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Abstract—Modern datasets of importance such as images,
videos, protein sequences or text, usually contain very high
dimensional information from the search point of view. Nearest
neighbor search is one of the most fundamental building blocks
in dealing with large amounts of data. It is the problem of
finding points in a database that are most similar to a query
data point by some distance metric. There is a large body of
work in algorithms for nearest-neighbor search on large high-
dimensional datasets. Since these algorithms invariably involve
random access to data, most existing implementations ensure that
the data is stored in DRAM, and does not spill into secondary
storage such as hard disks. However, the immense size of modern
datasets often requires hundreds of computers to accommodate
the dataset in DRAM. An alternative to such a system is a
much smaller cluster that stores the dataset in flash memory
(instead of DRAM) and has in-store computing capability. In
this paper, we build and demonstrate the performance of high-
dimensional nearest-neighbor search on a flash-based system
with FPGA acceleration and show that it sometimes exceeds the
performance of a DRAM-based solution. We chose two example
applications, images and documents, for this demonstration. Since
flash storage, in comparison to DRAM, is an order of magnitude
cheaper and consumes an order of magnitude less power, a flash-
based solution for nearest-neighbor searches offers a viable and
attractive alternative.

I. INTRODUCTION

In our current ”Big Data” era, there is an ever-increasing
amount of high-dimensional data, such as text, images, videos
and time series information that are collected and available for
analysis. In order for this data to be valuable, there must be an
affordable way to quickly analyze and gain insight into a large
amount of data. The sheer size of modern datasets makes this
challenging for conventional computer systems.

One of the fundamental applications in extracting insight
from Big Data is nearest-neighbor search, where the system
receives a query data point and finds data points in its database
that are closest to the query, according to some distance metric.
Nearest neighbor search is widely used on many different types
of high-dimensional data such as images, text, time-series
or other custom data types to implement useful applications
such as image retrieval, plagiarism detection or time series
prediction. Because the distance between two data points can
often be determined only after performing distance calculation
between the two, nearest neighbor search in a very large dataset
is challenging, especially when the data type in question has
high dimensionality and the distance metric is complex. Many
existing systems employ clever indexing and sampling meth-
ods to reduce the search space and achieve higher performance.

Such methods require additionally pre-processing the entire
dataset to organize it into a better searchable structure such as
trees, hashes or augmenting it with tags. The pre-processing
has to be repeated when the pre-processing technique has to
be modified.

Because modern datasets are often too large to be processed
on a single computer, they are often stored and processed
by a cluster of systems, often running distributed processing
software. Due to the performance difference between main
memory and secondary storage such as disk, the entire data
needs to fit completely in distributed main memory to achieve
the best performance [1]. This issue is exacerbated when sam-
pling and indexing is employed, as random access performance
of disks is dramatically lower than its sequential access. As
datasets become larger, a completely DRAM-based system
quickly becomes very expensive. Flash memory could present
a cost-effective design, because flash memory is faster than
disk and cheaper than DRAM, while consuming less power
than either. However, using flash storage purely as a disk
replacement offers limited improvement, because flash fabric
has different characteristics than disk, and it is still slower than
DRAM.

Application-specific hardware accelerators using reconfig-
urable hardware fabric such as Field Programmable Logic
Arrays (FPGAs) are also gaining popularity, due to their good
power-performance characteristics. FPGAs can be dynamically
programmed to implement application specific hardware ac-
celerators that can often perform much faster than software
implementations while consuming a fraction of power. A
popular way to deploy an accelerator is to plug it into a system
bus such as PCle [2]. For some class of applications, we think
a more effective method is to embed it into the storage device.
Such in-storage processing deployment has many advantages
over the alternative method of a separate appliance. The
accelerator avoids the overheads of going through system bus
or software management to access storage. The accelerator
does not need to include additional hardware IP to access the
system bus, minimizing the extra cost for adding accelerators.
MIT’s BlueDBM cluster [3] is an example of such a system.

The major contributions of this paper are: the design and
implementation of a high-dimensional nearest-neighbor search
on a flash-based platform with in-store computing, and a
demonstration that a flash-based solution shows performance
that is comparable to a traditional DRAM-based solution, and
sometimes even exceeds its performance. We have chosen
images and documents examples of high-dimensional data, and
implemented the distance metric for comparing the distance



between a pair of images or documents in the FPGA. Our
implementation is intended to be an example of a general
high-dimensional nearest neighbor search, and not in any way
limited to our selected applications.

In our evaluation, the flash-based solution achieves over
10X performance compared to a disk-based system, and some-
times outperforms even a DRAM-based multicore system. Our
system consumes about half of power per node compared to
a DRAM-based system, and less than half in terms of power
consumption per amount of processed data. It also requires a
much fewer number of machines to accommodate the entire
dataset.

The rest of the paper is organized as follows: In Section II
we present some existing work related to large-scale nearest
neighbor search on high-dimensional data. In Section III we
describe the detailed architecture of our system. In Section IV
we demonstrate the performance of our system using a large
image dataset and a document dataset. We conclude in Sec-
tion V.

II. BACKGROUND AND RELATED WORK
A. High-Dimensional Nearest Neighbor Search

Nearest neighbor search on high-dimensional data suffer
from a so-called "Curse of dimensionality”, in which it be-
comes very difficult to pre-process data and organize them into
a structure that is easily queried. For example, kd-trees [4] are
often used for low-dimensional nearest neighbor queries, but
become less effective in a high dimensional setting because the
relative importance of any single dimension becomes low. In
the worst case, a query has to iteratively compute the distance
function between the query point and all points in the dataset
to determine the nearest neighbor. This becomes especially
difficult since distance calculation often does not benefit from
preprocessing and requires comparing two raw data points
when the dimensionality is high. A good example of this is
time series comparisons.

Many clever indexing and sampling schemes have at-
tempted to solve this problem [5], [6]. A prominent work
in this area is Locality Sensitive Hashing (LSH) [7], where
the dataset is pre-processed using a set of hash functions
and organized into a few of many buckets. The same hash
functions are applied to a query, and only the data already
in the corresponding bucket has to be compared. LSH is an
approximate nearest neighbor algorithm, where it provides
some statistical guarantee of finding the nearest neighbor. An
interesting aspect of such algorithms is that because data is no
longer read in a sequential manner, random access performance
of the storage device becomes a limiting factor of performance.
Because random access performance of hard disk drives is very
bad due to its high seek time, performance often drops sharply
when data does not fit completely in DRAM. Due to the
large size of modern datasets, data and computation are often
distributed across many machines in a cluster, using distributed
processing platforms such as Hadoop [8] or Spark [9].

B. Comparing Images

A popular application of nearest neighbor search is content-
based image retrieval, where a system looks for images that

are most similar to a query image, according to some distance
metric. The usefulness of a content-based image retrieval
system is determined not only by how fast the result can be
obtained, but also by the usefulness of the distance metric.
There exist image comparison techniques optimized for various
applications, including feature extraction [10], [11], facial
recognition [12] and scene recognition [13]. A popular distance
metric is comparing color histograms of images, where a
multidimensional histogram is constructed using pixel values
from an image and compared using euclidean distance or Earth
Mover’s Distance [14].

Histograms using just color values of individual pixels
(RGB or HSV) to construct a histogram has been useful in
the past, as they often correctly represent the color profile
of the images while being robust in regards to movements
in the image such as shifting. However, color histograms
begin to fail when the image corpus becomes large, when
there are different images that have similar color compositions.
Joint histograms [15] overcome this limitation by adding more
features into consideration. Joint histograms of an image is a
multidimensional histogram built using color values of each
pixel and other local pixel features, such as edge density,
texturedness and gradient magnitude of a pixel location. In
constructing joint histograms, an image is first processed
using various filters that generate new images that emphasize
different local features of the image. A histogram constructed
using these images in addition to color values is much more
representative of the features of the image.

A modern way of image retrieval that has quickly gained
popularity is using deep neural networks [16]. Each image
is processed using a neural network and are given a set of
tags that are determined relevant to the image, reducing the
dimensionality by a great amount. Using deep neural networks
to classify images have shown enormous accuracy, and is
becoming the de facto method of image recognition. However
in this work, we have chosen to implement a joint-histogram
based image comparison, for its simplicity of implementation
and to not detract the focus of the work away from nearest-
neighbor search.

In a real world deployment of content based image re-
trieval, images in a dataset would be pre-processed to be
augmented with meta data, such as descriptive tags or his-
togram values, in order to make search more efficient. In this
work, we have not implemented such pre-processing and do
all distance comparisons on the fly on raw image data, in order
to demonstrate an example of a complex distance metric. The
results obtained from this system will translate well to other
high dimensional search applications, such as time series and
protein sequences.

C. Image Search and Accelerators

Because of the high complexity of many image comparison
algorithms, there has been a large body of work on accelerating
them. One popular type of accelerator is the General Purpose
Graphic Processing Unit (GPGPU) [17], [18]. Modern GPUs
have thousands of cores, and can run thousands of threads
in parallel and speed up execution. However, running that
many general purpose cores incur a large power consumption.
Adding a GPU accelerator often doubles the total power con-
sumption of a single machine. Furthermore, a GPU accelerator



can fully demonstrate its performance only when data fits in its
graphic memory, which is usually much smaller than system
DRAM.

There has also been attempts in using FPGAs to accelerate
image retrieval, in order to benefit from its high performance
and very low power consumption. Some work has focused
on accelerating image comparison functions [19]. At least
one work has explored coupling FPGA with flash storage
to accelerate image retrieval [20]. This work pre-computed
descriptors for the image dataset and focused on querying
images based on the pre-computed descriptors. There has also
been a great amount of work on low power acceleration of
image processing using FPGAs [21], [22], [23].

D. Document Similarity Search

Another important application where nearest neighbor
search is employed is document similarity search, where a
database of documents is searched to retrieve those that are
similar to a query document. Document similarity search is
used in applications such as finding similar web pages on the
internet, plagiarism detection or searching for relevant legal
documentation. A popular method of measuring similarity
between documents is term similarity, where documents are
deemed similar if they share the same terms, or words.
In term similarity comparison, a document is viewed as a
”Bag of words”, where a document is characterized by the
orderless set of words and the number of occurrence of each
word. The simplest way to compare two bags of words is to
count the occurrence of shared words. However, this simple
method often does not perform well in terms of accuracy.
A simple yet effective method is using Cosine Similarity,
where each bag of words is considered a multidimensional
vector, where each term corresponds to a dimension and its
occurrence corresponds to the magnitude. Similarity between
vectors is determined by calculating the cosine between the
two vectors. In this work, we have created a synthetic database
of documents pre-processed into bags of words, and performed
nearest neighbor search using cosine similarity as the distance
metric.

E. Flash Storage

NAND flash based storage is gaining popularity in con-
sumer devices and datacenters, due to its low power consump-
tion and superior random access performance compared to
traditional hard disks. Flash storage consumes less power than
disk or DRAM, while having an order of magnitude lower
price per space compared to DRAM.

A single flash chip can deliver a fixed amount of band-
width and latency, and more bandwidth can be obtained by
organizing multiple flash chips into busses and accessing them
in parallel. The performance of flash-based SSDs have become
so fast, there is active research in developing a next-generation
non-volatile memory interface method that overcomes the
limitations of slow SATA interface [24]. Multiple vendors
have also developed extremely high performance flash devices
that plug into the PCle port, which provides much higher
bandwidth [25], [26].

Flash storage is usually organized into units of 4 kilobyte
pages, and a larger unit consisting of hundreds of pages called

blocks. Reading and writing can happen at page granularity,
but a page has to be erased before being written, and erases can
happen only at block granularity. If page modifications were to
be done always in-place, each write will require whole block
erases. Because erases take much longer time than read and
writes, such a write method will incur unnecessary overhead.
Most flash devices are managed by firmware software called
FTL (Flash Translation Layer) so that overwrites are done to
a new page that has been pre-erased, and a mapping table
maintains a logical address space to physical address space

mapping.

There is active research in combining flash storage and
FPGAs for efficient big data analytics. MIT’s BlueDBM [3]
is a platform for accelerating big data analytics using 20
TBs of distributed 20-node flash storage with FPGA-based in-
store processing. The BlueDBM system provides an abstract
interface into the flash, host server and the storage area
network to the FPGA accelerator. This allows the application
developer to focus on developing the application logic. We
have conducted our research on this platform.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Figure 1 shows the overall architecture of the nearest neigh-
bor analytics system. The whole system is distributed across
multiple computer nodes. Each node is composed of a software
daemon running on a host CPU, and a flash storage device
augmented with a FPGA-based in-storage processor. Each in-
storage processor implements an array of application-specific
distance comparators and a controller than manages them. For
different applications, a different controller and comparators
are programmed to the in-storage processor. A client software
connects to each node’s software daemon separately via TCP.
The software daemon sends commands to the controller and
receives nearest neighbor results. The controller sends read
commands to the flash array to read individual data points, and
routes the data to idle comparators. The BlueDBM architecture
includes the BlueDBM storage device, which is a flash storage
device with FPGA-based in-store processing capabilities, as
well as interface to the flash array and the PCle interface to
the software daemon.
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A. Comparator Architecture

Each node’s FPGA accelerator implements an array of
application-specific distance comparators. In this work we
demonstrate accelerators for two applications, image and doc-
ument search. Image search implements joint histogram based
image comparators, and document search implements a cosine
similarity based document comparators. The image search
example depicts a system with a complex distance metric and
large data points, while the document search example depicts
a system with a much simpler distance metric and smaller data
points. Each comparator takes a stream of data points from the
dataset and emits a list of tuples, consisting of an index and
its similarity to the query data point.
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Fig. 2: Application-Specific Comparator Architecture

1) Image Comparator: Each node’s FPGA accelerator im-
plements an array of image comparators, as the bandwidth of
the flash array is faster than the performance of a single image
comparator. We chose to compare the raw images themselves,
instead of pre-processing the image and storing histogram
values in order to demonstrate a complex high-dimensional
distance function. The internal structure of the comparator can
be seen in Figure 2a.

The comparator streams the image into a sobel filter, which
generates a greyscale image where the edges are emphasized.
The resulting edge-emphasized image, along with the original
image is streamed into the histogram generator. The con-
structed histogram is compared with the query histogram, and
the resulting distance is returned to the controller along with
the index of the image that is being compared.

Sobel Filter : The sobel filter implementation works in a
streaming fashion, so that the whole image does not have to be
stored in a cache until the sobel operator is done generating
the image. The structure of the sobel filter can be seen in
Figure 3. Since a sobel filter operates on three rows at a time,
the pixels are streamed through three different row buffers
consecutively. This effectively scans the image three rows at
a time and applies the sobel coefficients that emphasize edges
in the image. Because coefficients cannot be correctly applied
on edge pixels, a mux at then end of the stream keeps track
of the pixel coordinates in the image and emits a zero if the
pixel is an edge pixel.

Histogram Generator : The histogram generator populates
a four-dimensional histogram, where the axes are RGB values,

Row buffer <

Row buffer l«

Row buffer = |dessseeeees
Greyscale
pixels

Fig. 3: Sobel Filter Implementation

along with the edgeness of each pixel location. Once the
whole image is streamed into the histogram generator, it starts
streaming out the contents of the constructed histogram while
resetting the histogram bin values, so that it can start receiving
data for the next image. In our implementation the histogram
generator builds a histogram with 8 bins per dimension, but
the granularity of the histogram is parameterized and can be
changed easily.

2) Document Comparator: The cosine similarity based
document comparator is much simpler and less computation-
heavy than the image comparator, so a single comparator can
sustain the bandwidth of the flash storage. Each document in
the dataset is pre-processed and stored as a vector of tuples
consisting of a word and the number of its occurrences. The
vocabulary is determined beforehand, so each document is rep-
resented using a fixed-length vector of numbers representing
the occurrence of each word. This also significantly reduces the
memory footprint of document data. The comparator reads a
stream of encoded document vectors and calculates the cosine
similarity against the query vector. The resulting distance is
returned to the controller along with the index of the document
that is being compared. The internal structure of the document
comparator can be seen in Figure 2b.

B. Software Daemon

The software daemon exists as a process on every worker
node’s host server. The software daemon talks to the hardware
controller through a PCle interface, and listens to a TCP socket
for the user client to connect to. The daemon can be configured
to handle images or documents. When the software daemon
receives an image query, it creates a query histogram from
it and populates the query histogram buffers in the hardware
comparators. When it receives a document query, it creates a
query vector from it and populates the query vector buffer.
The daemon then sends a stream of read requests to the flash
array for items in the dataset to be read and sent to idle
hardware comparators. The query can be configured to do an
exhaustive search sequentially through the entire dataset, or
to only compare a subset of the dataset, either by random
sampling or by using a list of data indices. The daemon also
provides a TCP interface for the user software to read images
or documents.

The software daemon can be configured at runtime to
either use the hardware comparators, or to do the comparisons
in software. The software comparator can spawn a variable
number of threads to process data in parallel. We usually
spawned as many threads as there are cores in the CPU, as



performance tapered off after that many threads. The daemon
can also be configured to load data from and off-the shelf
flash SSD, BlueDBM, disk, or from DRAM. The hardware
comparators can only be used when the data was being loaded
from the custom flash device.

In order to maintain a simple hardware interface between
the array of comparators and the flash array, the software
daemon manages the logical to physical mapping of pages in
the host server’s memory space. When comparing the software
daemon wants to compare the query with a particular data point
in the dataset, it consults its mapping table to determine the
location of the required pages, and sends a string of commands
to the hardware side controller to read the required pages and
forward it to the appropriate comparator. The mapping is done
at block granularity, because this workload required no random
overwrites. This resulted in a much smaller mapping table as
compared to using a page granularity mapping table.

C. Software Client

The software client connects to the individual worker
node’s software daemons simultaneously via a TCP connec-
tion. The query is broadcast from the software client to the
software daemons of all worker nodes at the same time, and
the client listens to all TCP sockets at the same time for their
responses. Because the software daemons return only its best
candidates for nearest neighbors, the required data rate between
the client and software daemons is low enough that even using
simultaneous TCP does not become a bottleneck.

A special GUI was created for the image query workload
to make the dataset navigation easier. The users can browse
the dataset to select a query image using a simple naviga-
tional interface. Once a query image is selected, the query is
broadcast to the software daemons. The user interface displays
information such as the nearest neighbors returned so far,
sorted according to distance, total progress of the query, and
the performance of the system. This interface can be seen in
Figure 4. The nearest images discovered so far are displayed
in a grid near the top, and user interface information such as a
progress bar and performance graph is displayed at the bottom.

=] o =]

Fig. 4: Software Client Interface

IV. PERFORMANCE EVALUATION

We have implemented our solution on MIT’s BlueDBM
cluster. BlueDBM consists of 20 identical nodes. Each node
is a Xeon server machine with a BlueDBM storage device

plugged into its PCle port. A BlueDBM storage device consists
of a Xilinx VC707 FPGA development board and two flash
expansion cards, each with 512GBs of capacity and 1.2GB/s
of bandwidth. The Xeon server has a 24-core processor and
50GBs of DRAM. The server also could be configured with
an off-the-shelf M.2 PCle SSD. Our implementation used
only one of the two flash expansion cards available to each
BlueDBM nodes.

The implementation of the system involved development
of the software component and hardware component. The
software component includes the client and software daemon,
and were written in C++. The baseline system only requires the
software component and has complete functionality. The hard-
ware component was written in Bluespec [27], and implements
the distance comparator. The distance comparator uses the
interfaces provided by the BlueDBM framework to access flash
storage and to communicate with the software component over
PCle. The software daemon can be dynamically configured to
either perform distance comparison in software or to offload it
to the hardware component. BlueDBM also provides a high-
performance network directly between the FPGAs, but we have
chosen not to use it. Instead, the client software communicates
with each software daemon via separate TCP connections. This
structure fit our application because the data rate between
the client and software daemon is low. The FPGA resource
utilization of the image search system can be seen in Table 1.

For the image dataset, we used the ImageNet [28] dataset,
resized to have width and height of 128 pixels. The resized
dataset had a capacity of roughly 1TB, and fit completely in
two nodes. We used a synthetic document dataset using English
words for the document dataset. Each document was pre-
processed into a vector of 8,000 8-bit values, each representing
the occurrence of a word in the document.

LUTS | Registers | BRAM |
148974 106823 325
(49.06%) | (17.59%) | (31.55%)

TABLE I: FPGA Resource Utilization

A. Baseline Image Search Performance Without Sampling

First, we measured the baseline performance of nearest
neighbor search with images without any clever indexing or
sampling. Each query was done by comparing the distance of
a query image against all images in the dataset. We measured
the performance of each node in the system while running a
nearest neighbor query, by counting the number of images the
array of comparators processed per second. The system was
configured to load the data from either disk, off-the-shelf flash
or the BlueDBM storage device. The following describes the
configurations that were explored:

e Disk : Data read from disk, processed using software

e Flash : Data read from off-the-shelf flash, processed
using software

e FF : Data read from BlueDBM storage device, pro-
cessed using software

e FF+HW : Data read from BlueDBM storage device,
processed using hardware comparators
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Fig. 5: Nearest Neighbor Search Performance

The results of the experiments can be seen in Figure Sa.
The horizontal line reading "CPU Performance” shows the
maximum performance a multicore software implementation
can reach, where the entirety of the data could fit in DRAM.
When this is not the case, the system will start thrashing
the secondary storage, and start to show the performance
characteristic of the disk or flash based system. Because disk
and off-the-shelf flash was much slower than DRAM, the
configurations using them fail to reach maximum performance
deliverable by the CPU. However, because the CPU work
required in comparing the images is not too trivial either, using
a faster flash card allows storage bandwidth to saturate the
CPU performance. In such a scenario where the storage device
can deliver more performance than the processor can handle,
using an application specific accelerator can achieve higher
performance while consuming even less power.

B. Image Search Performance With Sampling

The next experiment of interest was when random access
was introduced by techniques such as indexing or sampling.
We ran an experiment with similar configurations, but instead
of doing an exhaustive search of the entire dataset, we sampled
the dataset so that each image only has a 1/30 chance of being
examined. If the throughput of the system does not change,
the query should finish 30 times faster. The result of this
experiment can be seen in Figure 5b. The following describes
the configurations that were explored:

e Disk : Data read from disk, processed using software.
Exhaustive search

e Disk+R : Data read from disk, processed using soft-
ware. Sampling ratio of 30

e FF+R : Data read from BlueDBM storage device,
processed using software. Sampling ratio of 30

e FF+R+HW : Data read from BlueDBM storage device,
processed using hardware comparators. Sampling ratio
of 30

While the performance of systems that use flash main-
tained the same, a disk-based system’s performance dropped

drastically when random access patterns were introduced via
sampling. This shows that random access performance of the
storage device is important for an analytics system, and shows
that flash storage is a good platform for exploring analytics
problems such as nearest neighbor search.

C. Document Search Performance

We measured the performance of nearest neighbor search
with documents with various configurations. The performance
of document search was also calculated by running a nearest
neighbor query, and counting the number of documents the
system was able to process per second. The system was
configured to either load the data sequentially from disk,
randomly from disk, or randomly from the BlueDBM storage
device. The following describes the configurations that were
explored.

e Disk : Data read sequentially from disk, processed
using software.

e Disk+R : Data read randomly from disk, processed
using software.

e FF+R+HW : Data read randomly from BlueDBM
storage device, processed using hardware comparators.

The results of the experiments can be seen in Figure Sc.
The horizontal line reading "CPU Performance” shows the
maximum performance a multicore software implementation
can reach, when the entirety of the data can fit in DRAM.
Because the computational overhead of the document com-
parator was low, the performance of the system becomes more
bound to the storage system performance. As a result, the
BlueDBM system performance is slower than the maximum
software performance, because DRAM bandwidth is much
faster than the BlueDBM storage device. However, considering
that a machine with enough DRAM to accommodate a large
dataset is an order of magnitude more expensive than one with
the same capacity in flash storage, achieving a comparable
performance to a DRAM based system is still an important
achievement. Also, the relative performance of a disk based
system is even slower than in the image search example.



D. Power Consumption

300

Power i

Power per 1000 Images & 50 i

©

250 - g

— 40 9]

9]

£200 o

- 9]

£ 30 &8
~150

o

H o

g 20 =
0100

o o

9]

0,

50 10

o

=

a

0 0

Idle Disk DRAM Flash+HW

Fig. 6: Power Consumption

We have measured the power consumption to determine the
power performance characteristic of our system. We measured
the power consumption of a node while running a nearest
neighbor query with images, and also calculated the power
consumption per amount of work done by dividing it by the
performance numbers obtained from the earlier experiments.
The results can be seen in Figure 6.

The figure shows that while running everything in DRAM
consumes the most amount of power, power consumption per
amount of processed data of the DRAM based system is lower
than the disk based system because the disk based system
is too slow. Our system, which uses flash with hardware
comparators consume less power than both disk and DRAM
based configurations, and also shows much better power per
performance numbers. Our system consumes about half of
power compared to the DRAM based system per node, and
less than half of power per data processed. Our experimental
system also had an order of magnitude smaller DRAM capacity
than what would be required if we were to store the entire
dataset in DRAM. If we had used such a large system, its
power consumption numbers would also be much higher.

E. Expanding the System

A single node in our configuration can store up to 512GBs
of data. Assuming a DRAM-based system with 128GBs of
DRAM, we would need four DRAM nodes to accommodate
the same amount of data. Although the performance would
also scale with more DRAM nodes, the price of purchase and
power consumption will also increase. Our implementation
used only one of the two flash expansion cards installed
on each BlueDBM storage device. Using both cards will
increase the capacity and bandwidth by two times. The FPGA
accelerator has been shown to be capable of accommodating
2.4GB/s or bandwidth, and an additional flash card only adds
5 watts of power to each node. In effect, augmenting the
flash device will double the performance of the system, while
reducing the power per data processed by half.

V. CONCLUSION

In the age of ”Big Data”, an affordable way to process large
amounts of data is becoming increasingly important. Many of
the important workloads on large datasets including nearest-
neighbor search require high random access performance. This

usually meant that high performance could only be achieved
when all of the data fit in DRAM of the system. Flash
based storage devices provide high random access perfor-
mance while having much higher density at a cheaper price.
We demonstrated that for for some high-dimensional nearest
neighbor search applications, a flash-based system with an
FPGA-based in-store processor could perform comparatively,
or even exceed the performance of a DRAM-based system,
while being much cheaper and using less power. Of course,
this kind of architecture will most likely not be effective for
all possible applications, but we think there is a large class of
work where a flash based system with in-storage accelerators
have a large advantage.

One interesting characteristic of this workload was that it
is mostly a bandwidth-bound problem, and not very sensitive
to the latency of the storage system. In the future, we plan to
explore more complex problems that are latency-sensitive, such
as graph analytics, on the BlueDBM platform. Since one of
the major architectural benefits of BlueDBM is dramatically
reducing the latency of distributed flash access, we think it
might be a cheap and attractive alternative for very large
latency-sensitive analytics systems.
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