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Configuration stereopsis: a new look at the depth–disparity
relation
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Abstract—Recovering shape in three dimensions has obvious importance for visual perception.
Hence one principal goal for stereopsis should be to recover good estimates of 3D shape. But this is
impossible if disparity processing is hardwired, because at different fixation distances a fixed angular
disparity will correspond to quite different distance increments. An experiment confirms previous
evidence that the disparity computation is not hardwired. Specifically, as fixation distance changes, the
perceived relation between depth and disparity changes. The changes are consistent with a remapping
that partially preserves the constancy of 3D shape over a wide range of fixation distances.
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plasticity.

INTRODUCTION

The stereoscopic depth perception of the distance between the point of fixation
and any other point in space depends in part on the (angular) disparity between
the two retinal images of those points. This relation between depth and disparity
has been extensively studied by many (Howard and Rogers, 1995). Most of the
early psychophysical work focused on how angular disparity was computed, namely
whether zero disparity mapped to positions on a circle through both eyes and the
fixation point (i.e. Vieth-Muller circle), or whether zero disparity corresponded
to equal apparent directions in the two eyes, or the same frontal-parallel distance
as the fixation point (Helmholtz, 1910/1962; Ogle, 1950). Later psychophysical
studies, however, recognized that in order to understand better the relation between
stereopsis and depth, one might wish to determine the loci of points that lie 10%
closer (or farther) than the fixation point (Blakemore, 1970a; Jones, 1974; Lazarus,
1970), or perhaps the locus of depths slanted with respect to the sagittal plane
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(Blakemore, 1970c; Wilson, 1976), or the curvature of a surface (Bradshaw et
al., 1996; Rogers and Bradshaw, 1993; Wildes, 1991). Yet another set of studies
have focused on the relation between perceived distance (depth) and the actual
viewing distance (Foley, 1967, 1980, 1985, 1991; Ono and Comerford, 1977; Ritter,
1977; Wallach and Zuckerman, 1963). Many experiments, then, have addressed
how disparity increments are related to perceived distances or depth. Here, we
describe some results that relate to these studies. Specifically our concern is the
disparity required to maintain the same 3D configuration (differing only in scale) as
fixation distance is changed. Rather than trying to construct a contour-like map of
depth versus disparity (such as a horopter or its variants), we examine the perceived
relation between an object’s width (or height) in the frontal plane and its depth
along the line of sight. If a principal goal of stereopsis is to assess 3D shape, then
binocular vision should provide a consistent measure of the width to depth ratio of
an object, regardless of its distance from the observer.

Unfortunately, constant angular disparity referenced to the fixation point will lead
to different distance increments as the fixation distance is changed. Because dispar-
ities change inversely with the square of fixation distance, but angular size varies
only with the inverse of fixation distance, the scaling of a 3D configuration needs to
be compensated by a fixation distance factor. Let δ, I, d, W, F and φ respectively
indicate disparity, the interpupil separation, the extent of the configuration in the
sagittal plane (i.e. its ‘depth’), the width in the frontal plane, the fixation distance,
and the angular width of the display. Then for small angles, simple geometry yields

ρ = d

W
= δF 2

IW
= δF

Iφ
, (1)

where ρ is the aspect ratio or surface relief of the object for the particular viewpoint.
If this ratio is to remain constant as fixation distance is changed, then an F/I

compensation is needed. Hence an observer judging aspect ratio or surface relief
using angular disparities and angular size would require a scaling of I/F with
fixation distance. Without such a scaling, as a circle (or triangle) is moved toward
the horizon, it will flatten to an ellipse elongated in the frontal plane, and conversely
as the circle is moved nearer, it will be elongated in the sagittal plane along the
line of sight. Figure 1 illustrates for a triangle. Such changes in configuration
would clearly be troublesome, for it means that the shape of objects as measured
by stereopsis should undergo drastic distortions as their distance from the observer
varies. However, this is not our experience. For example, if we take a cylindrical or
spherical object, and move it from 30 to 300 cm, we expect the depth to width ratio
to vary by an order of magnitude. Instead, the perceived configuration changes by
less than 3 instead of the expected 10. Wallach and Zuckerman (1963) were among
the first to confirm this trend to constancy. One implication is that the stereoscopic
process is applying some correction to binocular disparities as fixation distance is
altered. The following experiment measures the disparity–depth scaling effect, and
reveals a relation to the illusory changes of images with fixed angular size (i.e.
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Figure 1. Top view of a plane defined by the two nodal points of the eye and the fixation position.
If the center equilateral triangle is moved outwards, then the disparity between its near vertex and
its base decreases, leading to the perception of a squashed triangle. Conversely, the triangle should
appear elongated if moved inward. The observed shape changes are about half those expected.

a micropsia) that are typically observed during vergence shifts (Duke-Elder, 1939;
Helmholtz, 1910/1962; Hollins, 1976).

METHOD

The experimental technique used was a version of the Pulfrich effect, where the
frontal positions of points moving to and fro to one eye were delayed with respect
to those in the other (Pulfrich, 1922). This creates the illusion of circular or elliptical
motion in depth, such as the swinging bob of a pendulum. We used a version of this
illusion to assess the perception of 3D shape. In the Pulfrich case, typically only
one point (or line) is used. Our modification used three sets of nine points, with
each point corresponding to the vertices of a trapezoidal window with four panes.
Hence the points were located at the four vertices of, plus the four endpoints of an
imaginary vertical and horizontal crossbar, plus the final point of their intersection.
Each set of nine points was seen only by one eye, with the outer two sets of three
points delayed with respect to the other. The perceptual result was an Ames-like
window rotating about a vertical axis defined by the central three points. The use
of points only, rather than a line drawing of the window was mandatory in order to
reduce monocular cues to depth.

A Macintosh screen was divided in half to create two separate images of the set
of nine points forming the rectangular four-pane window rotating symmetrically
and at constant angular speed of 1 rps about the vertical axis. Each eye viewed
one half of the screen, aided by a septum, with appropriate prisms and lenses used
to create optically a virtual fixation distance. (In some cases, we used anaglyphs
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with accommodative correction — the results are the same.) If one imagines the
trajectory of one of the lateral points of a rigid window as viewed from above, this
point would normally trace out a circle in the horizontal plane. Thus, the position
of the projection of this point in the frontal plane will be a sinusoidal function of
the angle of rotation, say α. If the angle α is the same for the displays in both
eyes, αL = αR, and then the phase angle �α = 0 and the binocular view will be of
a point Q moving laterally to and fro with a sinusoidal motion in the frontal plane
(as illustrated by points q ′

R and q ′
L in Fig. 2). If αL �= αR however, the apparent

motion will generally be elliptical (for small disparities). So, for example in Fig. 2,
the phase angle �α is about 45 deg for the virtual points p′

R and p′
L, causing the

fusion of the corresponding displayed points pL and pR to appear at location P . In
the special case where the phase angle �α equals the vergence disparity, γ , then the
trajectory will be circular (for small γ ); otherwise the trajectory will be an ellipse.
Specifically, for small γ , the geometry is such that the aspect ratio (or eccentricity)
ε of the trajectory will be

ε = A

R
= F�α

I + R�α
, (2a)

γ
.= I

F
, (2b)

Figure 2. Method of generating elliptical configurations, and notation. P is generated by viewing
point pL in the left eye and pR in the right. These points oscillate sinusoidally in the frontal plane
with the same period, but with a rotational phase angle �α between them. The size of �α determines
the aspect ratio of the perceived elliptical motion of a vertical rotating Ames window.
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where as before, F is the fixation distance, I the interpupil distance, γ the vergence
angle, R is the radius of the reference circle, and A is the distance from the center
of the circle to the position of the trajectory along the midline. Note that when
A = R, ε = 1, the trajectory is a circle; when A < R, the major axis of the
elliptical trajectory is R, and when A > R, A is the major axis.

The proposed experiment now should be obvious: we simply wish to vary the
phase angle �α for a series of fixation distances and determine for each which value
generates a circular trajectory of the rotating window. Contrary to the real world
situation, in our experimental set-up the frontal extent of the radius R of the circle
is held constant, regardless of the fixation distance. Thus, if the angular disparity
were hardwired, only one phase angle, say �α = 0.08, would be needed to generate
the perception of a circular trajectory, and this value would remain the same over
all fixation distances. Alternatively, if the phase angle �α for a circle changes, then
the relation between depth and disparity must be influenced by vergence. This is the
softwired alternative. These two cases lead to easily distinguishable linear relations
between �α and fixation distance measured in meter-angles (F−1). The solid curve
in Fig. 3 shows the prediction if binocular disparity is hardwired. All measurements
of perceived aspect should lie along one curve, varying only with the phase angle
�α and not with variations with fixation distance. On the other hand, if the disparity
computation completely compensates with fixation distance to preserve 3D shape,
then the curves should be displaced with fixation distance, as shown.

Subjects reported perceived aspect ratios of frontal extent to depth (i.e. A/R).
Settings for the phase angle �α ranged from 0.01 to 0.40 in at least 1.4× increments
for several fixation distances: (∞) (0), 67 (1.5) and 33 (3) cm (meter angles).

Figure 3. Predicted relations between fixation distance and rotational phase angle for two different
models. In the case where disparity is hardwired independent of fixation distance, any given rotational
phase angle would elicit the same shape over all fixation distances (heavy solid line). For example
if �α = 0.08, then regardless of fixation distance, the subject would see a circular trajectory. For
a soft-wired system (dotted lines), the angular disparities must be revised as the fixation distance is
changed in order that perceptual shape agrees with the true shape.
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For WR, additional measurements were also made at −0.5 m−1, which requires
divergent eyes and at 133 (0.75) cm. The distance R was typically 2.7 cm, although
some measurements that gave similar results were also made with R equal to 0.7
and 5.4 cm. The horizontal width of the trapezoid was 5.4 cm and the height at
its midpoint was 4 cm, with the heights of the two vertical sides being 2.6 and
5.4 cm. The pair of stimuli on the Macintosh were separated by 6.4 cm between
centers. The standard display was at 67 cm. Because the stimulus separation was
equal to the interocular distance, with no prisms the eyes will be parallel and the
equivalent fixation distance is infinity 0.0 m−1. (Appropriate lenses were added to
accommodate this optically.) If the eyes were crossed, then the equivalent fixation
distance would be 33 cm (3 m−1). Alternately, this distance could be simulated
with the Risley prisms (+lenses) introduced immediately in front of each eye.
In this manner, fixation and accommodation were altered without an appreciable
change in stimulus angle (the maximum optical magnification is roughly 5%).
Some additional measurements were also made with the Macintosh screen placed
at either 33 or 133 cm, with the stimulus scaled appropriately. Because there was
no significant difference in the measurements for these two other display distances,
the data are pooled for each equivalent fixation distance.

RESULTS

For each fixation distance, we obtained the observed aspect-ratio ε for the trajectory
of the rotating trapezoid using the equivalent of a range of different angular
disparities. The simplest way to present these data is on log–log plots of perceived
aspect ratio (ordinate) versus the phase angle (abscissa), in other words in the form
illustrated in Fig. 3. Thus theoretically we would expect a series of parallel lines
each for a different fixation distance, each displaced to intersect the abscissa at
a different phase angle. This is illustrated by the set of diagonal dotted lines in
Fig. 4 (upper). In contrast, the actual data for 4 observers averaged over individuals
and fixation distances appear as open squares through which we have drawn by eye
a solid line. The tangent to this solid line for aspect ratios near one has a slope of
one-half. Hence perceived aspect is roughly a square root function of phase angle.
This result will be used subsequently.

In the lower panel of Fig. 4, we show the slight effect of fixation distance seen
in the data of the two subjects on whom extensive measurements were taken. (The
author was one of these subjects — the other was naive.) The solid lines through
each set of data taken at ∞, 67 and 33 cm are simply a translation of the best-fitting
line in the upper panel of Fig. 4. The displacement of these three curves makes
clear that some remapping of the relation between phase angle and fixation distance
is occurring. However, the displacement in the sets of data is minimal (and also
noisy). If we take the intersection of each of these curves with the abscissa where
the aspect ratio is 1.0 (circular trajectory), then as shown by the three solid squares in
Fig. 5, any putative softwired remapping is roughly halfway to the ideal remapping
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Figure 4. Perceived aspect ratio for a given rotational phase angle �α. The dashed lines in the
upper panel show the theoretical relation for differing fixation distances based on geometry alone, as
if binocular disparity were hardwired, being computed independently of fixation distance. The open
squares show the measured aspect averaged over three fixation distances and observers. In the lower
panel these ‘averaged’ data are broken down to show a small effect of changing fixation distance.
Note also that the slope of the measured relation between phase angle and aspect is not in agreement
with that expected by geometry.

required to preserve shape constancy. This is roughly equivalent to a disparity–depth
scaling of 1/F 1/2.

This second result can be plotted in a different way. Again consider only the aspect
ratio of 1 corresponding to a circle, and plot �α versus fixation distance in meter−1

as shown in Fig. 6. (Note inverted ordinate for �α.) When fixation is at the horizon,
the phase angle �α is about 0.05 and increases to about 0.12 for the nearest fixation
distance of 33 cm. First we need to normalize these values to correct for the offset
of �α = 0.05, which corresponds to the normal vergence resting position (Owens,
1984). Hence �α = 0.05 corresponds to 1.0 on the size ordinate (left). For an
ideal softwired system, when the rotating configuration is a circle, �α should equal
the vergence angle, or equivalently be inversely proportional to meter−1, generating
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Figure 5. Summary of the predicted relations between fixation distance and the rotational phase
angle for a fixed aspect ration for a hardwired and ideally soft-wired model. The solid squares show
the measured findings, which lie roughly intermediate between the two extremes.

Figure 6. The solid curve shows the required shift in phase angle over fixation distance needed
to preserve 3D shape, as measured in this study at three fixation distance. The dotted curve is the
classical ‘micropsia’ size scaling, taken from measurements by Richards (1971b). The proposed
model suggests this dotted curve should be the square root of the disparity scaled curve.

a linear relation in Fig. 6. Instead, as we know already from Fig. 5, this is not the
case: there is (roughly) a square-root compression. This disparity scaling curve can
then be modeled in two ways, with the functions being within 5% of each other over
the range studied:

scaling � 1 − μ(1/F )1/2 (3a)

� η/(η + F−1), (3b)

where F is in meters (or equivalently, F−1 are meter angles) and μ and η are
constants with respective values of 0.33 and 2.3. Of special interest is that the form
of this scaling is very similar to that found for the micropsia or zoom effect for the
change in apparent size with fixation distance (Aubert, 1865; Heineman et al., 1959;
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Helmholtz, 1910/1962; McCready, 1965). One set of micropsia data averaged over
five subjects are shown by the open squares (Richards, 1971b). Note that the size-
scaling locus is roughly the square root of the depth scaling. Although the exact
compression for both curves in Fig. 6 varies considerably among individuals, their
form is always quite consistent. Depth–disparity scaling with fixation distance can
be seen as highly correlated with the size-scaling micropsia effect.

DISCUSSION

Our results impact three areas: (1) 3D shape perception (and its developmental
aspects); (2) the metric for visual space and (3) the neural mechanism underlying
depth–disparity scaling.

First, binocular disparity obviously plays a key role in establishing 3D shape.
An ideal machine system could easily rescale disparity with fixation distance to
preserve shape aspects. The human mechanism, however, provides only partial
compensation over most of the rage of fixation, as shown by Fig. 5. Perhaps, in the
presence of other information sources (shading, texture, kinetic depth. . .) the rough
magnitude of disparity scaling is adequate for most perceptual inferences. However,
at distances where objects are grasped and manipulated, a crude estimate of 3D
aspect may not be sufficient. Hence it is not surprising to see that the depth–disparity
relation is most accurate at about 70 cm, which is the average reaching distance
for an adult. This possibility immediately suggests that the reference distance for
depth–disparity scaling (and 3D aspect) would change as a child develops into an
adult. The onset of stereopsis is about ages 2–4 (Fawcett et al., 2005; Held et
al., 1980). The arm length (reach) of a 3 year old grows by a factor of 1.7 from
about 40 to 70 cm at age 20 (Konczak and Dichtgans, 1997). Over the same
time interval, the interpupil distance increases from 4.8 to 6.0, which is only a
factor of 1.25 (MacLachlan and Howland, 2002). Hence the depth–disparity scaling
needed is approximately the square-root of the change in reaching distance —
roughly as indicated in Fig. 5. Depth–disparity scaling, therefore, could be part
of a developmental process with a dynamic carried over to adulthood. Because of
the correlation with adult disparity scaling, studies of the development vergence-
micropsia illusion in children might elaborate this hypothesis.

The second impact of our results is related to the metrics of visual space. It has
been known since 1970 that the micropsia scaling shown in Fig. 6 can account
for Ogle’s (1950) non-Euclidean variations of the horopter with fixation distance
(Jones, 1974; Lazarus, 1970). Although recent results (Hillis and Banks, 2001)
contest the earlier variations of the horopter based on corresponding points having
the same visual direction, the horopter of greater relevance to disparity scaling
uses the apparent frontal-parallel plane as the judged criterion. This judgment is
one of depth referenced to the fixation point, or of constant depth planes in the
neighborhood of the plane of fixation (e.g. Blakemore’s 1970 studies). These
latter criteria for horopter measurements suggests a non-Euclidean metric for the
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depth dimension. Recent experiments by Koenderink et al. (2006, 2007) have led
to further specifics based on studies of surface shape and relief. They required
observers to indicate surface normals at a large number of positions on 2D views
of smooth shapes such statues or faces. Given these surface normals, a contour
map can be constructed, showing the inferred 3D shape. Several important findings
emerged. First, the depth scale of the relief (or surface) varied depending upon
whether the viewing was binocular, monocular, or synoptical, where both eyes had
same vantage point. (Note that in all three cases, the 2D images had zero disparity.)
Yet the nature of the binocular view affected the depth inference. Furthermore,
individuals differed in their estimates of the magnitude of the relief of the surfaces.
Differences in assumed vantage points also affected the results. Hence we see at
least two types of variables in interpreting surface relief: the depth scaling along the
line of sight, and two angular variables that specify the viewpoint, namely a slant
and a tilt (Stevens, 1983; see also Blakemore, 1970b and Foley, 1972). Based
on our observations and those of Foley (1980, 1991) as well as recent results of
Koenderink et al. (2002, 2007), the inferred metric structure of visual space is
consistent with our observations that the depth–disparity scaling is a non-linear
dimension independent of slant and tilt. Further support comes from our finding
that locally, perceived aspect ε∗ is roughly proportional to the square root of the
disparity relative to angular size (i.e. Fig. 4A). More specifically,

ε∗ = d∗

W ∗ ∝
(

δ

φ

)1/2

, (4)

where, as before, δ and φ respectively are angular disparity and frontal angular size.
The third impact of our experiments concerns the neural mechanisms underlying

depth–disparity scaling. First, Fig. 6 strongly suggests that the classical vergence-
micropsia effect is intimately related to disparity scaling. Psychophysical studies
have shown that this effect, also called zooming, must be either at or precede the
site of binocular interaction (Richards, 1970). Just how this scaling is implemented,
however, remains quite unclear. Pouget and Sejnowski (1994) have offered
a connectionist-type neural network model that can learn the appropriate scaling.
A second type of model proposes a mild shift in the geniculo-cortical mapping
such as if different pairs of laminae of the LGN were brought into play as fixation
distance is altered (Richards, 1971b). Finally, a third model is one analogous
to that used to explain color constancy. We know that there are three classes
of binocular disparity pools, each tuned to one of three ranges of disparity: one
nearer than the fixation plane, one farther, and the third centered about the plane
of fixation (Clarke et al., 1976; Ferster, 1981; Poggio, 1995; Poggio and Fischer,
1977; Richards, 1971a; van Ee and Richards, 2002). Each of these disparity
pools has rather broad tuning over disparity. If stereoscopic depth perception is
based on the relative activities of these three classes, then depth scaling could
be implemented by adjusting these ratios, such as by an inhibition (or excitation)
of the pool of disparities centered about the fixation point. All of these models
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have the minimal neurophysiological support required for plausibility: namely that
in monkey and human visual cortex, the activity of some cells are influenced by
vergence position (Marg and Adams, 1970; Motter and Poggio, 1990). In addition,
some disparity-sensitive cells are found to be active only over a limited range of
fixation distances (Gonzalez et al., 2003; Trotter et al., 1992, 2004). (But note
that Cumming and Parker, 1999, contest some of these findings.) Furthermore,
there is neurophysiological evidence that the lateral geniculate nucleus may be
involved. First, vergence movements affect the activity of cells in this nucleus
(Donaldson and Dixon, 1980; Lal and Friedlander, 1989; Richards, 1968). Second,
the laminar arrangement is attractive for setting up comparisons of angular relations
between the two eyes, signed to indicate near or far disparities referenced to the
fixation point (McIlwain, 1995; Richards, 1971b). Furthermore, the relative gain of
these relations could easily be altered, either by the above-mentioned extra-retinal
signal, or by cortical feedback. In sum, given what is known about the cortical-
geniculate interactions, these structures become prime candidates for setting up
a depth–disparity scaling.
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