

Motivation

- Speech-based assistive technology for adults with limited mobility and fine-motor skills at The Boston Home (TBH) • High automatic speech recognition (ASR) error rates due to
- fatigue, dysphonia, and dysarthria
- Approach: Use dialog (requests for repetition, confirmation, or clarification) to infer user goals

Lab Speakers	Error Rate	TBH Speakers	Error Rate
lab01	4.0%	tbh01	12.0%
lab02	7.4%	tbh02	3.7%
lab03	10.9%	tbh03	5.1%
lab04	4.3%	tbh04	34.6%
lab05	12.7%	tbh05	57.1%
lab06	3.3%	tbh06	26.1%
lab07	3.8%	tbh07	9.4%
mean	5.7%	mean	25.1%
std. dev.	4.5%	std. dev.	19.5%

ASR Concept Error Rates

Bedside (top) and wheelchair (bottom) speech systems

Utterance Confidence Scoring

- Confidence scores encode the probability of hypothesis correctness
- Adaptive boosting (AdaBoost) used on annotated dataset of 2701 utterances for feature selection
- Acoustic, language-model, syntactic, semantic, and corpus-level features

Adaboost performance by iteration

• Observation model can then be expressed as:

$$\Omega(z_d, z_c | s, a) = P(z_d | s, a) P(z_c | z_d$$

$$P(z_c|z_d, s, a) = \begin{cases} P(z_c|correct P(z_c|c$$

Spoken Dialog Management with Partially Observable Markov Decision Processes

Histograms of correct (left) and incorrect (right) hypotheses

(s,a)

 $zt), z_d \mapsto s$ ect), otherwise

Spoken Dialog System POMDP Formulation

Entity	Description	Example	Function	Description	Example
States, G	User goal	al <turn-on-television> <today's-weather></today's-weather></turn-on-television>	Transition function,	Effect of system action on user goal	T(g _i g _j , a) = 1, if i == j T(g _i g _j , a) = 0, if i != j
Actions,	System	<show-today's-weather></show-today's-weather>	T(g' g,a)		
A	response	<ask-user-to-repeat></ask-user-to-repeat>	Observation	Mapping of ASR	Ω("yes" <today's-weather> ,</today's-weather>
Observations, Z	bservations, Speech <"wha recognition weath	"what is today's /eather">,	function, $\Omega(z g, a)$	hypotheses to user intents	<confirm-today's-weather>) = 0.9</confirm-today's-weather>
	hypotheses	confidence: 0.8	Reward function,	Rewards for state-	R(<today's-weather>, <show-today's-weather>) = +10</show-today's-weather></today's-weather>
Belief, bProbabilitymass functionover states	{ 'turn-on-television': 0.9, 'today's-weather': 0.1 }	R(g,a)	action pairs	R(<today's-weather>, <turn-on-television>) = -100</turn-on-television></today's-weather>	
		Policy, Π()	Mapping of beliefs to system actions	Π([P(<today's-weather> = 0.99,]) = <show-today's-weather></show-today's-weather></today's-weather>	

Belief state visualization (left) and user interface (right)

Experimental Results

 Comparison of threshold- and POMDP-based dialog systems using $\Omega(z | g, a)$ as simulated user model

Comparison of Dialog Strategies (50000 simulated dialogs)

Dialog Manag argmax(State threshold = 0.5threshold = 0.0threshold = 0.9**POMDP-confide** POMDP+confide

Experiments with human participants:

Belief update: $b_T(g') = \eta \cdot \Omega(z|g_{T-1}, a) \sum_{\alpha} T(g'|g, a)b(g)$

Simulate Utterance wh	at is tuesday's dinner,	confidence:
		N-Bes
Did you	ask for	what is dinner
Tuesday's dinner		what's c tuesday
menu?		what is thursda

	Dialog Completion			Number of Turns	
ger	correct	incorrect	error rate	turns	std. error
e)	45920	4080	8.16%	1.07	0.02
50	46589	3411	6.82%	2.60	0.07
85	46976	3024	6.05%	5.44	0.14
95	46179	3821	7.64%	10.39	0.17
ence	48022	1978	3.96%	1.23	0.00
ence	49421	579	1.16%	1.95	0.01

Dialog Completion Rates for TBH speakers

completed dialogs (/20)		
POMDP	THRESHOLD	
18	13	
17	16	
20	20	
19	18	
13	5	
18	10	
17	10	
	complete POMDP 18 17 20 19 19 13 18 18 17	

William Li Advisors: Nicholas Roy, Seth Teller, James Glass

Formulation as partially observable Markov decision process (POMDP): The agent (dialog manager) receives noisy observations (speech recognition hypotheses) of the hidden state (user's goal) and chooses actions (dialog responses)

• System functions: Information (weather, activities schedules, and menus) and communication (handsfree Skype calls)

Conclusions

• End-to-end spoken dialog system designed to handle challenging speech input SDS-POMDP with confidence scoring outperforms threshold-based approaches for speakers with high error rates

Possible future directions:

- Larger/factored state space/system functions (e.g. robot mobility and
- manipulation)
- More nuanced clarification questions (using word-or sub-concept-level confidence scoring)

