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1.0 INTRODUCTION .

The human visual system performs a remarkable feat. The pattern of light that
reaches the eye from a scene is the result of a complex interaction among
several factors: the quality of the illuminant, the geometry of the scene, and
the properties of the materials composing the visible surfaces. Yet somehow
these confounded factors are mostly separated in our perception. We see par-
ticular spatial arrangements of objects. These objects appear bounded by sur-
faces having properties—color and texture—roughly invariant over a range of
conditions of geometry and illumination. To compute invariant descriptions of
the material properties of surfaces is an important goal of any visual system.
Such material descriptors are useful for object recognition and visual search.
It’s commonplace to assume color vision has something to do with captur-
ing the albedoes of surface materials.! But exactly what aspect of the albedo
function would serve a visual system best? Consider the grandiose goal of
recovering a material’s albedo as a continuous function of wavelength. Not

* This chapter is a revised and abridged version of MIT Al Memo 764, entitled *“Color vision:
representing material categories” (Rubin & Richards, 1984). The research was done at the
Department of Psychology and the Antificial Intelligence Laboratory of the Massachusetts Institute
of Technology, and was supported by NSF and AFOSR under a combined grant for studies in
Natural Computation, grant 79-23110-MCS, and by the AFOSR under an Image Understanding
contract F49620-83-C-0135. John Rubin was supported by an NSF Graduate Fellowship, and by
a pre-doctoral fellowship from the M.I.T. Center for Cognitive Science. The authors would like
to thank T. Poggio, Nancy Kanwisher, Andrew Knapp, and the members of the Natural Computa-
tion group for their comments, and Bill Gilson for a meticulous reading of the manuscript.

! The albedo of a material is a function of wavelength p(\), with range (0, 1), that indicates
what fraction of photons (emitied by some light source) at each wavelength will be reflected.
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Spectral Categorization of Materials 21

only is this goal jmpractical; it is counter t0 the aim of finding invariant
descriptors. With such an over-zealous representation, unimportant variations
in a surface would prevent its being recognized as 2 single region, a patch of
one kind of stuff. The perception of the world would be shattered with spec-
tral acuity too fine; one literally wouldn’t be able to see the forest for the
trees.

Here we seek a representation of material reflectance in which trivial sur-
face variations can be overlooked in order to appreciate important similari-
ties.2 At the same time, the representation must allow some discrimination
among different materials. Below we develop such a categorical color space,
based on a theoretical solution to the problem of identifying material changes.
A trichromatic system, it will be shown, yields a two-dimensional color space
in which the axes will turn out to represent boundaries between different
materials. The four guadrants of the two-dimensional space represent material
categories.

2.0 SPECTRAL INFORMATION AT EDGES

When two image regions arise from different materials in the scene, the tran-
sition from one material to another will usually bring about an edge in the
image. Thus we restrict our search for material changes to edges. How can
we decide whether an edge is due to a material change?

An edge in the image will usually arise from a single event or state of
affairs in the three-dimensional scene (Marr, 1982). The most common edge
types are shadows, highlights, surface orientation discontinuities, and pigment
density changes,3 Alternatively, an edge may be due to a material change, a
discontinuity between two different kinds of stuff 4 How can a material change
edge be distinguished from other types of edges? Rubin and Richards (1982)
attempted to answer this question. Edges which arise from shadows, orienta-
tion changes and highlights are lawful in the sense that there are equations that
describe how image intensities will change across these edges. By contrast,
material changes are completely unpredictable; they are arbitrary changes,
and as such, can only be inferred by ruling out, at a given edge, the possibil-
ity of any of the above lawful changes.

P

2 We are not suggesting any spectral information be thrown away. We are merely exploring a
single problem. Other roblems may require detailed spectral information. ’
P
3 Surface orientation change and shadow can coincide at an edge, but this exception is unim-
portant to the arguments that follow. See Rubin and Richards (1982), footnote 16.
4 We consider materials to consist of some spectrally neutral embedding material (e.g.. cellu-

lose) impregnated with a single pigment (e.g.. chlorophyll). A material change is a change in pig-
ment type, or a change in both pigment and embedding material.




22 Rubin and Richards

To infer material changes, we now face the awkward prospect of having to
reject, one by one, each of the lawful changes. A method of rejecting all of
those edges en masse would be desirable. Fortunatately, there is a simple
ordinal rule common to all the edges formed by lawful processes: if the inten-
sity at one wavelength deceases across a lawful edge (shadows, highlights,
and so on) then the intensity must also decrease at all other wavelengths taken
across the same edge (Rubin & Richards, 1982). When the condition is
violated, we say there is a “‘spectral crosspoint” across the edge. Spectral
crosspoints imply material changes; a spectral crosspoint is illustrated in Fig-
ure 2a. The spectral crosspoint is not the only means of discovering material
changes, however. We will show that a second and independent condition
holds for each of the lawful processes—namely the preservation of ordinality
of image intensity across wavelength. A violation of this condition implies a
material change.

3.0 THE OPPOSITE SLOPE SIGN INFERENCE

3.1. The Lawful Processes

Figure la shows two image intensity graphs of the same shape. Intuitively,
the two graphs, of similar shape, arise from measurements taken on either
side of a “lawful” edge type. Figure 1b shows two graphs of different shape.
None of the lawful edge types could have produced such a distortion, and
intuitively it seems that a material change edge is the best explanation. We
now must make explicit what we mean by “same shape” and then show that
this definition of spectral shape remains invariant across edges created by sha-
dows, changes in surface orientation, highlights or variations in pigment
density—namely the lawful conditions we wish to reject as material changes.

(A)  Lowful Change (B) Material Change

Image intensity
Image intensity

Wavelength

Figure 1. Graphs of image intensity versus wavelength. Each curve represents the
image intensity measurable from one image region. A) Two graphs of same shape: a
likely lawful change. B) Two graphs of different shape: a candidate for material
change.
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Definition: Two curves of intensity versus wavelength have the same
shape if the ordinal relations of image intensity across wavelength are
preserved. ‘

More formally, if Ix(\) and Jy(\) are image intensities as functions of
wavelength measured on both sides, X and Y, of an edge, then Iy(\) and
I.(N\) have identical ordinality if, for all Ay and A,, Ix(N\;) < Ix(\;) iff
Iy(\)) < Iy(\;). Note that two image intensity functions of identical ordi-
nality will have local extrema at the same values of wavelength.

Given this ordinal definition of “same shape,” Appendix I shows that the
ordinality relationship is preserved across all edges arising from the lawful
edge types, provided that the following two conditions hold:

Gray world condition: The average of all the different albedoes in the
scene will be a spectrally flat “‘gray,” so that the diffuse reflected light will
have the same spectral character as the direct light.

Spectral normalization: The spectral samples of image intensity have been
normalized with respect to the spectral content of the illuminant.

Spectral normalization is a transformation of spectral sample values to
what they would have been under white illumination. White light has the
same photon flux at all wavelengths. A scheme for spectral normalization will
be presented in Section 4.

3.2. The Opposite Slope Sign Operator

We now can proceed to test for “‘same shape” using the ordinality relation. If
ordinality is violated across an edge, then we infer the edge does not arise
from one of the “lawful” processes and hence must represent a material
change (?rovided also, of course, that our grey world condition is not
violated).

What is the simplest way to seek violations of ordinality? A pair of spectral
samples suffices. Let the image intensities on both sides of an edge be meas-
ured at wavelengths X, and \,. If image intensity at A, is greater than that at
A, on one side of the edge, then the ordinality condition requires the same
relationship hold on the other side. So if the two sides of the edge do not have
greater intensity in the same spectral sample, ordinality is violated; the edge
cannot be lawful. (Details are given in Appendix 1.) This condition is called
the opposite slope sign condition.® Examples are shown in Figure 2a and 2b.

51t is possible when the grey world assumption is wrong, material changes will be inferred
from images. This is not entirely bad news; if human perception also goes awry when the grey
world assumption is violated, then our theory will gain support as an account of biological visual
systems. :

6 The opposite slope sign condition is described here as existing statically, across an edge. It is
a spatial comparison of spectral information. A comparison of spectral information in time is
equivalent. Such a temporal opposite slope sign condition would work as follows: An eye could
sweep across an edge, and the spectral information before and after the movement could be com-
pared. Similarly, there is a temporal equivalent of the crosspoint. Consequences of these iso-
morphic computations in the temporal domain will be not explored here.
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The “slope” of the opposite slope sign condition is the slope of the graph of

samples I taken at two wavelengths A and X,, we have the following test for
a material change:

Rubin and Richards

intensity versus wavelength; it is the derivative of the spectral image intensity

function, dl/d\.
More formally, given two regions X and Y across an edge and intensity

Opposite Slope Sign Condition:
Uxn, = Ixan)Uya, — Ira)) <0 (1)

where Iy, = Ix(N\}). Condition (1) may be contrasted with the previously
derived crosspoint condition (Rubin & Richards, 1982):
Spectral Crosspoint Condition:

(Ixx, = Iya)Uxx, — Ira) <0 (2)

Note that the spectral crosspoint and the opposite slope sign conditions are
completely independent. Figure 2a shows the two occurring together. Each
condition can arise alone, as shown in Figures 2b and 2c. Finally neither con-
dition is necessary, as shown in Figure 2d.

Independence of Crosspoint and
Opposite Slope Sign

(B)

S
o/.

Image Intensity

Y A2

Wavelength

Figure 2. Graphs of image intensity (ordinate) versus wavelength (abscissa). Two
wavelength samples, A, and A, are shown. An image region yields two samples of
intensity, one for each wavelength, and is represented by the line segment connecting
the two sample values. (a) and (c) Two examples of the spectral crosspoint (Rubin &
Richards, 1982). (a) and (b) Two examples of the opposite slope sign condition. This
is the minimal configuration that shows different ordinalities. Note that the crosspoint
and opposite slope sign condition are completely independent, since they can occur
together (a), or each can occur alone (b and c), or neither can occur (d).
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The two conditions are related by a kind of symmetry. The spectral
crosspoint must make two comparisons across an edge (one for each
wavelength), and combine them logically (both comparisons must work out in
the correct way). The opposite slope sign condition must make two compari-
sons, one within each image region, and then combine them logically across
the edge.

To summarize: the spectral crosspoint—our original means of finding
material changes—has been augmented by a second and independent material
change condition: opposite slope sign. The opposite slope sign condition is
the key theoretical result on which we will base our spectral representation of
material types. We choose opposite slope sign rather than the crosspoint,
because the opposite slope sign condition tells us something about each of the
two regions that produce it. Namely, one region has positive spectral slope,
the other negative. By contrast, the spectral crosspoint cannot be decomposed
into assertions about the two regions that produce it. In a crosspoint. spatial
and spectral information are hopelessly intertwined. We do not cast aside the
crosspoint, though: it is essential for spectral normalization.

4.0 SPECTRAL NORMALIZATION

For the opposite slope sign test to find material edges successfully, it is neces-
sary for the measured spectral intensities to be normalized with respect to
illuminant color.” That is, these samples must be transformed to what they
would have been under a white (spectrally flat) illuminant. Without this
correction, the spectral skew of an illuminant may not only reduce the number
of observed opposite slope sign pairs, but more seriously, may transform pairs
having the same slope sign (under white light) into opposite slope sign pairs.

By contrast, the spectral crosspoint condition is insensitive to the spectral
content of the illuminant, as can be seen by inspecting panels A and C of Fig-
ure 2. (See Rubin & Richards, 1982, for a more formal treatment.) We capi-
talize on this property of the crosspoint to devise a theory of spectral normali-
zation.

Consider now a scene composed of a large number of randomly selected
materials. For each image region (simple closed curves defined by edges),
take two samples of intensity /,, and I,, at wavelengths A, and A,. Each
region will be associated with a spectral slope sign, which is just the sign of
the difference I,, — I,. If the illuminant were white, we would expect to
have roughly equal numbers of regions of positive spectral slope and regions

7 A note on mechanism: Neural responses that encode luminance edges can only accurately
represent a contrast of 1 to 2 log units. Daylight conditions, however, can range over 5 log units.
Therefore some crude adaptation must precede our edge-based spectral normalization.
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of negative spectral slope. This expectation is based on two assumptions. The
first is that there is a random collection of materials in the scene. The second
is that materials in the world are such that a random collection of them will
be divided equally between positive and negative spectral s]ope.8

As suggested above, normalization requires a collection of image regions
that arises from a random set of materials. What about using all image
regions? The set of all image regions is not likely to represent a random col-
lection of materials, because many materials will recur in several image
regions. For example, if a cast shadow cuts across a single piece of material,
that material will be twice represented, once for each side of the shadow
edge. A second example arises with pigment density changes. In a forest
scene. all leaves are composed of the same material (chlorophyll embedded in
a cellulose base). A sensible normalization scheme would not take each leaf as
a distinct patch of material; minor variations in pigment density from leaf to
leaf ought to be ignored.

It seems clear, then, that not all image regions should participate in nor-
malization. Perhaps a subset of image regions can be found that is more likely
to represent a random collection of materials. The spectral crosspoint offers a
means of finding such a random subset of regions. Suppose we considered
only pairs of regions that have a spectral crosspoint on the edge between
them. We would be guaranteed that each pair of regions would correspond to
distinct materials. The pairs of different material regions found with the
crosspoint will be the subset of image regions that will be used for normaliza-
tion.

Our normalization scheme works as follows. Recall that we expect the
regions found by the crosspoint to represent a random collection of materials.
So we expect roughly the same number of regions having positive spectral
slope as negative. For the subset of image regions defined by the crosspoint,
tally the number having positive spectral slope and the number having nega-
tive slope. If the numbers are approximately equal, our expectation has been
met: we can infer that the illuminant is white (spectrally flat).” Suppose to the
contrary that the number of regions of positive spectral slope exceeds the
number of negative-slope regions. Then we can infer that the illuminant is

8 Our scheme can be easily modified to capture any fixed distribution of positive- and
negative-slope materials in the world.

9 Note there must be some crosspoints for normalization to proceed. If there are no
crosspoints, there are no regions to consider. So although it is technically true that there are equal
numbers of positive-slope regions and negative-slope regions (namely, zero), we do not want to
infer the illuminant is white for two reasons. First, we have no information about any image
region, and thus it seems imprudent to guess blindly that the light is white. Second, we have evi-
dence that the scene consists of a single material since it has no crosspoints. Normalization would
bring about material change assertions via the opposite slope sign condition, in contradiction to
the evidence of uniformity from the crosspoint.
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more intense at long wavelengths than at short. (Positive spectral slope means
greater intensity in the longer wavelength sample.) Now multiplicatively scale
one of the spectral samples. In the example here, we need to multiply all long
wavelength samples by some number less than one. Exactly which number?
The one that will fulfill our expectation of equal numbers of positive and
negative spectral slope. That is, multiply all long wavelength samples by some
number (less than one) such as that half of the regions under consideration
will have greater intensity in the modified long wavelength sample than the
short wavelength sample, and half, the reverse. For a large number of sam-
ples, the multiplicative constant of normalization can be calculated from the
mean value of the spectral slopes of all regions participating in crosspoints.
An algorithm for spectral normalization is presented in Appendix II.

This crosspoint normalization scheme has some useful properties. Each
image region participates in normalization only to the extent that it partici-
pates in crosspoint edges. There is no strict relation between the size of a
region and its potency in normalization. 10 This is good for two reasons. First,
the scheme is largely independent of the areas of image regions. This is desir-
able since we would not want visual systems to treat an image of a large blue
thing and a small red thing differently from an image of a small blue thing
and a large red thing. Second, the scheme is strictly independent of the length
of an edge separating two regions; each crosspoint edge contributes two
points regardless of its length.

It is worth comparing our crosspoint normalization with Land’s latest nor-
malization theory. Land’s (1983) scheme involves comparing the image inten-
sity of a target region with that of a few hundred random locations in the
image. In such a theory, the larger an image region, the more random loca-
tions it will contain. Land’s algorithm is therefore strongly dependent on the
areas of image regions. Our procedure behaves differently; we expect no
effect on normalization from the sizes of image regions (for a fixed pattern of
connectivity of image regions), or from the lengths of image edge segments.

5.0 CHOOSING A REPRESENTATION

Assume now that the image has been normalized using the spectral crosspoint
condition, as described in section 4. We next select a representation of spec-
tral information based on that rule. In particular, we seek a simple, convenient
spectral representation of materials that is invariant under shadow, hlghlzght
surface orientation change, and pigment densiry change.

10 There is a loose relationship, though. Relatively large regions will tend to have more edge
segments (see Appendix II). As the number of edge segments of a region increases, so on average
will the number of crosspoints.
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For any region in the image, intensity can be measured at a long
wavelength and at a second, shorter wavelength. Call these two measurements
of image intensity L and S, respectively, for each image region. Suppose we'd
like to represent the spectral character of a region with a single number,
namely some mapping of the pair (L,S). Furthermore, we would like the
mapping (L,S) to be invariant under the lawful changes. The recognition of
material differences would be easy in such a representation. A single material
in its different guises—fully lit, shadowed, having different densities of pig-
mentation, with different surface orientations—would map ideally to a single
point. If there were such a mapping, then whenever two image regions
mapped to distinct points, we would know they correspond to distinct materi-
als.

The lawful edge types are unfortunately so diverse that there is no function
giving us the desired mapping. No single, nontrivial, continuous function of
(L,S) will be invariant under multiplicative (shadow), exponential (pigment
density), and additive (highlight) changes. Material change, then, cannot be
reduced to the problem of distinguishing two points in the range of some
function.

The problem isn’t hopeless, however, for there is a continuous function
invariant under some of the lawful changes, namely the multiplicative ones
(shadow and surface orientation change). Consider again the two image inten-
sity samples S and L. The quotient L/S will have the identical value on both
sides of a surface orientation change or a shadow edge. The simple quotient
is not unique in remaining constant across an orientation edge. We will
choose among three simple functions having this property:

L L L—-S5

S L+s L+3S ®

How can we select among these candidates? The function L/S takes image
regions into the unbounded interval (0,00), while the other two functions take
image intensities into closed intervals. (L/(L+S) maps intensities into [0,1];
(L—=S)/(L+S) maps into [—1,1].) The function L/S will be rejected, since
any reasonable computational system will be better off using quantities that
fall within a closed interval, rather than those that could be arbitrarily large.
To choose between the two remaining candidate functions we consider the
ease of discovering material changes in these two maps. In particular, how
does the opposite slope sign condition appear in each of the candidate map-
pings? ,

Given two image regions X and Y, let F denote the function L/(L+S) so
that F(X) and F(Y) are the values of the function F of regions X and Y,
respectively. Then for F, the opposite slope sign condition is expressed by
[sign(F(X) — 1/2) # sign(F(Y) — 1/2)]. (The reason for this expression
is that the function F takes on the value 1/2 whenever L = S.)
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Let G denote the function (L—S)/(L+S), a common measure of contrast.
This is a simple function that facilitates the computation of material change.
The sign of G is the sign of the spectral slope of an image region. That is,
[sign(G(X)) # sign(G(Y))] emerges as the opposite slope (material change)
condition.

We prefer the function G to the F for our representation. Whereas to
determine material change with G requires only a sign check, with F, the sys-
tem must maintain the constant 1/2 and perform two subtractions. The partic-
ular choice of F or G, though, seems not to be critical for the goals we have
in mind.

Figure 3 shows the interval [—1,1], the range of the function G. Two
image regions corresponding to lit and shadowed versions of the same
material, or two different surface orientations, will, by design of G, be
mapped to the same point. This is shown in Figure 3a. Two image regions of
different pigment density have the same slope sign; hence, in the G map, the
corresponding pair of points cannot straddle the zero. The same holds for a
pair of points corresponding to a highlight and a neighboring matte region.
The latter two edge types are shown in the G mapping in Figure 3b. If two
image regions are mapped to points straddling the zero (Figure 3c), they arise
from different materials.

How Edges Map into the
Spectral Representation

Shadowed Lit
region region
(A) — | \"/ j L-=S
-1 0 | L+S

Pigment density change

B =

Material change

© o Z . N\

-1 0 |

Figure 3. How various processes appear in the spectral representation implied by the
mapping (L—S)/(L+S), the range of which is [—1,1]. a) Two image regions
differing only in surface orientation or shadow map to a single point. b) Two regions
differing as matte and highlighted, or as two different degrees of pigmentation density,

. map to the same half of the range, i.e., they map to points having same-sign coordi-
nates. c) Only two different materials can map to points straddling the zero, i.e., to
points of different-sign coordinates.
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To summarize, we sought a function of spectral information invariant over
the lawful changes. That goal being impossible, we chose (L—S)/(L+S) for
two reasons. First, it is invariant across shadows and surface orientation
changes. Second, finding material changes with the opposite slope sign condi-
tion is easy. The range of the function can be divided into two parts, (—1,0)
and (0,1). Materials with albedoes of positive spectral slope sign will map into
the positive half of the range, and negative-sloping albedoes to the negative
part of the range.'!

Finally, it’s worth reiterating why we built our spectral representation
around the opposite slope sign condition, and the spectral crosspoint. Spectral
slope sign is an invariant property of a material’s albedo function.'? The oppo-
site slope sign condition can be decomposed into separate meaningful state-
ments about properties of two image regions: The slope sign of one region is
positive, and that of the other, negative. We know something about each
region. The crosspoint, by contrast, hopelessly confounds spatial and spectral
information. Higher goals of color vision involve describing the properties of
individual image regions, and cannot be reached by the crosspoint alone.

6.0 TRICHROMACY: FINDING MORE MATERIAL CHANGES

Suppose we add a third spectral sample, call it M, to our original S and L
samples. Adding a third spectral sample will allow the detection of new kinds
of material changes.'> However, more importantly, the number of basic
material categories will be increased from two to six.

In the two-wavelength-sample material representation, an image region is
encoded essentially by the rank order of the spectral samples, or equivalently
by the sign of the slope of the line segment connecting the samples. Thus,
given two wavelength measurements, there are two types of material—
negative slope and positive slope. With three wavelength samples, an image
region is associated with three slope signs—a slope between each pair of sam-
ples (SM, ML, SL). There are six possible rank orderings of the measure-

" Many continuous maps share the same invariance. We selected our map on the basis of
algorithmic considerations. The particular choice is independent of the theory of finding material
change edges.

12 Since a material is defined as a kind of stuff, a single material can have different albedoes as
pigment density changes. What stays constant over these changes in density of pigment is spectral
slope sign. ’

13 The additional number of material changes detected with each new spectral sample will
drop sharply after the third sample. The reason is that the albedoes of natural objects (in the visi-
ble range) are typically slow-changing functions of wavelength (Krinov, 1971; Snodderly, 1979).
Cohen (1964) showed that three carefully chosen functions of wavelength captured over 9% of
the albedo functions of Munsell chips.
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ments (3! = 6), and thus six possible basic material types. Any two regions
that produce distinct rank orderings of the wavelength samples will bring
about one or more opposite slope signs. Any two such regions must therefore
be distinct materials. '

As a first step in constructing the trichromatic material representation, we
combine slope information from two of the three pairs of samples. Arbitrarily,
we begin with SM and LM, combining the information in a two-dimensional
space as shown in Figure 4a. Image regions are mapped to points in the
square [—1,1] x [—1,1], and a pair of points separated by an axis (or both
axes) correspond to two regions of different material, just as did a pair of
points straddling the zero in Figure 3c. Any pair of points in a single quadrant
may arise from a single material. This is the sense in which quadrants
represent material categories. Without yet considering comparisons between §
and L samples, we already have a categorical representation in Figure 4a, in
which in each quadrant corresponds to a material category.

Let’s now examine the third pairing of samples, S and L. What condition
holding between a pair of points in the preliminary representation of Figure
4a corresponds to the opposite slope sign condition between S and L? 1t is
easily shown that if a pair of points straddles the line of unit slope, the points

Trichromatic Representations

(A) 1s_+_M (B) S+ L+M  S+M
Y
N
SSM>L | &7 g
g
% =X } D
X { L+M o L+M
%’7
- [N L>M>S
A ’,\j
L}
_1_L .

Figure 4. Steps in the construction of the trichromatic material representation. (a)
Two axes comparing L and M, and S and M samples, are joined orthogonally. Each
quadrant is a material category. Points in different quadrants correspond to distinct
materials. Points within one quadrant may belong to the same material; they are con-
sidered equivalent in this representation. (b) The line of unit slope in the figure above
represents the comparison between S and L samples. Adding the unit slope line
divides the color space into six regions or *‘hextants.” Points in different hextants arise
from different materials. Note the hextants do not have equal areas.
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arise from materials with opposite (S and L) slopes.'* Furthermore, not just
the sign, but the continuous value (L—S)/(L+S) of the L to § comparison is
contained implicitly in the representation defined by ordered pairs (S— M)/
(S+M), (L—M)/(L+ M) that Figure 4a illustrates. '’

The unit slope line in the SM — LM space therefore has special significance,
and is added to the representation as a third material change axis in Figure
4b. A pair of points lying across any of the three axes will correspond to a
material type, or equivalently, to a rank ordering of the three samples. The
particular rank ordering associated with each “hextant” is shown in Figure
4b. Note the hextants of Figure 4b do not have equal areas. The original pair
of axes can be joined in a skew fashion to allocate more or less area to the
different material categories.

To summarize, image intensities are measured at S, M and L, normalized
according to the crosspoint normalization of section 4, and mapped to
(L=M)I(L+M), (S—M)/(S+M) in a rectangular coordinate system, ini-
tially creating four basic material types. A further subdivision into six types
can arise by using the line of unit slope as a third axis, dividing the region
[—1,1]° into six regions, each corresponding to a different material type.
Points in different hextants arise from different materials, whereas points com-
mon to one hextant may arise from lawful edge events occurring on a single
material.

7.0 RELATION TO PSYCHOPHYSICS:.
THE UNIQUE PRIMARIES'®

Our spectral representation of material types is so far only an abstract model
of biological color vision. In our theory, certain terms are left undefined. For
example, neither the “spectral samples” of the theory, nor the psychological
correlate of “materials™ are specified. How then can we assess its relevance?
One simple linking assumption will guide the interpretation of our theory: of
the traditional psychological color variables, hue, saturation, and lightness, it
is hue that encodes material type. (Saturation and lightness likely encode other
material properties.) '

' The line of unit slope is given by (S—M)/(S+M) = (L—M)/(L+M). This is equivalent
0 (S=M)(L+M) = (S+M)(L—M), or L = S. Points above this unit slope line correspond to
L > S, points belowto S > L.

1 Given the values (S—M)/(5+M), (L—M)/(L+M), we can compute the value of (L—S)/
(L+S5). Let Q= (S-M)/(S+M) and R = (L-M)/(L+M). Then (L-S)/
(L+S) = (Q—=R)/(QR-1).

16 We relate our two material-change operators to Land's observations in Rubin and Richards
(1984). Also in that reference we also show that the operators correspond to two distinct types of
double-opponent units.
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One hundred years ago, Ewald Hering (1878, 1920, 1964) offered a simple
model for categorical color perception, based upon the notion of ‘“‘opponent
i processes.” He observed that “‘redness and greenness, or yellowness and blue-
) ness are never simultaneously evident in any color, but rather appear to be
mutually exclusive.” Reddish and greenish are mutually exclusive hue
categories, and if hue is encoding material properties, then the two categories
will partition materials. See Figure S5a. Similarly, bluish and yellowish will
partition materials. See Figure 5b. These two sets of mutually exclusive hue
pairs divide the color space into four regions, as in Figure Sc, just as did our
trichromatic color space (Figure 4a).

Our claim that Hering's color quadrants correspond to our material
categories is predictive: we expect that shadows, surface orientation changes,
and pigment density changes would only rarely cause perceived hue to change
from reddish to greenish (or vice versa), or from yellowish to bluish (or vice
versa). (However, as noted in Appendix I, highlights could be troublesome.)

The fact that there are four hue categories supports the idea that tri-
chromatic human vision uses two opposite slope sign checks, as in Figure 4a,
but not the third, as shown in Figure 4b. (Goethe [1808], however, proposed
a theory of color perception based on six hue categories, which might
correspond to the use of all three opposite slope sign checks.) Evidence from
infants (Bornstein, Kessen, & Weiskopf, 1976) supports Hering’s theory of
four hue categories as independent of language and culture. Pigeons also have
categorical color perception (Wright & Cumming, 1971), suggesting the com-
putational scheme that we propose here is fundamental to color vision across
species.

Opponent Color Theory

(A) (B) (C)  Unaue

Y
Reddish |B ? Blyish Reqrdlsh
e (-5}
15 u | g [ Reddish | Yellowsh \ 3 =
] o= o= =
Greenish ; Y E@| Bluish | Greenish | S =
+ +
; Greenish | Yellowish
Unique
Green

Figure 5. Hering’s notion of opponent color processes. (a) All colors are either red-
dish or greenish, but never both. (b) All colors are either bluish or yellowish, but
never both. (c) The two pairs of mutually exclusive colors divide the color circle into
four quadrants, similar to the trichromatic representation that we develop in Figure 6a.
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Hering’s notion of opponent color processes implies four special hues.
They are indicated in Figure Sc. These hues, which Hering called the unique
psychological primaries, are the boundaries that separate color categories. Pri-
mary red is that hue among the reddish hues that separates the yellowish from
the bluish; primary blue is that hue among the bluish that splits the reddish
from the greenish; and so on. These primary colors are unstable in the sense
that any deviation from them involves a change of color categories. Hering’s
psychological primaries correspond to the axes of our trichromatic representa-
tion (Figure 4a).

Just why these primaries have their particular locations in the spectrum is
an interesting evolutionary question not addressed here. One possibility is that
a creature’s material boundaries are positioned in some way as to make the
greatest number of discriminations among materials encountered in its
environment.'” Interesting work has been done along these lines. Snodderly
(1979) attempted to relate the color vision of New World monkeys to the
spectral characteristics of their jungle habitat. Levine and MacNichol (1982)
and McFarland and Munz (1975) linked the photopigment characteristics of
fishes to the spectral character of light in their environments.

In sum, our spectral representation of material categories is a two-
dimensional space in which each quadrant represents a material type, and the
axes represent the boundaries between categories. Image regions that map to
different quadrants necessarily arise form distinct materials; image regions
that map to the same quadrant may arise from a single material. Supposing
that hue encodes material type, Hering’s observation about human color vision
makes sense: hues are divided into four fundamental “material” categories by
the mutually exlusive red-green and blue-yellow pairs.

8.0 SUMMARY

Our theory of color vision presents two types of operators—the spectral
crosspoint for normalization and the opposite slope sign—which suffice in
most cases to normalize for the illuminant and to categorize the albedoes in
the scene. Our scheme should differentiate between the common natural pig-
ments (chlorophylls, xanthophylls and flavanoids, for example), but not

17 Material boundaries can be changed in two ways. The wavelength at which a photopigment
captures the greatest percentage of photons can be altered, or new “channels™ can be created by
combining photopigments. One sort of combination of two spectral samples S and L is a rotation;
that is, new coordinates (S cos § — Lsin 6, S sin § + Lcos ) can be created for some angle of
rotation 6. The original and rotated coordinate systems will not always agree about whether two
image regions satisfy the opposite slope sign condition. That is, the two spectral coordinate sys-
tems differing only by a rotation will make different material distinctions. An angle 6 can there-
fore be selected to maximize the number of material changes detected.
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between the density variations of any one of these pigments. The theory does
not address this latter problem—namely how we interpret the fine changes in
the grain of a piece of teakwood. A quantitative color vision system, of
greater complexity than the qualitative computations described here, is needed
for such fine discriminations. However, categorical color vision does allow
coarse but rapid and reliable judgments about materials.

APPENDIX I: LAWFUL PROCESSES

This appendix shows that image edges that arise from (1) change in surface
orientation, (2) pigment density variations, (3) shadows and (4) highlights all
preserve the ordinal relations of image intensities across that edge, and hence
cannot cause the opposite slope sign condition.

Al.l1 Surface Orientation Change

Let X and Y be regions on either side of an edge due solely to a surface orien-
tation discontinuity. Then the image intensities (as functions of wavelength)
Ix(N\) and Iy(\), measured in X and Y, respectively, are related multiplica-
tively. That is, Iy(N) = aly(\) for some constant o (Rubin & Richards,
1982; Horn & Sjoberg, 1979). Two functions differing only by a multiplica-
tive constant have identical ordinality.

Al.2 Pigment Density Variation

Suppose X and Y are two regions on a planar piece of a single material that
differ only in pigment density. Then if the albedo (as a function of
wavelength) of region X is p(\), the albedo of Y can be approximated'g by
p"()\), where b is a constant related to pigment density (Rubin & Richards,
1982; Wyszecki & Stiles, 1967).

The light measured from regions X and Y is the product of the albedoes of
X and Y with the radiant intensity of the illuminant. Since X and Y are
assumed coplanar (recall that pigment density change is stipulated as the sole
cause of the edge), and the illumination is the same for both, then any
difference between measured intensities from the two regions will be due to a
difference in the albedo functions. But the albedo functions are related by an
exponential constant, and two functions so related will have identical ordinal-
ity. Therefore, image intensities across a pigment density change will have
identical ordinality. [Examples of this relation for natural pigments can be
seen in Krinov (1971), Francis & Clydesdale (1975) or Snodderly (1979).]

'8 This exponential relation presumes that the embedding material is spectrally neutral. If the
embedding layer reflects different wavelengths unequally, then change in pigment density has a
more complex description. In particular, pigment density changes can mimic material changes.
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Al.3 Shadow

Illumination generally consists of two components. Direct light comes from a
source, which is usually localized. Diffuse light is source light that has been
reflected off other surfaces (Goral, Torrance, Greenberg, & Battaille, 1984),
and is roughly global. Now consider an edge separating a lit region from a
shaded one. Both lit and shaded regions reflect diffuse illumination toward the
viewer. The lit region, in addition, reflects a direct source. If I;(\) and
I,.4(N\) are image intensities (as functions of wavelength A) from lit and
shaded regions, respectively, then:

Lipad(N) = Egigpse(N)p(N) 4)

Ilix()\) = [Ediffuse(x) + Edirect()\)]p()\)

where Ejirfu (M) and Egjre(N) are the diffuse and direct components of
illumination, and p(\) characterizes the albedo of the material.

By inspection of equations (4), it is clear that ordinality can be violated in
the case of shadow. That is, a false target is possible. The visual world, for-
tunately, offers certain regularities. There is usually some close relation
between diffuse and direct illumination. This is not surprising, since diffuse
light results from diverse, random reflections of the direct light from a variety
of materials in the scene. An assumption will be made that this is usually the
case: a visual system can presume that diffuse light has the same spectral
character as the direct light. That is, Ejfsus(N) = kEgiree:(N), for some con-
stant k. This we call the “‘grey world™” assumption (see Section 3.1), because it
is implied by the statement that all the albedoes of a scene will average to
grey. Anecdotal data support the gréy world assumption. Hailman (1979)
measured spectral irradiance functions in a pine woods in a sunny area and in
nearby shade. The functions are strikingly similar in shape, and are shown in
Figure 6.

Shadow and Wavelength

[T T T T T T 1 T
Foa
>< r .
= "‘"-o.._.,‘_.‘. L.lt
= -
5 - O
219 S
< . Shadow
S Se—e—e—0,
S . N
®
1 | 1 | ! | 1 |
Wavelength

Figure 6. Measurements of the spectral irradiance functions of direct sunlight and
nearby shade in a Florida pine woods, adapted from Hailman (1979), Figure 74a. On
the ordinate is the logarithm of photon flux. The abscissa shows wavelength.
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Invoking the grey world assumption, equations (4) become:
Ishad()‘) = kEdirea()\)P(x) (5)
Ili!()\) = (1 + k)Ediren()\)p()\)

Note that the lit and shaded regions now give rise to multiplicatively
related image intensity functions. Ordinality will therefore be preserved.

Al.4 Highlights

The analysis of highlights is slightly more complex. The following equations
(Rubin & Richards, 1982, equations 14a) express the image intensities to be
found in a highlight and neighboring matte region.

Lnane(N) = (Edff/u.w()\) + Egirear(N))p(N) (6)

Ihighlighr()\) = 0Ejirea(N) + (1 — 6)[Edifflue()\) + Egirea(N)]p(N)

where g (N) and ygnign(N) are the image intensities (as functions of
wavelength) in matte and highlight regions, and € (0,1) is a constant that
indicates to what extent the surface is mirrorlike (86 = 1 describes a perfect
mirror). (See Richards, Rubin, & Hoffman, 1982, for a more extended treat-
ment.)

The equations express the fact that both highlighted and matte regions
reflect both direct and diffuse light. In addition, the highlight, acting as a par-
tial mirror, reflects the direct light.

Applying the grey world assumption, equations (6) become:

]mane()\) = (1 + k)Edirecx()\)P()\) 7

Ihighlighl()\) = OEgirect(N) + (1 — 8)(1 + K)Egirect (N )o(N)

which reduces to

Imane ( x )

(1 + k)Ediretr()\)p()\) (8)
Ihighlighl()‘) = Egirea(N)[6 + (1 = 8)(1 + k)p(N)]

By inspecting equations (8), it can be seen that highlights can produce a
spurious violation in ordinality. Assume now that the image has been normal-
ized with respect to the color of the illuminant. Normalization is any scheme
that allows recovery of the spectral character of the illuminant. (Such a com-
putation is presented in section 4.) Normalization is equivalent to a transfor-
mation of the image intensities to what they would have been had the

i
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illuminant been white; it allows us to set Egirea(N) = B, where 8 is some
constant.

Both equations (8) can now be rewritten substituting (8) for Ej,,.. (M),
yielding

Imane(N) = B(1 + k)p(X\) )
Lnighiight(N) = B[6 + (1 — 8)(1 + k)p(N\)]

With the two assumptions of grey world and spectral normalization,
highlights will not produce violations in ordinality. This can be seen in equa-
tions (9), where the image intensity function of the highlighted region is sim-
ply related to the image intensity function of the neighboring matte region.
The intensity in the matte region is multiplied by a constant (I = &), and
then a constant function (I(N) = 6B) is added. These two operations
preserve ordinality; hence no opposite slopes will arise given our assump-
tions.

APPENDIX II: ALGORITHM FOR SPECTRAL NORMALIZATION
AND MATERIAL CATEGORIZATION

Given a full-color image of a scene lit by an unknown illuminant, and a way
of finding edges and regions, regions can be assigned to one of a small
number of material categories. Regions in different categories are made of
different materials. An algorithm for categorizing materials is sketched
below.!® The first step is to correct for colored illumination; the second is to
categorize.

A2.1 In the Beginning

The original full-color image can be viewed through three spectral filters,
yielding three distinct maps of image intensity, say R, G, and B. See Figure
7a. These three maps of image intensity we call “spectral images.” The
number of filters, or their spectral characteristics, should not be important. All
that matters is that the filters yield independent measurements.

A2.2  Spectral Normalization

First, apply an edge operator to the image. The particular edge operator
should not be crucial. Assume the edge operator produces a closed set of

19 This algorithm makes the grey-world assumption. If one prefers not to make this assump-
tion, then normalize the dark (shadowed) regions separately from the bright (fully-lit) regions.
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(A)

Full-color image

(B)

(C)

Spectral images

Edges, vertices
are made explicit

Edge strirs are
defined; each strip
yields a point in the
spectral space below

Uneven distribution
of points in a spectral
space

Figure 7. The full-color image is run through three spectral filters, R, G, and B. (b)
Edge segments have been found and made explicit. This image shows five edge seg-
ments. Vertices have been found, and are here marked with large black dots. (c) On
either side of one of the edges, narrow strips X and Y are defined. No edge segments
should be in the strips. Intensity averages will be taken in the three spectral images in
both of the strips, yielding six measurements. This is done for each edge segment in
the image. (d) Measurements taken from strips about each edge map to points in a
spectral space defined by axes as labeled. Normalization consists of multiplying R and
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B values by factors such that equal numbers of points will be found in each quadrani.
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edges.”® Next, each edge segment must be made explicit. (See Figure 7b.)
This involves finding vertices, since two adjacent vertices delimit an edge seg-
ment. (A role for vertices in normalization has been suggested by Lettvin
[1967] and Linden [1974].)

We next iterate through the list of edge segments. For each edge segment,
two narrow strips must be defined, one on each side. Call the strips X and Y.
(Here again vertices are important since the strips must be free of edges.) See
Figure 7c. :

Average the intensity values of each of the spectral images R, G, and B in
both the X and Y strips. The output of this step is six values, Ry, Ry, Gy, Gy,
By, and By.

For each edge segment, check for two types of crosspoint, RG, and BG.>!
(The conditions are (Ry — Ry)(Gy — Gy) < 0 and (Gx — Gy)
X (Bxy — By) < 0, respectively.) Note the possibility of a third crosspoint
involving the R and B samples.

Suppose an image has n crosspoint edge segments. For each crosspoint,
record spectral information about the two abutting strips. In particular, store
two color contrast values per region:

R,‘—G,' B,’"‘G,‘
R,‘+G,‘,Bi+Gi

,E=1,...,2n (10)

where i is an index ranging over the 2n edge strips defined around n
crosspoints. This particular form of ratio is useful because its value must lie
in the closed interval [ — 1,1]. The spectral information recorded can be con-
sidered as 2n points in a two-dimensional spectral space (with axes of
(R=G)/(R+G) and (B—G)/(B+ G)) shown in Figure 7d. (See also Figure
4a.)

Let ‘U be the number of points in the upper half-plane of the spectral space
(Figure 7d), and £ be the number of points in the left half-plane. Under a
white illuminant, we'd expect a random assortment of materials to yield
U = £ = n; that is, points should be roughly equally distributed among the
quadrants of the spectral space.

If the 2n points are not divided equally among the quadrants of the spectral

space, we must seek normalization constants « and 3 that satisfy the following .

criterion:

QR,' - G,' BB, - Gi

MEDIAN | ——— = MEDIAN | ———— =0 (1)
[O‘Ri'*'GiJi:l ..... 2n [BBi'*'GiJml ..... 2n

00f algorithm for edge detection does not produce closed edges, then regions must somehow
be identified using edge fragments.

2! The R and G samples can yield crosspoints, and independently, so can the B and G samples.
The G sample could just as easily be taken as the photopic luminosity function.
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For a large enough number of image regions, we can take

1 - C 1 - C
o = _RG g = _BG 12)
1 + Cgg 1 + Cgg

where Cgg and Cgc are means of the sets of measurements (12):

¢ 1 2R -G c 1 2B — G, 13
T mEAR TG T mAEB TG )

i=1 i=1

The values of « and 8 in (12) will provide a correct normalization (ie.,
normalization criterion (13) will hold) given some simple statistical condi-
tions.?.

The correctness of the normalization constants « and B can easily be
checked by verifying that criterion (13) holds. If not, the values of « and B
can be adjusted incrementally in an iterative procedure. The entire normaliza-
tion algorithm is shown as a flowchart in Figure 8.

Once correct values of the normalization constants are returned by the
algorithm, the three spectral images R, G and B can be transformed into a set
of normalized spectral images. All values in the R image are multiplied by a,
yielding R*. (The asterisk superscript denotes normalized intensity; see sec-
tion 7.2.2.) Similarly, B* = $B. Spectral image G is unchanged: G = G*.
See Figure 9a.

A2.3 Spectral Categories

Suppose that when closed edge segments were found that image regions were
made explicit. For each region i, measure the average values of the normal-
ized spectral images, yielding the triplet (R*, G*, B*). A triplet of numbers
yields one obvious pair of ordinal relations:

(R*, G, B¥*) — (signgg, signgg); (12)

where signgg is “+ " if G*¥ > R*, and *“—* otherwise.

Each region can therefore be assigned to one of four material categories:
(+,+), (=,4), (=,=), (+,-). This is shown in Figure 9b. The regions
that are in different categories are composed of distinct materials.

Note that a third ordinal relation is sometimes independent, the R* — B*
comparison. If this relation is included, six spectral categories obtain.

22 There should be at least 12 independent crosspoint edges, and the mean and median of the
' set of measurements {(R; —G,)/(R; +G;)} must approach the same value as i— o, and similarly
for the set of measurements {(B,-—G,)/(B, +G;)}. (See Siegel, 1956.)
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NORMALIZATION ALGORITHM

Begin with Points
in Spectral Space

\

2n
Ri-G
t-1/2n z R:+Gli

Set a = ]
2 Ri-Gi
f+1/2n Yy ———
=1 RitG
2n B;-G;
1 -1/2n 2‘ B:+G,
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>0 Decrement a
Compute Compute
B aR-6 BB-6 _
- aR+G BB+G
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Figure 8. Normalization Flowchart. Begin with points scattered in spectral space,
and end with a pair of multiplicative normalization coefficients, a to balance the R
image with respect to G, and B to balance the B image with respect to G.
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(A)

R G ||8B
Py

R* G* B*

Figure 9. (a) The three spectral images R, G, and B are normalized using the multi-
plicative constants produced by the procedure shown in Figure 8. The normalized
spectral intensity maps are R*, G*, and B*. (b) The regions of the image sketched in
Figure 7b labeled with material categories. Each region is assigned one of four possi-
ble ordinal doublets.

Finally, note that while the algorithm described here is categorical, con-
tinuous information has not been lost; it is still available for more refined pur-
poses. For each region i, the continuous-valued coordinates

R -G B -G
R, + G;' B; + B;

(13)

should be useful.
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