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Abstract—We have entered the “Big Data” age: scaling of net-
works and sensors has led to exponentially increasing amounts of
data. Compression is an effective way to deal with many of these
large data sets, and application-specific compression algorithms
have become popular in problems with large working sets. Unfor-
tunately, these compression algorithms are often computationally
difficult and can result in application-level slow-down when im-
plemented in software. To address this issue, we investigate ZIP-
IO, a framework for FPGA-accelerated compression. Using this
system we demonstrate that an unmodified industrial software
workload can be accelerated 3x while simultaneously achieving
more than 1000x compression in its data set.

I. INTRODUCTION

The evolution of computer networks and the increasing scale
of electronic integration into our daily lives has lead to an
explosion of data. Individuals post entire life-times of photos
to the internet [1] and camera networks monitor traffic activity
across entire cities. Moreover, the size of this data is growing
exponentially as networks and sensors become cheaper to
deploy. One of the key challenges in computer architecture
moving forward is operating efficiently on these large data
sets.

Fortunately, Moore’s law continues its steady march, and
transistors continue to get cheaper and more plentiful, bal-
ancing the steady growth in data. However, the future is
not completely bright. While the potential for computation
continues to scale, memory, chip, and network bandwidths are
not scaling nearly as quickly, exacerbating the already-painful
I/O bottleneck. As we move farther into the “Big Data” age,
the problem becomes not how to compute once the data is
on the chip, but how to get the data from storage or sensors,
across the network, and onto the chip.

One solution to the burgeoning I/O problem is data com-
pression: trading computation at the processor for improved
bandwidth utilization in network and storage systems. Of
course, the idea of applying compression to I/O systems is
not new and has been studied previously in several contexts,
mostly related to storage capacity. Many existing file sys-
tems [15], [20] support software-based data compression to
increase apparent disk storage capacity, and IBM developed
hardware data compression to extend DRAM capacity [23].
Recent FLASH-based storage systems [5] are thought to
include automated support for compression to help hide the
effect of write asymmetry in FLASH systems.

Existing compression architectures typically employ
general-purpose compression schemes [25], which do a
poor job of compressing generic data. Even though these
schemes outperform uncompressed systems, the performance
improvement, in terms of compression, is limited [14].
To obtain higher levels of compression, one must develop
application-specific algorithms which take advantage of the
intrinsic properties of a specific data set. Application-specific
compression is also not new: compression algorithms for
important data sets like video [8] have been well-studied.
Indeed, as problem sizes have grown, compression algorithms
have been proposed for many workloads, including processor
simulation [12], bioinformatics [13], and web search [7].
These algorithms seek to either increase the amount of data
that can be stored locally (e.g. in fast DRAM) or to minimize
the amount of traffic on the network, while simultaneously
improving application-level performance metrics like run
time.

Application-specific compression schemes are growing in
popularity. The question, then, is how to implement these
algorithms in future computer architectures. One possibility, as
general-purpose and graphic-processing core counts scale, is to
map compression algorithms onto dedicated cores. However,
compression does not map well to general-purpose processors
or GPUs. Compression algorithms typically feature complex,
scheme-specific bit manipulations and highly variable control,
both of which are ill-suited to the wide, deep processing
pipelines found in modern GPUs and CPUs. Moreover, most
compression algorithms have tight feedback loops and strong
data-dependencies, making core-level parallelization difficult.
Implementation inefficiencies are so severe that using general
purpose processors to implement compression and decompres-
sion operations may slow application codes layered on top
of these algorithms to the point that using the best available
compression scheme becomes a losing proposition. As com-
pression schemes become more complicated in an attempt to
balance data volume and processors fail to deliver increased
single-threaded performance, these performance issues will
only worsen.

Compression implementations are better suited to computa-
tional structures supporting fine-grained bit manipulation, vari-
able control, and fast feedback. As a result, application-specific
compression schemes that require high performance, such as
video, are typically implemented in hardware. However, due
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to cost, hardware implementation can only be considered for
the widest deployments, leaving a large set of compression
schemes in need of acceleration. Alternatively, compression
schemes can be mapped to a fine-grained reconfigurable sub-
strate, such as an FPGA. In the context of compression, FPGAs
offer many of the performance benefits of hardware, while
retaining sufficient generality to handle many different com-
pression schemes. As transistor counts increase, including such
a substrate on-die is becoming both increasingly feasible and
increasingly attractive [22], since fine-grained reconfigurable
substrates capture different workloads than general purpose
processors.

FPGAs offer an apparent solution to the implementation of
application-specific compression algorithms. However, com-
pression schemes do not exist in a vacuum: they must in-
teract with application-level programs that they accelerate.
Integrating general-purpose software with FPGA-based accel-
erators – in general, implementing anything on FPGAs – is a
difficult proposition. An important system-level consideration
in constructing a general framework for application-specific
compression is that accelerators must integrate seamlessly
with existing software. To ease this integration, we provide a
novel FPGA-based implementation of the UNIX Standard I/O
library, which allows programmers to describe FPGA-software
communication in terms of familiar functions, like fread
and fwrite. Hardware accelerators expressed in terms of
our STDIO library can be integrated with existing, unmodified
software programs using common Unix shell commands, just
like software programs.

Processor trace compression is one example of a highly-
compressible workload well-suited to decompression on the
FPGA. Although recognized as computationally difficult, pro-
cessor simulation is not typically thought of as a “Big Data”
problem. The data volume in processor simulation arises from
the computational cost of detailed simulation: to avoid the
expense of running largely redundant functional simulations,
detailed simulators store a trace of instruction-by-instruction
execution results. These execution traces are then used to drive
a diverse set of simulators [9], [10], which can be orders
of magnitude faster than the original detailed simulation.
Traces are enormous: even for small programs, a detailed trace
can consume, uncompressed, terabytes of storage. Moreover,
typical production simulation systems consist of thousands of
machines simultaneously accessing traces. This level of traffic
can quickly cripple even high-end storage arrays. As a result,
processor traces are a prime candidate for application-specific
compression.

In this paper, we examine a prototype system architecture
for application-specific compression, which we call ZIP-IO.
ZIP-IO consists of a processor, a tightly coupled reconfig-
urable substrate, and system libraries that simplify integrat-
ing the two computation environments. Using trace-based
processor simulation as an example, we will show that our
system architecture not only provides the opportunity to de-
ploy compression, and thereby improve network and storage
system bandwidth utilization, but also that existing user-level

applications can be accelerated by significant multiples, as
compared to a conventional software implementation.

II. FPGA OPERATING SYSTEMS

The chief goal of ZIP-IO is to provide an easy-to-use,
high-performance architecture for accelerating “Big Data”
applications. Good support for FPGA-software communication
is essential to ZIP-IO: it should be as easy to integrate ZIP-
IO with existing software programs as it is to integrate other
common Unix tools with them. Unfortunately, FPGAs have no
easy-to-use software interfaces. Indeed, the problem of FPGA-
software co-design has traditionally been viewed as difficult
and error prone. This difficulty stems from both the raw
nature of physical devices, which require substantial expertise
to incorporate into a design, and the lack of uniformity in
these interfaces across systems and projects, which limits time-
saving design reuse.

To address these issues, several recent efforts have been
made to develop FPGA operating systems. FPGA operating
systems share many of the goals of traditional software op-
erating systems, including managing resources and provid-
ing fundamental services. A key difference between FPGAs
and general purpose processors is that FPGA programs are
largely static. As a result, process management issues do not
currently exist on mainstream FPGAs. The static nature of
FPGA programs also implies that the operating system must
make significant augmentations to the user FPGA program at
compile time.

We have, over the past several years, developed the LEAP
FPGA operating system [2] [18]. LEAP’s chief contribution
is inter-platform program portability. LEAP achieves this
portability by abstracting platform-specific device interfaces
into a set of general interfaces, which are common across all
FPGA platforms. Programs using these interfaces can move
seamlessly between FPGAs, without source modification. For
example, LEAP provides host-FPGA I/O with an RPC-like
mechanism called RRR [19]. To communicate with a control
process running on the host processor, developers instantiate
simple communications stubs in their FPGA source. ZIP-IO
leverages LEAP to simplify the design of application-specific
compression schemes, and, in this work, we extend LEAP to
support a subset of the commonly used Unix STDIO library.

Other attempts at FPGA operating systems have been made.
BORPH [22] appears to be the first FPGA OS to address
the process I/O problem [21]. Whereas LEAP is primar-
ily implemented in user-space, BORPH is tightly integrated
into the host Linux kernel. To support inter-process I/O,
BORPH unifies the operating system file descriptor space
across software and FPGAs, permitting communication be-
tween reconfigurable logic and general purpose processors
using Unix pipes. However, BORPH’s hardware implementa-
tions are largely static. For example, BORPH does not admit
of hardware opening arbitrary file handles dynamically, a
functionality that we support in our STDIO implementation.
BORPH makes no attempt to abstract external resources, such
as memory.



III. ZIP-IO ARCHITECTURE

A. System Overview

Figure 1 shows the architecture of what we envision to
be a typical deployment of ZIP-IO, namely a network store
in which data resides and a tightly coupled FPGA-general
purpose processor connected by a fast interconnect. On to this
generic system, we have superimposed the data-flow of our
accelerated processor trace decompression scheme, Zcompr, to
illustrate architectural support needed by a typical compression
algorithm.

Our implementation incorporates three different methods
to compress instruction traces: a simple entropy compression
of the full text format traces, an FPGA implementation of
Zcompr, and gzip. These programs are connected in a process-
ing pipeline and interposed between the compressed trace in
the network store and the final consumer of the decompressed
trace: a trace-driven simulator.

We augment Zcompr, which has been accelerated on the
FPGA, with gzip to obtain even larger compression ratios. It
may seem counter-intuitive that we have chosen to place gzip
in software, since we have argued that compression algorithms
are not well-suited to general purpose cores. However, in this
case, gzip is operating on a significantly compressed data and
does not represent a performance bottleneck. To the contrary,
requiring a user to implement gzip in hardware for a marginal
performance gain represents an unnecessary burden on the
user and underscores the need for good hardware-software
integration in ZIP-IO.

B. Interfacing with Programs

One goal of ZIP-IO is that FPGA-based compression
accelerators, like trace compression, should be as easy to
integrate with existing application software as existing Unix
tools like gzip. The most common modality of interacting
with compression algorithms in software is through file I/O
and pipes invoked at the command line. Therefore, ZIP-IO
accelerators must be able to connect to software applications
using existing software interfaces, and users should be able to
incorporate FPGA accelerators into natural program flows:

./runhw | ./runsw

To provide this functionality, we have extended the LEAP
FPGA operating system to support a Unix-style STDIO library.
The LEAP STDIO service implements a subset of STDIO
methods, including allocation of file and pipe handles, for-
matted printing, and raw I/O. Hardware programs instantiate
a special STDIO service module at points where STDIO
services are required. At runtime, hardware calls methods, like
printf on this module. These requests are marshalled and
sent, via an automatically synthesized on-chip network, to an
STDIO controller. The controller streams requests over RRR
to the attached host processor, where they are executed using
the host STDIO implementation. Leveraging host software
greatly simplifies the hardware overhead of providing STDIO
functionality in hardware – STDIO service modules reduce to

simple marshalling logic. This simplicity also permits design-
ers to be liberal in their use of LEAP STDIO: several STDIO
service modules can be instantiated throughout a design, for
example, to collect debugging information, with minimal area
overhead.

LEAP STDIO relies on host software support. Thus, opera-
tions that require a meaningful response, such as fread, can
have long latencies, even if a buffering scheme is employed. To
help hide the latency of these operations, we separate all leap
STDIO operations into distinct request and response methods,
as opposed to the blocking calls found in C implementations of
STDIO. This separation permits user programs to hide request
latency by issuing multiple outstanding requests.

A critical step in realizing STDIO implementation in FPGAs
is handling strings well. Strings are the primary means of
interacting with many basic STDIO operations, but strings,
which are potentially unbounded, do not map well to hardware.
We solve the strings problem by creating a new string handle
primitive, similar to a C-style string pointer, in our HDL.
Strings are never passed directly from hardware to software.
Instead, a global string table is constructed at compile time and
shared between hardware and software. String literals in the
hardware are replaced, at compile time, by indexes into this
table. Only string handles, that is, pointers into the string table,
are passed as printf format strings, file names in fopen,
etc. Although the string table is statically initialized, it can be
dynamically modified. For example, LEAP STDIO provides
an sprintf function that returns a dynamically allocated
string handle, permitting dynamic construction of new string
references in the hardware itself.

Because LEAP STDIO provides such a simple interface to
programmers, integrating ZIP-IO decompression accelerators
into an industrial simulation flow is easy. Decompressed data
is fed, using common Unix FIFOs, to the input of the trace-
driven simulator, allowing us to construct complete end-to-
end system using unmodified real-world applications. The
entire system execution can be invoked using the sequence
of commands shown in Figure 2. ZIP-IO also uses STDIO to
write log files for debugging and performance measurement
purposes. Although the simulator invoked by the script re-
quires neither modification nor recompilation to integrate with
ZIP-IO, we do need to insert a program to adapt the output of
the decompression accelerator to the format expected by the
simulator. This trivial program is needed even for conventional
software implementations.

IV. TRACE-BASED SIMULATION

Detailed simulation of processors is a computationally in-
tensive task: detailed simulators operate at speeds of kilo-
instructions per second and complete benchmark executions
take days to complete. Since architectural path-finding times
are limited and detailed simulation is prohibitively long, ar-
chitects frequently adopt a two-phased approach to simulation.
Detailed functional simulations are run once, and during the
run a trace of the architectural updates for each instruction is
collected. This trace contains all architectural state changes,
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Fig. 1. Structure of the ZIP-IO System

mkfifo compressed.bin
mkfifo decompressed.log
gunzip -c /[network]/compressed.gz \

> compressed.bin && \
./run_hardware.sh compressed.bin \

> decompressed.log && \
./simulator [configuration] \

< decompressed.log

Fig. 2. Integrating ZIP-IO with existing accelerators is straightforward.

such as register writes and status flag updates, for each instruc-
tion executed. Traces are quite large, since each instruction
takes tens of bytes to store and programs execute trillions
of instructions. These traces are then repeatedly reused to
drive other simulators. For example, a full instruction trace
can be used to extract memory traces, which can, in turn, be
used to drive a cache hierarchy simulator. These secondary,
trace-driven simulators run orders of magnitude faster than
the original detailed simulation, permitting a broader range of
architectural exploration.

Trace-driven simulation is also highly parallelizable. Once
the traces are available, many simple simulators can run
simultaneously. This parallelism is important because typical
architectural studies will test a linear combination of pa-
rameters, for example, cache size and associativity, across a

set of benchmark programs, such as SPEC [4]. Since each
program/architecture experiment is independent, each can be
run separately.

To exploit this parallelism, and to complete experiments
quickly, industrial and academic researchers use large network
batching systems. Although parallelism is abundant in this
workload organization, sophisticated network infrastructure is
needed to support all of the simulators running simultaneously.
As we remarked previously, detailed instruction traces are
enormous, and the machines on which the simulators run do
not have the disk capacity to store even a single full-length
trace in their local disk. As a result, systems designed for pro-
cessor simulation make use of large-scale, expensive, network
storage. However, since many experiments run in parallel,
this shared storage can represent a significant performance
bottleneck. As Figure 6(a) shows, even a handful of simulators
simultaneously accessing a network store can result in large
performance loss. Worse, industrial simulation deployments
frequently have thousands to tens of thousands of experiments
running in parallel.

V. TRACE COMPRESSION

Because traces are so large, significant effort has been spent
in attempting to compress them. Most compression efforts [6],
[16] have focused on specific kinds of traces, for example
instruction streams. These specialized compressors can obtain
compression ratios thousands of times better than conventional
entropy compression. However, to minimize the need for
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detailed simulation, a general execution trace compression
scheme, from which many different simulators can be driven,
is needed. General trace compression [11] schemes have also
been implemented using entropy-based methods tuned for
traces. However, entropy-based compression schemes, which
amount to pointer chasing in tree-like structures, are not
attractive for FPGA implementation because they can quickly
become memory bound.

Cohn and Kanev [12] have shown that it is possible to
implement highly efficient compression of execution traces by
emulating a simple CPU. Although modern processors are very
complicated (even RISC machines have hundreds of instruc-
tions [3]), the majority of executed instructions are drawn from
a small part of the ISA. Therefore, a large portion of program
execution can be captured using a predictor CPU that imple-
ments only frequently used instructions. Thus, the execution
trace can be compressed by recording only those instructions
not implemented by the simple predictor CPU. This algorithm,
called Zcompr, is highly amenable to FPGA implementation
because the core of the compression algorithm, the predictor
CPU, is an FPGA-efficient, hardware-like structure and largely
streaming. This stands in contrast to traditional entropy trace
compression schemes which operate on complicated, memory-
based data structures to store portions of the trace. Because
Zcompr is a general trace compression algorithm, it can be
used to drive any trace-based simulation with minimal post-
processing.

Figure 3 shows a block diagram of the compression process.
During the detailed trace run, the behavior of the detailed
model CPU and the predictor CPU are compared at each
instruction. If the two CPUs produce matching outputs, then
a marker is recorded in the compressed trace and the state
update for that instruction is omitted. However, when the
predictor encounters an instruction that it does not implement,
the complete state modification made by the detailed model
is recorded in the compressed trace. Decompression is the
inverse of compression: the predictor CPU will again run
over the program, inflating the omission markers. When the
decompressor encounters an unimplemented instruction in the
compressed trace, it patches its predictor CPU state with the

state update recorded in the trace.
Figure 4 shows the percentage of executed instructions

that are covered by our Zcompr implementation. The original
Zcompr implementation did not include support for traps,
protection management, and syscalls; neither does our imple-
mentation. Since we target the FPGA, we also omit floating
point operations and certain complex memory operations. The
remaining 10% of the instruction set accounts for more than
98% of the dynamic executions across the SPEC benchmarks,
suggesting that 50 to 1 compression ratios should be achiev-
able. In reality, the compression ratio is slightly less, both
because the predictor CPU cannot correctly predict the effects
of external processor I/O events and because some meta-data
must be included in the compressed trace.
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VI. IMPLEMENTING ZCOMPR

A. ZCompr Microarchitecture

The blowup on the right of Figure 1 shows the microar-
chitectural details of our Zcompr implementation. The main
component of the system is the predictor CPU, which consists
of a prediction core and a controller. The prediction core
implements a subset of the MIPS ISA. This core is similar
to a pipelined in-order RISC core, except that it is augmented
with extra control interfaces used to handle unimplemented
instructions and to export state updates. One control interface
halts processor execution before the issue of a particular
instruction. The controller core uses this interface to stop
the processor from beginning to execute unimplemented in-
structions. The state elements of the predictor CPU - the
PC, register file, and memory system are modifiable by way
of a second control interface. To the predictor core, these
structures appear unmodified. However, the controller core can
modify any value in predictor CPU state space, permitting the
controller to correct the state of the predictor CPU in the case
of an unimplemented instruction. Finally, the predictor CPU
outputs inflated state updates as a part of its final pipeline
stage.

During operation, a compressed trace is streamed from the
host PC via LEAP STDIO. There are two possibilities for the



compressed trace: either it is a correctly predicted instruction
or it is an unimplemented instruction. When the controller
core receives a correctly predicted marker, it feeds a control
token to the core controller and predictor CPU. This allows the
predictor CPU to start inflating, or executing, the instruction
corresponding to the marker. When the core controller receives
an unimplemented instruction, the core controller waits for
the predictor core to complete inflating its current set of
trace steps. The core controller then halts the predictor core,
modifies its state elements according to the result of the
unimplemented instruction, and then restarts the predictor core
on the next block of correctly predicted instructions. In the
case of a correctly predicted instruction, the predictor CPU
will output state updates into the output FIFO, but in the case
of an unimplemented instruction, the inflated state updates will
come directly from the core controller. Trace data in the output
FIFO is streamed back to the host processor over STDIO.

On the host side, we introduce a software translation layer to
convert the output of Zcompr in to the format required by the
trace-driven simulator. This format is, itself, lightly encoded in
a C-like binary format to simplify transmission to the host and
processing on the host side. We choose to implement the final
translation layer, which can be viewed as a sort of middleware,
in software to allow rapid integration with a diverse set of
trace-driven simulators.

B. Improved Trace Compression

The original Zcompr algorithm does a good job of com-
pression by capturing the majority of trace behavior in a
manner that provides excellent local compression at the cost of
increased, but FPGA-efficient computation. Zcompr then relies
on traditional entropy coding in the form of gzip to recover
additional compression by discovering repetitions in the trace
output, for example loops and function calls.

However, better compression can be achieved by recogniz-
ing that many of the unimplemented instructions in the trace
have very similar behavior, in terms of state modification.
Common state modifications by unimplemented instructions
include increasing the program counter by four, repeatedly
reading the same value (e.g. 0) from an unknown memory
address, and writing the same value to a contiguous region
of memory. In these cases, the behavior of an unimplemented
instruction relative to another unimplemented instruction can
be summarized succinctly: the new unimplemented instruction
can be described as a pointer into a memory containing
previous the state updates of preivous unimplemented instruc-
tions. However, general entropy schemes are oblivious to these
structured relationships between instructions and suffer sub-
optimal compression as a result.

In an ideal case, we would be able to maintain a full history
of previously seen, unimplemented instruction to use for as
a reference, as in the PDATs [11] compression algorithm.
However, this sort of implementation is infeasible when trace
lengths scale to multiple terabytes. Instead, we accomplish
a similar, specialized entropy compression by maintaining
a small cache of previously-encountered unimplemented in-
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Fig. 5. Zcompr+, in the context of the Zcompr pipeline

structions and their effects on system state at the decompres-
sor. We then reduce “predictable” unimplemented instructions
in the trace compression to indices into this table. This
scheme, which we call Zcompr+, captures most of the benefit
of PDATs-style compression on unimplemented instructions,
without requiring a complicated and costly memory interface.

ZCompr+ introduces an interesting decision problem in the
compressor: given a limited number of slots for unimple-
mented instructions, we must choose the best set to retain. The
compressor tags these retained unimplemented instructions
with a special flag, which causes the decompresser to update
its table. Our current compression scheme uses a simple LRU
policy in selecting which instructions to retain, but it is likely
that a better instruction selection algorithm in software could
yield substantially better compression.

VII. RESULTS

A. Experimental Setup

Our primary FPGA implementation platform for ZIP-IO is
the Nallatech ACP [17], a pair of Virtex 5 LX330T FPGAs
that can be placed in a motherboard CPU socket along with
other general purpose processors. Because the FPGAs can
communicate over the front-side bus (FSB), interfacing to
software has relatively low latency and high bandwidth. We
consider this style of system to be a reasonable prototype
of future tightly coupled FPGA-CPU systems, though we
note that die-level integration would substantially improve
communication latency and bandwidth.

The environment that we consider in evaluating ZIP-IO is a
portion of an industrial batching system. The entire system is
quite large, with thousands of machines, reflecting the need
for enormous computational resources in the development
and verification of modern processors. However, we have
isolated our test machines within the network and given them
a dedicated, relatively local NFS store. Although this system
may be slightly noisy, it permits us to set up much larger



experiments that are more representative of a typical industrial
use case. The system consists of several large, Ivy Bridge-
class servers and some older Xeon machines with ACPs inside
of them. All communication between programs is achieved
through file system pipes.

The simulator we have chosen to evaluate in this paper is
the Dinero IV uniprocessor cache simulator [9]. Dinero IV
simulates a memory hierarchy consisting of multiple levels of
cache and a main system memory, extracting useful statistics,
such as hit and miss rate, for each cache. Because Dinero
IV is a cache simulator, it requires only the memory access
information from an execution trace. Dinero can operate in
excess of 5 MIPS on the Ivy Bridge machines under optimal
conditions. Because Dinero is a relatively simple simulator,
it serves as a useful limit study of the performance of our
trace-based simulation systems, since it can consume high-
bandwidth trace streams before it becomes the system bottle-
neck. In our simulations, we drive Dinero with a mix of SPEC
benchmark traces stored remotely on the network share, or
locally in DRAM, depending on the system configuration.

B. Benefit of Compression

Figure 6(a) shows Dinero’s average throughput as the
number of simultaneous simulations scales, under different
compression scenarios. In general, performance degrades as
the network store and network bandwidth are progressively
overwhelmed by trace traffic. Uncompressed and gzipped
traces require less computation to decompress and, as a result,
have high throughput if there are relatively few consumers.
However, because these schemes require more network band-
width, they experience a steep decline in performance as the
number of parallel simulations increases. On the other hand,
the combination of gzip and Zcompr+ has low single processor
performance, due to the overhead of running the Zcompr+
algorithm, but scales well because it requires very little net-
work bandwidth. Since industrial simulation workloads typi-
cally consist of hundreds or thousands of parallel simulators,
ZCompr+ based compression is clearly a good choice because
improved network bandwidth utilization quickly outweighs the
additional computational complexity of ZCompr+.

We also attempted to drive Dinero with remote, uncom-
pressed traces. However, even a handful of simulators required
hours to complete: uncompressed traces are simply infeasible
in a production setting.

C. Improvement to Zcompr

Figure 6(c) shows the performance of Zcompr and our
augmentation, Zcompr+. Though relatively simple, Zcompr+
improves compression by 20% over the baseline Zcompr
implementation. This relative advantage is maintained even
after applying gzip to the compressed result, confirming that
gzip is not able to extract the relative instruction behavior that
Zcompr+ targets.

Figure 6(d) compares, among others, the throughput of
ZCompr and ZCompr+. Zcompr+ achieves better compression,
but at a cost of around 20% software throughput. This is

another argument for the FPGA-based implementation: algo-
rithmic complexity reduces overall throughput in software.
An FPGA-based implementation of ZCompr+ suffers no such
degradation.

D. Compression Performance

Figure 6(c) shows the compression performance of the var-
ious compression schemes across different SPEC workloads.
Stand-alone Zcompr+ has a compression performance com-
parable to gzip. However, Zcompr+ addresses compression
scenarios, such as randomly mutating register values, that are
not well-handled by gzip, and therefore composes with gzip
to produce even better compression. Indeed, by composing the
two compression algorithms, we achieve total compression of
more than 1000x in some cases.

E. Decompression Throughput

Figure 6(d) shows the throughput of the Dinero simula-
tions across workload traces and with different compression
schemes on the ACP platform. In an effort to normalize
performance across silicon generations, we present results only
from Xeon processor coupled with the ACP platform.

On average, Dinero using ZIP-IO Zcompr has equivalent
performance to Dinero running on uncompressed traces pre-
loaded into DRAM, demonstrating that ZIP-IO is able to
satisfy the bandwidth requirements of Dinero running on a
Xeon server. Indeed, the hardware Zcompr implementation can
sustain trace decompression rates of up to 15 MIPS, which is
sufficient to accelerate Dinero even on the newer Ivy Bridge
servers.

Figure 6(b) shows the throughput of hardware-accelerated
Dinero relative to a pure software implementation. Because
the ACP must operate inside of a relatively old Xeon server
as opposed to the newer Ivy Bridge servers, we normalize the
performances in the graph against the speed of decompressing
a small trace loaded on RAM, a performance upper bound.
It is evident that using hardware decompression is effective
in reclaiming most of the performance lost by using general
purpose processor for decompression. We do not completely
reclaim the performance of decompressing from DRAM due
to non-idealities in the network.

The performance of the hardware-accelerated system is
actually limited by the throughput of Dinero. If Dinero is
removed, the hardware achieves nearly a 5x performance gain
over the software decompression. Although Dinero cannot
make use of this bandwidth, other, less computationally inten-
sive simulators, for example simulators doing statistical sam-
pling [24], might be able to saturate the hardware bandwidth.

F. Hardware Implementation Requirements

For ZIP-IO to be successful, interesting compression algo-
rithms must be implementable in a reasonable area. Although
we are currently using a V5LX330T for prototyping, this large
FPGA is not necessary to acheive compression acceleration.
Many interesting compression algorithms, including Zcompr+,
can fit into a very small area. Table I gives a modular break
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down of the reconfigurable logic required for Zcompr+. This
resource usage is approximately 4% of the LX330T logic area,
and 30% of the total memory, most of which is used for
somewhat over-provisioned memory caches. This suggests that
a future ZIP-IO would do well to have some kind of hardened
memory interface.

In the throughput experiments discussed in Section VII-B,
we used modern Ivy Bridge processors, which have several
cores per chip. Thus, a production deployment of ZCompr+
would need to support multiple simultaneous trace decom-
pressions in the same fabric. There are two ways to extend
our Zcompr hardware to handle this scenario. Zcompr itself
could be re-architected to support GPU-style simultaneous
multi-threading (SMT) while sharing a common memory
subsystem among the threads. Alternatively, since Zcompr is
so small, multiple instances could be laid out on a single fabric,
again sharing a common memory subsystem. Our STDIO
implementation would make this sort of extension relatively
straightforward – software could simply pass file handles to
each of the Zcompr instances at runtime.

VIII. CONCLUSION

“Big Data” is a serious problem which must be addressed
in future computer architectures. Application-specific com-
pression is one means of dealing with the big data problem,
provided that application-specific compression schemes can
be well implemented in future platforms. In this paper, we

Module fMax(MHz) LUTs Registers BRAM
Instruction Cache 100 771 342 3
Decompresser Control 100 1780 1105 58
Predictor CPU 115 2346 802 9
Total 100 10100 6969 99

TABLE I
RESOURCE USAGE FOR FPGA ZCOMPR IMPLEMENTATION, TARGETING

XILINX VIRTEX-5.

presented ZIP-IO, a system architecture and libraries intended
to accelerate these compression algorithms. In the context
of trace-based processor simulation, the ZIP-IO architecture
provides a throughput increase of 300% above similar algo-
rithms implemented in software. Although we examine only
trace-compression, ZIP-IO is a fully general architecture and
can be extended to support many other workloads, including
video, computational biology, and internet search by way of
our STDIO interface.

As transistor counts increase, it is worth considering the
integration of a fine-grained reconfigurable substrate on-die.
Application-specific compression is one workload that could
benefit from such an integration, although many other ap-
plications, including the detailed processor simulation that
precipitated the ZCompr algorithm, could also benefit. With
tighter processor-fabric integration, the performance gains that
we observe in this paper would be amplified, perhaps by as



much as an order of magnitude. This acceleration is especially
valuable in power-sensitive deployments, both in embedded
environments in which software capabilities may be severely
constrained and in cloud deployments wherein reducing power
reduces operating costs.
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