-
ner, 1862). However, the shrinkage does not seem to
change the qualitative aspects of the above-mentioned ob-
servations. These demonstrations have two implications:

1. The direction, ¢, and the speed, V;, of the original
motion are recovered computationally first, and then the
stored positional information is used to reconstruct the
shape. [If the shape is recovered independently of ¢ and
Vs, and the constraints (¢, =¢,, V,=V,) are required only
for the recovery of motion, then the distortion would not
be expected.]

2. The human system assumes the constraint of *‘con-
stant direction and velocity”’ to recover ¢ and V.

Thus, our basic idea is that ¢ and ¥, are recovered be-
fore the reconstruction of the shape, and that the ‘trans-
lation’” constraint is imposed in the recovery process, as

_90-A
LINcosA= S0

LINasnX =90X
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suggested by Rock (1981) in his ‘‘problem solving’’ in-
terpretation of the phenomenon. Note that this same con-
straint was also proposed by Fahle and Poggio (1984) to
explain spatiotemporal hyperacuity.

ALGORITHM AND MECHANISM

Linearization

It is quite unlikely that a biological visual system will
implement the trigonometric functions necessary to solve
Equations 3 and 4 to obtain the translational motion of
a rigid shape seen through a slit. Instead, some shortcut
must be used to obviate the need for arc tangent, tangent,
or cosine functions. (Division and simple arithmetic oper-
ations seem plausible, however.) A simple step would be
to linearize the trigonometric functions. This lineariza-
tion can be accomplished in several ways. For example,
we could simply linearize the present trigonometric func-
tions as they now appear in the two equations. Alterna-
tively, we might break down the tangent function into a
ratio of sines and cosines. Our choice is dictated in part
by what seems physiologically plausible and by what will
introduce as little error as possible. These issues are al-
gorithmic and are independent of the preceding theoreti-
cal analysis showing the minimal conditions for recover-
ing the hidden object’s motion (Marr, 1982).

Figure 6 shows three approximations to the sine, co-
sine, and tangent functions we will use. In Figures 6A
and 6B, the sine and cosine are approximated by simple
linear functions (dotted curves). In Figure 6C, the tan-
gent and arc-tangent approximations are ratios of the
previous linear approximations. Our choice for lineari-
zation is to reformulate Equations 3 and 4 entirely in terms
of sines and cosines, and then to linearize these functions.
The new, linearized equations are now:

¢ = 90x/(1 +x) 5)
B C
LINsinA 1 j
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Figure 6. Linearization of sine, cosine, and tangent functions by simple angular approximations (A and B) or their ratios (C).
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B 90—g* ([ _ 9 o 6
Ve = V;k/ [ 90 (90+|¢*| * 90—|0;k|)]’ ©
where

[ ooy
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Vo /

A simulation using the above shows that the approxi-
mations do not degrade the calculation of the direction
of the object motion by more than 5° (see Figure 7). When
‘these linearized values for ¢ are then used to calculate
V, according to Equation 6, the estimated speed ranges
from 70% to 160% of the true value in most cases.* On
the average, there is about a 20% overestimation of V,,
consistent with our observations for foveal viewing.
(Note, however, that peripheral viewing can cause V to
be underestimated, suggesting sampling complications in
the biological system.)

ERROR ANALYSIS

Sensitivity to Errors in Contour Orientation 6*

No measuring system can provide perfect data. How
robust are the solutions to Equations 3 and 4, or their
linearized versions, Equations 5 and 6, in the presence
of noise in inputs? What is required by our theory is a
high sensitivity to the angle 6* and to the contour rota-
tion (6,* — 63). If we perturb the observed contour an-
gles, 0%, or the observed speeds, Vi*, how seriously will
these errors affect the estimates of ¢ and V,? The follow-
ing simulation shows that perturbations of the order of
psychophysical resolution do not affect the estimates of
the hidden object’s velocity much worse than the lineari-
zation.

A circle passing behind a slit at constant speed, V,, was
used as the test object. The direction, ¢, was 0°, 30°,
or 60°. Because the noise effects are similar at all these
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Figure 7. Error analysis. Solid curves are errors in 0 introduced
into the exact equations 3 and 4. The dashed curve introduces the
same errors into the linearized equations 5 and 6. Linearization has
little effect on the result. The dotted curve shows the range of er-
rors for linearized results.

orientations, only the 30° results are shown here. The
noise was added by perturbing 6* by various angular
amounts ranging from 0° to 40°.

Figure 7A shows the effect of angular errors in 6* upon
the recovered value of ¢, where errors in ¢ are plotted
on the abscissa. Two curves are given, one for the linear-
ized equation (5) (dashed) and the other for the correct
equation (3) (solid). For no noise, 66 = 0, our discrete
sampling technique gave an error of 0° without linear-
ization and a 3° error with linearization, as illustrated by
comparing the solid and dashed curves in Figure 7A. Over
the entire range explored, the errors in 6* affect the ¢
calculation with linearization in much the same way as
the exact solution. (For ¢ =0, the linearized result was
about 5° higher over this same range.) Also shown in
Figure 7A, by the dotted curve, is the range of the errors
in estimating ¢. (This range results from the different
orientations of the circle’s contour.) Again, for a reason-
able error in 0% of 20° or less, the error in ¢ is inconse-
quential.

Figure 7B shows the compound effect of errors in 0*
upon the estimates of ¥, when the estimated ¢* value is
used. Again, the solid curve shows the exact solution
(Equation 4), with varying degrees of error in # used as
input, to be compared with the dashed curve, which is
the linearized solution (Equation 6). Once again, the ef-
fects of linearization on the average are negligible con-
sidering the sensitivity of the human observer. However,
the error in V, may become substantial for certain con-
tour orientations, as shown by the dotted curve which
gives the range of the ¥, error. For a 20° error in 0, we
can expect certain orientations of the contour to result in
as much as a 50% overestimate of V,. This analysis
predicts that when the slit is narrower, the error in 0 is
larger and, therefore, the more V, should be overesti-
mated, independent of whether the observer fixates the slit
or is allowed to pursue the moving shape (Fujii, 1982).

Sensitivity to Elongation

As an object becomes increasingly elongated, the sam-
ple of contour orientations available for estimating the
translation vector ¥, becomes limited. Consider a simple
ellipse. As illustrated in Figure 8, as the ellipse becomes
more and more elongated, eventually it degenerates into
a line. But a line moving across a slit will appear to move
perpendicularly to its orientation (W allach, 1976). Thus,
because the human visual system has limited temporal
sampling of the object’s contour as it moves behind the
slit, we expect that an ellipse becomes more and more
eccentric and the observer’s estimate of the direction of
movement, ¢, will be increasingly biased to the minor
axis of the ellipse. Figure 8 shows the result of running
our simulation on ellipses of various eccentricities. Also
shown are data obtained from 3 observers. The fact that
the human data deteriorate more rapidly than our simu-
lation suggests that the sampling used to generate Figure 7
is a bit too fine. Alternatively, the system may adopt a
compromise between the computational output and a
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Figure 8. An ellipse with its major axis oriented at 45° to the ver-
tical is moved in the horizontal direction behind a vertical slit. As
the outline becomes more and more elongated, the predicted direc-
tion of apparent motion moves toward 45°, as shown by the curve.
(The sampling distance was 0.5 for a disk of radius 10.) Data ob-
tained from 3 subjects are shown for comparison.

Wallach-like solution along the slit. The predicted range
of errors in ¥, and ¢ may therefore be underestimated
in some cases.

In summary, we conclude that both linearization and
errors less than 20° in estimating 6* will have negligible
effects on recovering ¢ and V, provided that the aspect
ratio of elongation of an object is less than 2:1.

DISCUSSION

Our analysis has several implications for the recovery
of shape from motion. (1) Strict local correspondence is
not required, since the (two) tangents needed for the
recovery process appear at different parts of the contour.
(2) A velocity field need not be constructed, since only
contour speed parallel to the slit is required. (3) The hu-
man observer imposes the constraint that unseen object
motion is the translation of a rigid body at constant speed
(see Fahle & Poggio, 1984). (4) The human mechanism
can use a simple linearization of the explicit nonlinear,
mathematical solution. (5) Temporal sampling along a sin-
gle contour may also be used. These points will be elabo-
rated below.

Local Correspondence

A most significant result of our analyses is that local
correspondence of identical pieces of the contour is not
required to recover the shape’s motion. This is counter-
intuitive and against many traditional theories of the
phenomenon (but see comments by Hochberg, 1968).
Figure 9 shows three types of sampling. Local feature
points (e.g., a “‘corner’’) are presented more than once
at slightly different positions in the slit in the case illus-
trated in Figure 9A. Thus, local correspondence cues are
given. When the temporal sampling rate is coarser, as
shown in Figures 9B and 9C, the feature points are
presented only once in the slit, and therefore the same
contour is not available for matching. In Figures 9C and
9C’, some parts of the contour are never presented in fact.
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Yet a human observer will perceive the two-dimensional
moving object even in such cases as B, C, and C’. (In-
terestingly enough, the perceived shapes were not only
shrunk, but also broken in C and C'.)

The Velocity Field

Slit viewing can be regarded as a problem of recover-
ing a two-dimensional shape and motion from limited,
almost one-dimensional shape and motion information.
When a two-dimensional moving pattern is presented in
a limited visual field, a similar correspondence problem
is raised, and the ambiguity of the shape and motion is
left unsolved (the ‘‘aperture problem’’). Hildreth (1984a,
1984b) and Waxman and Wohn (1985) have suggested
that the constraint of ‘‘smoothness’’ enables the human
system to compute a unique instantaneous two-
dimensional velocity field from local velocity measure-
ments. This can be done iteratively by minimizing the ve-
locity variations along the contour, or by examining the
deformation of the contour. Our study of slit viewing sug-
gests that the inference process may also be accomplished _
by a noniterative computation based on speed in a fixed
direction (direction of the slit) and orientation changes of
the contour.

The Translation Constraint

Eye-movement and ‘retinal painting’’ theories have
been proposed to explain the slit view phenomenon
(Haber, 1968; Haber & Nathanson, 1968; Morgan, Find-
lay, & Watt, 1982). The ‘retinal painting’’ theory basi-
cally states that when the eyes move to follow the shape
behind the slit, the successive ‘‘painting’’ of the image
on the retina is sufficient to explain the phenomenon, and
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that any further computation or processing is not required.
Thus, it assumes implicitly that the direction and speed
of motion is somehow known and used to recover the
shape of the object. This cannot be true in most cases
(Rock, 1981). Even to move the eyes appropriately for
“‘retinal painting,” the direction and speed of motion
should be recovered beforehand. The primary problem
for slit viewing is the recovery of motion, for without this
the shape of the object cannot be recovered. We show
that a minimal condition for the recovery of the occluded
shape is that it undergo a translation, in which case only
two ““views’” of tangents to the rigid contour are required.

Shape Distortion and Integration

One aspect of slit motion not previously discussed is
the distortion in the perceived shape (Anstis & Atkinson,
1967; Zollner, 1862). Usually, this distortion is a shrink-
age, such as would result if the speed were underestimated
(Rock, 1981; Rock & Sigman, 1973). However, we have
noted that peripheral viewing can lead to an elongation—a
new observation, as far as we know. At present, we do
not have a satisfactory explanation for these effects.
Figure 8 suggests that they arise at least in part from sam-
pling artifacts. However, biases in the orientation or mo-
tion detection could also contribute.

Finally, nothing has been said about how the contour
segments, once assigned their correct directions of mo-
tion, are integrated into a coherent whole shape. Instead,
we have dealt only with the relatively simple first stage
of the recovery process, namely the recovery of the direc-
tion and speed of motion of an unknown shape moving
behind a slit. However, now that the conditions for recov-
ery of the object’s motion have been specified more ex-
actly, perhaps possible schemes for assembling the im-
age segments into a whole shape will become clearer. For
example, at least we know now that any theory of the in-
tegration process—be it retinal painting, postretinal
storage, or whatever—should proceed as if the object was
undergoing a simple translation.
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NOTES

1. There is no loss in generality by discretizing the continuous func-
tion as long as the sampling rate is twice that of the Nyquist frequency
of the measuring device. In this case, a rate of 60 Hz will suffice for
the human observer.

2. For motion parallel to the slit, $ = 90° and Equation 4 degener-
ates to V, = V¥.

3. This observation is consistent with Waxman’s analysis of the recov-
ery of shape from ‘‘evolving™ contours (Waxman & Wohn, 1985).

4. Instead of solving first for ¢ and then using this value to compute
Vs, we could have used a regularization procedure to solve for both
simultaneously (Hildreth, 1984; Poggio & Torre, 1984). Although we
favor our scheme, it remains an empirical issue to test between these
two methods in finding ¢ and V.

APPENDIX 1

Derivation of the speed, V,, and direction, ¢, of object mo-
tion (refer to Figures 3 and 10 for definitions):

Let V,* be the observed velocity of a contour having an orien-
tation 6} at #, and 6% at 1,, a short time, Ar = (t.—1), later.
Then, if the contour appears to move a vertical distance, AD,
in the slit, the observed velocity, V¥, will be

V¥ = AD/A:. (Al)

In this same period, the original piece of contour will move
from point O to point A4 through a horizontal distance AS, as
shown in Figure 10. Its (unknown) horizontal rate of motion
will be

As
— =V, cos¢. (A2)
At
Combining Equations A1 and A2,
V¥ = (V4 cosd) (AD/AS). (A3)

Our strategy for recovering the ratio AD/AS is to solve for the
two segments BE and EO which constitute AD. To begin, we
approximate the piece of contour by the arc of a circle. (This
approximation becomes exact as At — 0, but will lead to er-

S /A E_/_’::’_'“: )
5 -
- A o< Tor+63)
_____ _‘LT__E
¢ AS AD

Figure 10. Geometrical relationship and definition of angles and
distances used in the derivation of Equation A7 in Appendix 1.
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rors if the observer’s sampling rates are too low.) Note from
Figure 10 that this approximation forces AC = CB. Because
<FCB = (0§—0%), we see that .

0,—0,

<CAB = <CBA = [1—(7—0,+6,)]/2 = (A4)

Consequently, we can find <BAE because <BAE =
0F — <CBA:
<BAE = 0% — (0¥—0%)/2
= (6F+69)/2. (AS5)

The segments BE and EO that compose AD are now easily cal-
culated:

AD = AStan—¢ + AStan(6}+6%)/2

or
AD
— = —tan¢ + tan(0¥+6%)/2. (A6)
AS
Hence,
V¥ = V,ycos¢ [—tang + tan(0F+065)/2, (A7)

which is the text Equation 2.

We now proceed to solve for V, and ¢. Because we have one
equation in two unknowns, we require at least two such ‘‘views.”’
Let the contour orientations, 6%, be indexed to indicate both the
view (i) and the contour position (j). We then have two equa-
tions with knowns V¥, 6%, 0%, and V¥, 64, 6%, which can be
solved for V, and ¢ to yield text Equations 3 and 4.

We reiterate that these equations are valid only for short A#’s.
Also, these solutions only demonstrate that in principle, the an-
gle ¢ and speed V, are recoverable using the ‘‘rigidity’’ and
“‘constant speed”’ constraints. It is unlikely that our visual sys-
tem “‘solves for’’ ¢ using the equations as presented. This is
an algorithmic issue, addressed by the linearization scheme
presented in the Algorithm and Mechanism section.

APPENDIX 2

If an object may be rotated behind the slit, then our unknowns
are the angular speed, w, and the center of rotation, x,, yo.
Clearly, with three unknowns, we will need at least three
‘‘views.”’ Consider, however, the unknown speed, V,, which
is now a function of how far the contour is from the center of
rotation. From Figure 11, we see that

V4 = Lw
or, in general, the rotation constraint requires
Vei = Lw. (AB)
Our text Equation 2 thus becomes
V¥ = L cose, | —tang, + tan OT;” » (A9

where the unknowns are L,, w, and ¢,. Unfortunately, the an-
gle ¢, which the velocity vector V,; makes with the slit, is also
not constant. A second ‘‘view”’ will thus add unknowns L, and
¢.. However, the displacement D# is known and can be related
t0 ¢, ¢, and L,, L,.

Note that, because V,, is perpendicular to the radial line
L,=0B, <ABO = w/2—¢,. Hence <AOB = ¢,, as shown.
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(XO|Y0)

D

Figure 11. Geometrical relationship and definition of angles and
distances used in the derivation of Equations A9 and A10.

Similarly, <DOE = ¢,. Hence, we have a new relationship,
namely,
D¥ = L, cos¢, + L,coso,. (A10)

But, as the horizontal distance from the center of rotation O to
the slit is fixed, we also have

L,sing, = L,sin¢,. (All1)

Hence, with two views, we have four equations in five
unknowns, L,, L,, ¢1, ¢, and w. Adding one more ‘‘view’’
adds two more unknowns, L; and ¢, and three equations. Hence,
three ‘“‘views’’ are required to ‘‘solve for’’ the rotation center
and angular speed w.

Alternatively, we might have considered measuring three tan-
gents to the contours 0¥, 05, and 6, for then two * ‘views’’ would
result in four equations of the form of Equation A9 in unknowns
Ly, L,, ¢, ¢, and w. Equations A10 and A11 would then cause
the number of equations to exceed the number of unknowns.
Such a scheme fails the Jacobian test, however, and will not
yield a solution in this case (Richards, Rubin, & Hoffman, 1983).
The reason is that Equation A9 assumes an arc of constant cur-
vature, and hence the third tangent provides no new informa-
tion. To succeed, the arc must be a biquadratic (Waxman &
Wohn, 1985), in which case the number of unknowns increases
by two for each view.
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