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Abstract—Sorting is one of the most fundamental and use-
ful applications in computer science, and continues to be an
important tool in analyzing large datasets. An important and
challenging subclass of sorting problems involves sorting ter-
abyte scale datasets with hundreds of billions of records. The
conventional method of sorting such large amounts of data
is to distribute the data and computation over a cluster of
machines. Such solutions can be fast but are often expensive
and power-hungry. In this paper, we propose a solution based
on flash storage connected to a collection of FPGA-based sorting
accelerators that perform large-scale merge-sort in storage. The
accelerators include highly efficient sorting networks and merge
trees that use bitonic sorting to emit multiple sorted values
every cycle. We show that by appropriate use of accelerators
we can remove all the computation bottlenecks so that the end-
to-end sorting performance is limited only by the flash storage
bandwidth. We demonstrate that our flash-based system matches
the performance of existing distributed-cluster solutions of much
larger scale. More importantly, our prototype is able to show
almost twice the power efficiency compared to the existing
Joulesort record holder. An optimized system with less wasteful
components is projected to be four times more efficient compared
to the current record holder, sorting over 200,000 records per
joule of energy.

I. INTRODUCTION

Sorting is one of the most studied problems in computer
science, and is crucial in many applications. It is used to
organize data for fast searches, and tasks such as duplicate
detection and removal. For performance, a DBMS sometimes
sorts the two tables of interest before joining them, or sorts a
table by its keys to create a clustered index. Large scale sorting
is also a key function in the MapReduce paradigm, where the
keys emitted from mappers must be sorted before being fed
into reducers.

Because sorting is usually used as a component of a larger
system, the resource budget allocated for sorting is often
limited. However, the computational overhead and memory
requirement of fast sorting is ever increasing due to the
increasing size of the datasets of interest. As a result, sorting
can easily become a performance bottleneck.

If the datasets does not fit in the available memory of a
single machine then it must be stored either in secondary
storage, or distributed across multiple machines, or both. In
such a setting, sorting algorithms need to be modified to
compensate for the access-latency of the secondary storage or
network. Many sorting systems mitigate these overheads by
using fast storage, such as SSDs or RAID, and fast networks,
such as 10Gbps Ethernet or Infiniband. The fastest systems
for sorting terabyte scale data today are built on a cluster of

machines that use a MapReduce processing platform such as
Hadoop.

The high computational overhead of sorting has prompted
research into sorting accelerators. Such efforts include parallel
sorting algorithms for multiprocessors and sorting algorithms
that take advantage of SIMD instructions such as Intel’s
Streaming SIMD Extensions (SSE) [1], [2]. There is also
much research into sorting accelerators on larger scale SIMD
appliances such as General Purpose Graphic Processing Units
(GPGPU) [3], [4]. Application-specific sorting hardware via
Field Programmable Gate Arrays (FPGA) [5]–[10] or Appli-
cation Specific Integrated Circuits (ASIC) [11]–[13] are also
under active investigation.

This paper proposes a system architecture for merge-sorting
terabyte-size datasets using an FPGA-accelerated flash storage.
This work is an important component for a larger in-store
accelerator platform for a graph analytics system we are build-
ing. The high performance accelerators on the FPGA ensures
that the computational limitations of sorting are effectively
removed, and is replaced by the limitations of flash and DRAM
bandwidth.

Our system includes different types of hardware sorting
accelerators which operate at different levels of granularity.
The basic unit of sorting is a tuple, which consists of N
entities that can be packed into the width of the datapath. In
our implementation the datapath width is 256 bits. Depending
on the workload, N can be 2 (128 bit entities) to 8 (32 bit
entities). Since N is a small number, it can be efficiently
sorted using a sorting network [14] in a pipelined and parallel
manner. Larger granularities are sorted using a collection of
N-tuple mergers which are organized to efficiently use the
memory hierarchy. Each merger emits N sorted values at every
cycle using the ideas from a recently proposed FPGA merge-
sorter [5]. The following four sorting accelerators are used by
our system:

• Tuple Sorter : Sorts an N-tuple using a sorting network.
• Page Sorter : Sorts an 8KB (a flash page) chunk of sorted

N-tuples in on-chip memory.
• Super-Page Sorter : Sorts 16 8K-32MB sorted chunks in

DRAM.
• Storage-to-Storage Sorter : Sorts 16 512MB or larger

sorted chunks in flash.
The design of the various sorting networks and merge-sort

accelerators described above is not new. Our contribution is
how we organized various hardware sorters to make the best
use of a memory hierarchy composed of flash, DRAM and on-



chip BRAM. The Super-Page size is derived from the available
hardware; given larger DRAM, the Super-Page sorter could
sort larger chunks and improve the performance of the system
by reducing the number of times the data is copied back and
forth from flash. We show that our design has substantial
power, cost and performance benefits over existing software-
centric systems.

We have implemented a prototype with all the sorters and
support infrastructure on a Xilinx VC707 FPGA development
board coupled with a Xeon server, using a flash expansion
card plugged into the FMC port of the VC707 board. We
evaluated the performance of our system using randomly
generated terabyte-size datasets, composed of ten to hundred
billion records.

Measuring the sorting performance of a prototype imple-
mentation with a single accelerated storage showed that such
a system was able to match the performance of cluster systems
of much larger scale, at a fraction of cost and power budget.
For example, one node was able to sort a 1TB dataset of over
10 billion key-value pairs from the Terasort benchmark in 700
seconds. This is more than half the performance of a published
21-node MapR cluster [15]. The performance of our system
can be doubled simply by adding another accelerated storage
device, which will allow our system to exceed the performance
of the MapR cluster with a single node.

The most notable characteristic of our system is its power
efficiency. For the Terasort/Joulesort [16] benchmark data, a
single node instance is capable of sorting 1TB of 16 byte
records, or over 68 billion records, in less than 5,000 seconds
while consuming less than 140W of power. This translates to
over 100,000 records sorted per joule of energy consumed,
which is almost double the current record holder in the
Joulesort benchmark. Although due to our system’s custom
design we do not satisfy the Joulesort criterion, it is a good
reference point since our system can be constructed entirely
using available hardware. The power efficiency is particularly
impressive considering almost 100W of power is consumed
by the host server, which is not doing much useful work. We
also present a system design with an embedded processor and
two storage devices, which is expected to sort over 200,000
records per joule, almost four times the current record holder
performance.

The rest of the paper is organized as follows: Existing
literature related to large scale sorting is explored in Section II.
The detailed architecture and implementation of our system is
described in Section III. We present the performance evalu-
ation of our implementation in Section IV, and conclude in
Section V.

II. RELATED WORK

A. Large Scale Sorting

Sorting has been one of the most widely studied research
topics since the dawn of computer science. Appropriate sorting
algorithms have to be chosen for different types of data and
available hardware resources. With the advances in parallel
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Fig. 2. Bitonic sorting network

processors, it is vital to parallelize sorting algorithms for
performance but it is not straightforward to do so.

With the data explosion from our era of “Big Data”, it is
not uncommon to see the need to sort dataset at hundreds-of-
terabyte to petabyte scale. The de-facto solution for sorting a
large-scale dataset is running MapReduce [17] programs on
a cloud of general-purpose servers. To handle the complexity
of the sorting job on such a large scale, a general-purpose
distributed software environment, such as Apache Spark [18]
and Hadoop [19], is typically deployed to manage cluster
resources and schedule parallel executions. Work in this di-
rection [20]–[23] shows that a 100TB of data can be sorted
in hundreds of seconds on cluster of general-purpose servers.
TecentSort [20] holds the world record of sorting 100TB of
data in 98.8 seconds, which runs on top of 512 OpenPower
computational nodes, connected via 100Gbps Ethernet.

High computation requirement of sorting algorithms has
also inspired research into using novel parallel features from
off-the-shelf hardware to speed up sorting tasks. Parallel
sorting algorithms, such as merge sort, can be multi-threaded
on multicore processors by processing disjoint data segments
in parallel [24]. Furthermore, modern processors provide
Single Instruction Multiple Data (SIMD) features to more
aggressively exploit data-level parallelism in sorting [1], [25].
For example, Intel processors provide SIMD features with
Intel’s Streaming SIMD Extensions (SSE). Work in this di-
rection has attempted to efficiently map sorting algorithms
into SSE-enabled processors [1], [2]. There is also research
to accelerate sorting with larger-scale SIMD appliances such
as GPGPUs [3], [4]. SIMD-enabled processors can deliver
strong sorting performance on small-scale data, however such
solutions are generally power-hungry.

Hardware accelerators, such as FPGAs [5]–[10] and
ASICs [11]–[13], are also under active investigation to pro-
vide power-efficient solutions to sorting. Compared to SIMD-
enabled general-purpose processors, hardware accelerators can
deliver similar sorting performance at more than 10x lower
power budget [7]. Hardware sorting accelerators can be cate-
gorized into sequential sorters and parallel sorters. Sequential
sorters [9], [11] are implementations of single-threaded sorting
algorithms and can produce 1 number/cycle. On the other
hand, hardware parallel sorters [5], [7], [10] often implement
Bitonic or odd-even sorting networks [26] and can sort more
than two inputs simultaneously. Hardware parallel sorters have



better performance than sequential sorters, but they need larger
area and more I/O pins [13]. With larger capacity FPGAs
such as Xilinx UltraScale+ and Altera Stratix 10, hardware
parallel sorters are more popular as the implementation choice
for sorting accelerators [5].

In order to reap the maximum processing power of general-
purpose or application-specific sorting engines, it is imperative
that all the data should fit into the main memory of the
machine. For example, if the sorting job does not fit into
the aggregate DRAM capacity of a MapReduce cluster, the
dataset has to be moved to the slower secondary storage, and
the performance can degrade dramatically [27]–[29]. In such
a setting, NAND flash memory can offer an alternative to
the distributed DRAM solution for sorting [27]–[31], thanks
to its orders-of-magnitude larger capacity than DRAM [32]
and relatively fast random accesses compared to magnetic
disks. NAND flash memory has very different characteris-
tics than DRAM, such as accesses at page granularity and
erase-before-write requirement. To migrate memory-intensive
program, such as sorting, into flash storage, flash-oriented
optimizations have to be made to mitigate storage overhead
and reap maximum device performance [27]. Another benefit
of using more flash and less DRAM is lower energy consumed
by sorting tasks. NTOSort [33] holds the world record for
JouleSort which measures the amount of energy to sort 1TB
of data. NTOSort uses a desktop system with 16 Samsung 840
Pro 256GB SSDs, 1 Samsung 840 Pro 128GB SSD, and can
sort 59,444 records/Joule.

B. Sorting Networks

1) Sorting Network Overview: Sorting networks are com-
putation units that repeatedly perform a sequence of compare
and swap operations between pairs of values using compara-
tors. Values are entered into the network in parallel over
wires, and when a pair of values meets a comparator, they
are compared and swapped, so that each wire now contains
min(x, y) and max(x, y) respectively. A sorting network can
be made to completely sort a sequence of values in correct
order with well-placed comparators. Figure 1 shows the known
optimal sorting network for 8 values. While it is possible to
generate a sorting network that sorts the input values of any
given length, there is a large body of work to construct optimal
sorting networks for relatively small input sizes. Such optimal
sorting networks have minimal depth, or minimal number of
comparators in the network. Optimal sorting networks for
the first sixteen input sizes are listed in Knuth’s The Art of
Computer Programming [34]. Figure 1 is the known optimal
sorting network for input size of 8, and consists of six stages
of comparators.

2) Bitonic Sorting Network: Sorting networks can take
advantage of bitonic sequence characteristics, in which values
are either monotonically increasing and then monotonically
decreasing, or monotonically decreasing and then monoton-
ically increasing. A bitonic sequence can be entered into a
class of sorting network called Bitonic half cleaner, and the
output sequence will be separated into two equal-length bitonic

sequences, where all values of the upper part will be larger
or equal to all values in the lower half. A bitonic half cleaner
is a sorting network of depth one. This means the separation
of upper and lower halves can be done in a single cycle, in a
hardware implementation.

A bitonic half cleaner can be used to merge two sorted
sequences efficiently. Given two sequences a and b that are
already sorted internally, the concatenation of a and the inverse
of b is a bitonic sequence. Therefore, the bitonic half cleaner
can be applied to separate the higher values and lower values.
Increasingly smaller half cleaners can be applied recursively
to merge the two sequences as shown in Figure 2. It can
be seen that it requires much fewer comparators and less
depth compared to the network in Figure 1. An important
characteristic of this network is that because the upper half and
lower half can be separated in a single cycle, a merge sorter
constructed using this unit can merge two sequences organized
into units of N values, and emit N sorted values at every cycle.
Once the upper and lower values are separated, the merged
upper values can be internally sorted in a pipelined fashion.
Our sorter will take advantage of this feature extensively.

C. Sort Benchmark

The Sort Benchmark, colloquially called Terasort, is a set
of benchmarks that measures the capability to sort a large
amount of records under a variety of conditions [35]. Initially
the main benchmark of interest was the TeraByte Sort, which
measures the time to sort 1TB (1012 bytes) of data. Many
more benchmarks have been added since to reflect the modern
computation environment. One such benchmark of interest to
us is JouleSort, which measures the amount of energy required
to sort a certain amount of data. Each of the benchmarks in
the set comes in two categories: Indy (Formula 1), where
records are fixed size (100-byte records with 10-byte keys),
and Daytona (Stock Car), where the sort code must be general
purpose.

III. SYSTEM ARCHITECTURE

Figure 3 shows the overall architecture of our system. At
a high level, it is simply a flash storage device with FPGA-
based, in-storage accelerators. In the first step of the sorting
process which is shown in Figure 4, data to be sorted is
loaded onto DRAM from flash in 512MB chunks, sorted, and
then written back to flash. (512MB is half the size of the
on-board DRAM capacity). Three different types of sorters
are involved in sorting 512MB chunks in memory: the Tuple
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Fig. 3. The system is designed as a flash-based storage device, with FPGA-
based accelerators and a DRAM buffer
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sorter, Page sorter and the Super-Page sorter. Once data in flash
is organized into 512MB sorted blocks, the sorted blocks are
iteratively merge-sorted by the Storage-to-Storage Sorter until
the entire data is sorted, as shown in Figure 5.

A. Tuple Sorter

Our sorting system stores data as packed tuples, which
are aligned to the width of the datapath. For example, our
implementation has a datapath of 256 bits, and stores data
organized into N-Tuples that can be packed into 256-bits. 256
bits can fit a 4-tuple of 64 bit values for long long values,
or a 2-tuple of 128 bit key-pointer pair values for the terasort
benchmark. Because the size of the tuple is relatively small, an
N-Tuple can be sorted efficiently using a sorting network. The
tuple sorter is located on the datapath of flash reads, so that
tuples stored in flash can be sorted as data is read. Because the
parallel pipelined sorting network can sort data at wire speeds,
only one tuple sorter instance is required. Our sorting system
provides a library of known optimal sorting networks that can
be selected at compile time.

B. Merger Sub-Component

All subsequent sorters, including the Page sorter, Super-
Page sorter, and the Storage-to-Storage sorter use one or
more instances of the Merger module at its core. The merger
module takes as input the length of the two sequences to be
merged, and the two sequences, each organized into a stream
of internally sorted n-tuples. It outputs the merged sequence,
also organized into a stream of n-tuples. The merger is capable
of emitting a merged n-tuple every cycle, meaning that a
certain amount of data can be sorted in a deterministic amount
of time, regardless of the size of the values. The internal
structure of the Merger can be seen in Figure 6.

At the beginning of execution, the merger is given the size of
sequences to merge. When the first pair of n-tuples enters the
merger, they are pushed through the bitonic half cleaner. When
sorting in the ascending order, the values in the lower half of
the result forms the first n-tuples of the merged sequence. This
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Fig. 5. Large sorted chunks are merge-sorted directly from storage to storage

n-tuple is sorted internally by a bitonic sorter before being
output from the merger. The upper half of the results are also
sorted by a bitonic sorter, and then stored in a register. All
subsequent half cleaner operations are between the value in
this register, and one of the input FIFOs. The FIFO that will
be used depend on which of the two n-tuples processed in
the previous cycle had the largest value. If the n-tuple in the
register had the largest value, there are still values in the FIFO
that are smaller than the register value. If the n-tuple from the
FIFO had the largest value, there may be values in the other
FIFO that are smaller than the register value. Once one of the
two input FIFOs are empty, the value in the register and in
the other FIFO are flushed out without further comparisons.

C. Page Sorter

The page sorter takes as input a fixed length list of values
organized into internally sorted n-tuples, and emits a com-
pletely sorted list of same length. A page-granularity sorter is
required because fine-grained random access performance of
DRAM drops sharply below page granularity. It makes sense
to load page-granularity chunks into on-chip memory and sort
it completely. The tuples are sorted by a sorting network before
they are entered into the page sorter.

The page sorter is used to sort data into page-sized sorted
chunks as it is being initially read from flash to DRAM. It
works by first pushing all n-tuples into one of two FIFOs,
merging them into increasingly large chunks of sorted se-
quences until the whole list is sorted. The internal architecture
of a page sorter can be seen in Figure 8. Since the page sorter
requires multiple passes over the data to sort it completely,
multiple instance of page sorters are required to keep up with
the bandwidth of the flash storage.

D. Super-Page Sorter

Once data exists on DRAM as sorted blocks, they are
merged into larger chunks with the Super-Page Sorter. The
Super-Page Sorter is composed of two components; An 8-leaf
merge tree and a page-granularity DRAM FIFO loader/storer.
An 8-leaf merge tree is composed of a tree of the two-way
merger described above, and takes as input 16 streams n-tuples
as input and emits a sorted stream of n-tuples. The pairs of
stream length information given to the first layer of mergers
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is added and given to the upper level mergers as input. The
internal architecture of an example merge tree with 4 leaf
nodes can be seen in Figure 7.

The reason such a high fan-out merge sorter is used is to
reduce the number of passes the merger has to make to get a
fully sorted sequence. Sorting 16 values takes 4 passes with a
binary merger, but a single pass with an 8-leaf merge tree. An
even larger fan-out will be beneficial to performance, if the on-
chip resources of the FPGA allows it. The Super-Page Sorter
makes multiple passes over data stored in DRAM until the
size of the sorted block becomes half of the available DRAM
capacity, at which point it is written to flash.

The DRAM FIFO loader loads page-granularity blocks of
data from DRAM and enqueues it into one of the multiple
output FIFOs that the merger reads from. It takes as input
a stream of DRAM addresses to read from, a stream of
DRAM addresses to write to, number of pages to read, and a
destination FIFO index. It returns an acknowledgement with
the destination FIFO index whenever a read request is fulfilled.
The loader initiates a DRAM page read whenever there is
enough space on the destination FIFO for a page read. DRAM
can be kept completely busy by making sure that one or more
requests are always in flight for each FIFO.

The reason a page-granularity loader is required is because
DRAM performs relatively poorly with fine-grained random
reads. DRAM is organized into banks a few KBs in size, and
there is some overhead whenever a new bank has to be opened.
The read performance of our 1GB SODIMM DRAM card with
random 8KB page-granularity reads was about 10GB/s, while
random 64-byte cache granularity reads performed at about
1GB/s.

More than one instance of the in-memory merger is usually
required to keep up with the maximum bandwidth of DRAM
during intermediate merge phases. At the last merge phase,
all data in DRAM is collected into a single sorted sequence,
and this needs to be done by a single merger. But because the
flash write bandwidth is the limiting factor at this stage, one
merger is more than enough.

E. Storage-to-Storage Sorter
Once data is organized into large sorted block on flash,

they are merged into larger blocks using the Storage-to-Storage
Sorter. The Storage-to-Storage Sorter actually uses the same
infrastructure used by the Super-Page Sorter, since the Super-
Page Sorter is no longer required to be active during the

Storage-to-Storage phase. In this phase, the DRAM is used as
a prefetch buffer for flash storage. Commands for reading flash
pages into DRAM is pipelined with the commands for reading
the same pages from DRAM to the merger. The merged pages
are also buffered in DRAM, and written back to flash.

F. Software Manager

The FPGA accelerators and the layout of data on flash is
managed by a accelerator-aware file system. The file system
communicates to the storage device over PCIe, and maintains
a list of files in the file system and their mappings to the
flash chips. It has a separate data and command paths to
and from the storage device and accelerators. The data path
between the storage and software operates using fast DMA
communication over PCIe. The command path operates over
low latency I/O mapped communication over PCIe, and is
used also for sending commands to accelerators and receiving
acknowledgements.

IV. EVALUATION

In this section, we first describe the implementation details
of the prototype system we have constructed, evaluate the
performance of individual components of the system, and then
explore in detail the performance characteristics of sorting a
large dataset.

A. Implementation Details

We have implemented our solution using a Xilinx VC707
FPGA development board coupled with a custom flash expan-
sion card connected via the two FMC ports on the VC707
board. The VC707 board is equipped with a Xilinx Vertex 7
FPGA and 1GB of DDR3 DRAM. The DRAM performed at
10GB/s with sequential read/writes and 1GB/s with random
read/writes. The flash expansion card has a capacity of 1TB,
and has a modest performance of 2.4GB/s reads and 2GB/s
writes. The coupled device is plugged into the Xeon server
which acts as the host, via a x8 Gen2 PCIe slot. FPGA devel-
opment was largely done in the Bluespec hardware description
language.

B. Component Performance

1) Merger Tree: The merger tree was run at a clock
frequency of 125MHz, using a data path of 256 bits. We
measured the performance of the merger using values sizes of
of 64 bits and 128 bits. At a data path of 256 bits, the merger
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takes as input 4-tuples and 2-tuples, respectively. The merger
invariably emits one n-tuple at every cycle regardless of data
distribution. At 125MHz, it merges data at 4GB/s, regardless
of value size.

2) Page Sorter: The page sorter sorts 8KB blocks of data.
Since all data is organized into n-tuples with total size of 256
bits or less, each block consists of 256 such tuples. A two-
way merger must make 8 passes over the data to result in
a completely sorted block. As a result, each page sorter is
capable of producing sorted blocks of data at 0.5GB/s. Since
the goal of the page sorter is to sort data as it is read from
flash, our system required 5 page sorters to completely saturate
the 2.4GB/s flash bandwidth.

Figure 9 compares the performance of merge trees and page
sorters implemented for hardware of various value sizes, and
a single thread software implementation. The software imple-
mentation was compiled with GCC with -O3 optimizations
and run on an Intel Xeon E5-2690 running at 2.90GHz.

3) External Sorters: A 16-way merger is capable of emit-
ting a sorted tuple at every cycle, resulting in a 4GB/s band-
width per merger. There are three different situations for the
use of 16-way merge-sorters: Sorting from DRAM to DRAM,
which requires two 16-way mergers to saturate the bandwidth,
DRAM to flash and flash to flash, which require one merger.
The maximum available bandwidth in each situation is 5GB/s,
2GB/s and 1GB/s, respectively.

Table I describes the sorting phases and the required compo-
nents to saturate the bandwidth of the medium. For example,
during the DRAM-DRAM phase, the 10GB/s of bandwidth
needs to be shared between read and writes, which leaves
5GB/s each for reads and writes. During the DRAM-flash
phase, the DRAM is capable of reading at 10GB/s, but the
flash is only capable of writing 2GB/s, which turns into the
bottleneck.

C. End-to-End Sorting Performance

We demonstrate the end-to-end performance of the system
by sorting 512GB of data stored in flash. We experimented
with 512GB of data because the effective capacity of a 1TB

Sort Phase Bandwidth Accelerator Required
(GB/s) Instances

Flash Read 2.4 Page Sorter 5
In-memory 5 Merge Tree 2
Flash Write 2 Merge Tree 1
In-storage 1 Merge Tree 1

TABLE I
REQUIRED COMPONENTS FOR SORT PHASES

flash storage is actually a bit smaller due to increasing number
of bad blocks due to use, and some additional storage capacity
for intermediate buffers are required by the system.

Sorting is done in phases as is traditional merge sort. At the
first phase, unsorted data is read in 8KB blocks and sorted via
the page sorter, after which the sorted block size is 8KB. At
every subsequent sort phase, all blocks are merged 16 blocks
at a time through a merge tree, increasing the sorted block
size by 16-fold after every phase.

Table II shows the breakdown of performance across the
merge phases to completely sort 512GB of data, along with the
maximum read bandwidth each medium can provide during
that phase. Each row corresponds to a merge sort phase.
The elapsed time column shows the total amount of time it
took to merge all sorted blocks from the previous phase. All
elapsed time values were averaged over multiple executions
and rounded up to the nearest 10 seconds. We can see that at
every stage, almost the maximum bandwidth of the mediums is
being saturated for useful work. The numbers we are getting is
the maximum sorting performance available from these storage
hardware.

An interesting effect of using high fan-out mergers is that
as long as the number of merge phases do not change, the
amount of time it takes to sort a dataset is linear to its size. The
range of datasets with the same number of merge phases that
include 512GB is over 128GB to 2TB. For example, 256GB
can be sorted in 1200 seconds, and 2TB can be sorted in
10,000 seconds.



Sorted Block Size Medium Bandwidth Time
log(bytes) (GB/s) (s)

13 flash-DRAM 2.4 220
17 DRAM-DRAM 5 110
21 DRAM-DRAM 5 110
25 DRAM-DRAM 5 110
29 DRAM-flash 2 280
33 flash-flash 1 520
37 flash-flash 1 520
41 flash-flash 1 520

total 2390
TABLE II

512GB SORTING PERFORMANCE BREAKDOWN BY MERGE PHASE

D. Terasort Performance

We focused on the Indy category of the terasort benchmark,
which sorts fixed-sized key-value pairs, to compare our system
against existing ones. The Indy category requires sorting of
fixed size elements of 100 bytes in size, with 10 byte keys.
We generated 1TB of such key-value pairs, and stored the
key and value data separately. The keys were augmented with
a pointer to its corresponding value. As a result, the actual
dataset to be sorted was a list of 16-byte key-pointer pairs. It
takes our system 700 seconds to completely sort 1010 16-byte
key-pointer pairs, or 150GB of data.

Published performance numbers on Terasort from MapR
reports 494 seconds to completely sort 1TB of data, or 1010

keys, on a 21 node cluster, each node equipped with 32 cores,
128GB of RAM and 11 HDDs [15]. With a single storage
device, our system performs at more than half the performance
of a 21-node MapR cluster. In order to exceed the cluster
performance, we can simply add another accelerated storage
device and double the available bandwidth. This allows us to
completely sort the data in less than 400 seconds with a single
node. The comparison between accelerated systems with one
or two storage devices and the Hadoop system can be seen in
Figure 10.

It should be noted that the performance comparison against
the MapR system is intended to provide a reference for
capability and performance estimate, not to compare the merits
of the two architectures. Single node systems such as ours have
different constraints compared to cluster systems.

E. Power-Performance

Thanks to the low utilization of the host CPU and the
high power efficiency of the FPGA accelerator, the end-to-end
power consumption of the system is very low. Not only can
a single node system can perform on par with cutting edge
cluster systems, but also with much less resources. Thanks
to offloading computation to the FPGA accelerator, the host
CPU is actually doing very little work. The host server can
conceivably be swapped out with a low power embedded
processor without performance loss.

We measured the power consumption of the overall system
using a power monitor. The overall system consumed approx-
imately 140W of power, of which a single accelerated storage
device is responsible for about 40W. It should be noted that

our storage implementation is a prototype based on a very
conservative power estimation. Production systems will have
much lower power consumption.

Figure 11 compares the power performance numbers be-
tween a fully software implementation of the system, our
prototype system with single or double accelerated storage
devices, and projected systems with a low-power embedded
processor projected to consume 40W of power. Terasort bench-
mark data is packed into 128 bits of key-pointer pairs. The
software numbers are from NTOSort [33], which holds the
current record for Joulesort. Although our custom hardware
violates the constraints for the Joulesort benchmark, it is a
good reference point to compare against. Not only does our
prototype outperform the current record holder by almost
twice the efficiency, a projected system with more realistic
components for deployment outperforms the current record
holder by almost four times.

V. CONCLUSION

In this paper, we have presented the design and implemen-
tation of a low-power high-performance system for sorting
terabyte scale data. Our design used a hierarchy of storage
devices and a library of FPGA-based in-storage sorting accel-
erators to exceed the performance of much larger clusters with
a single, much cheaper node. Thanks to the power efficiency
of FPGA and flash storage, our system was also able to
exceed the power efficiency of the current Joulesort record
holder by up to four times. The device components we used
to construct our prototype are not special among their peers.
For example, a 1TB PCIe SSD with 2.4GB/s of bandwidth is
not a particularly high performance device anymore. We think
a system built using our design, using more modern and less
wasteful components can further improve the performance and
power efficiency of sorting systems.

It should be noted that because Page Sorters and In-Memory
Sorters remove fine-grained random access into storage, vari-
ous storage characteristics such as read granularity or random
access performance becomes unimportant. As a result, our
system can perform well using other storage devices, such
as HDDs or other future NVMs, as long as it delivers high
sequential throughput.

This sorting system was designed to be one of the key
components of a larger in-storage accelerator platform for low-
power high performance graph analytics. We plan to continue
exploring the use of flash and FPGA accelerators to enable
more low-power high-performance analytics of more complex
problems.
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