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Summary

I Proposed a novel data-driven non-heuristic data augmentation method for
unsupervised domain adaptation, which requires zero in-domain labeled data.

I Achieved up to 35% and 40% absolute word error rate reduction in mismatched
domains on CHiME-4 and Aurora-4 respectively.

Robust Automatic Speech Recognition
An ASR system often degrades significantly when testing on a domain mismatched
from the training data. Here are a few ways to achieve robustness:
I use domain-invariant acoustic features.
I enhance speech (convert out-of-domain data to in-domain data).
I train an ASR system with as much, and as diverse a dataset as possible.
⇒ use more data to utilize the full capacity of neural network models.

Unsupervised Learning of Latent Factors with VAEs
Variational Autoencoders (VAEs)
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Consider a speech dataset D = {x(n)}Nn=1 of N i.i.d. speech
segments. Each x is assumed to be generated by:
1. draw a latent variable z from pθ(z) = N(z|0, I)
2. draw an observed variable x from

pθ(x|z) = N(x|fµx(z), exp(flogσx(z)))

A variational inference model qφ(z|x) is introduced to
approximate the intractable true posterior pφ(z|x)
I qφ(z|x) = N(x|gµz(x), exp(glogσz(x)))

Objective Function: Variational Lower Bound

L(θ,φ; x) = Eqφ(z|x)[log pθ(x|z)] − DKL(qφ(z|x)||pθ(z)) (1)

Properties of Latent Variables:
I The prior pθ(z) is a factorial distribution.
I VAEs are encouraged to encode independent physical attributes (e.g. speaker identity,

phonemes) into orthogonal subspaces.

Latent Attribute Representation
It is suggested and empirically verified in the previous work [Hsu et. al., 2017]:
1. Conditional prior of z on some attribute a being r (e.g. phoneme being /aa/ ):

pθ(z|ya = r) = N(z;µr,Σr) (2)

2. µri ⊥ µrj if ri and rj are independent attributes that affect the realization of speech.
⇒ µr is defined as latent attribute representation for r.

Estimating Latent Attribute Representations
µr ≈

∑N
n=1 fµx(x

(n); θ)1y(i)a =r/
∑N

n=1 1y(i)a =r

Transforming an Utterance
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I given the orthogonality property, one
can modify some attributes of a speech
utterance without changing other
independent attributes.

Nuisance Attributes and Data Augmentation
Nuisance Attributes: factors that affect the surface form of a speech utterance but not
the linguistic content, such as speaker identity, channel, background noise.
I nuisance attributes are independent from linguistic content.
⇒ Given a labeled utterance, (1) encode, (2) modify the latent subspace that models
these attributes, and (3) decode, to generate augmented labeled data

Estimating Latent Nuisance Representations:
I nuisance attributes are generally consistent within an utterance.
I same labels for these attributes for all the segments within an utterance.
I suppose {x(n)

uttj
}
Nj

n=1 be the set of segments from an utterance uttj, we then have:

µuttj =

Nj∑
n=1

fµz(x
(n)
uttj

; θ)/Nj (3)

Type I: Nuisance Attribute Replacement (Repl.)

Replace the nuisance attribute of one utterance with that of another utterance.
Transformation vector:

∆µ = µutttar − µuttsrc (4)

Type II: Latent Nuisance Subspace Perturbation (Pert.)

Discover the latent nuisance subspace and perturb that subspace
1. determine latent nuisance subspace with principle component analysis (PCA)

I given a dataset of M utterance, we can compute {µutti}
M
i=1, on which we apply PCA.

I obtain a list of eigenvectors {ed}
D
d=1 with associated eigenvalues {σ2

d}
D
d=1.

2. sample a transformation vector for soft latent nuisance subspace perturbation:

∆µ = γ

D∑
d=1

φdσded, φd ∼ N(0, 1) (5)

Experiment Setup
Datasets
I CHiME-4: the training set consists of

1600 real noisy utterances and 7138
WSJ0 SI-84 clean utterances

I Aurora-4: multi-condition speech
dataset, 2 microphone types, 6 noise
types, 4620 WSJ-0 based utterances.

VAE Model
I Input: x is a segment of 20 frames,

represented as mel-scale filter bank
coefficient (FBank)

I Encoder/Decoder: two layer LSTM
with 512 hidden units. Adam optimizer.

I Training Set: all conditions (clean +
noisy)

ASR Acoustic Model
I transcripts available for only clean set. augmentation is based on clean data.
I three layer LSTM with 1024 cells and 512-node projection (CHiME-4) / six layer

fully-connected with 1024 hidden units (Aurora-4)

CHiME-4 Results

Setting WER (%) WER (%) by Environment
Exp. Index Aug. Method Fold Clean Noisy BUS CAF PED STR
1 Orig. 1 19.04 87.80 96.16 92.35 78.46 84.24

2 Repl. Clean 1 20.03 67.12 71.99 76.84 55.32 64.33
Repl. Noisy 1 26.31 57.66 62.12 69.25 46.89 52.38

3
Pert., γ = 1.0 1 20.01 53.06 55.66 66.12 41.94 48.50
Uni-Pert., γ = 1.0 1 19.70 65.07 69.27 75.28 53.65 62.06
Rev-Pert., γ = 1.0 1 19.75 87.98 95.13 90.58 76.71 89.50

4
Pert., γ = 0.5 1 19.55 65.61 67.87 77.37 54.54 62.66
Pert., γ = 1.0 1 20.01 53.06 55.66 66.12 41.94 48.50
Pert., γ = 1.5 1 19.99 53.59 57.09 64.91 42.23 50.11

5
Orig. + Repl. Noisy 2 19.88 55.72 60.72 66.46 45.08 50.63
Repl. Noisy 2 25.26 55.59 59.24 67.85 44.65 50.63
Pert., γ = 1.0 2 19.82 52.49 55.52 65.04 41.17 48.24

Table: CHiME-4 development set word error rate of acoustic models trained on different augmented sets.

We showed the following results:
I correctness of soft latent nuisance subspace perturbation
I effectiveness of both replacement and perturbation, and superiority of the latter.
I benefit of generating more augmented data

Aurora-4 Results

Setting WER (%) WER (%) by Condition
Exp. Index Aug. Method/Baselines Fold Avg. Cln Noisy Chan N+Ch

0 Clean-DNN-HMM - 36.22 3.36 29.74 21.02 50.73
DDA-DNN-HMM - 22.53 3.24 14.52 17.82 34.55
DNN-PP - 18.7 5.1 12.0 10.5 29.0

1 Orig. 1 53.98 3.38 50.56 42.67 67.70
2 Repl. Noisy 1 22.53 4.80 16.31 14.72 32.99
3 Pert., γ = 2.0 1 20.68 4.45 14.33 14.74 30.72
4 Pert., γ = 2.0 16 18.76 4.04 12.84 13.54 28.01

Table: Aurora-4 test eval92 set word error rate of acoustic models trained on different augmented sets.

I Outperformed a state-of-the-art domain adversarial training-based method (DDA).
I Matched the performance of an enhancement-based method (DNN-PP), which

however requires parallel data.
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