SUMMARY

- Proposed a novel data-driven non-heuristic data augmentation method for unsupervised domain adaptation, which requires zero in-domain labeled data.
- Achieved up to 35% and 40% absolute word error rate reduction in mismatched

domains on CHiME-4 and Aurora-4 respectively.

ROBUST AUTOMATIC SPEECH RECOGNITION

An ASR system often degrades significantly when testing on a domain mismatched from the training data. Here are a few ways to achieve robustness:

- use domain-invariant acoustic features.
- enhance speech (convert out-of-domain data to in-domain data).
- train an ASR system with as much, and as diverse a dataset as possible.
- \Rightarrow use more data to utilize the full capacity of neural network models.

UNSUPERVISED LEARNING OF LATENT FACTORS WITH VAES

Variational Autoencoders (VAEs)

Consider a speech dataset $\mathcal{D} = \{x^{(n)}\}_{n=1}^N$ of *N* i.i.d. speech segments. Each *x* is assumed to be generated by:

1. draw a **latent variable** *z* from $p_{\theta}(z) = \mathcal{N}(z|\mathbf{0}, I)$

2. draw an **observed variable** *x* from

 $p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|f_{\mu_{\boldsymbol{x}}}(\boldsymbol{z}), \exp(f_{\log \sigma_{\boldsymbol{x}}}(\boldsymbol{z})))$

A variational inference model $q_{\phi}(z|x)$ is introduced to approximate the intractable true posterior $p_{\phi}(\boldsymbol{z}|\boldsymbol{x})$ $\bullet q_{\Phi}(\boldsymbol{z}|\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}|g_{\mu_{z}}(\boldsymbol{x}), \exp(g_{\log \sigma_{z}}(\boldsymbol{x})))$

Objective Function: Variational Lower Bound

$$\mathcal{L}(\theta, \phi; \mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}))$$

Properties of Latent Variables:

- The prior $p_{\theta}(z)$ is a factorial distribution.
- ► VAEs are encouraged to encode independent physical attributes (e.g. speaker identity, phonemes) into orthogonal subspaces.

LATENT ATTRIBUTE REPRESENTATION

It is suggested and empirically verified in the previous work [Hsu et. al., 2017]: 1. Conditional prior of *z* on some attribute *a* being *r* (e.g. *phoneme* being */aa/*):

$$p_{\theta}(\boldsymbol{z}|\boldsymbol{y}_{a}=r)=\mathcal{N}(\boldsymbol{z};\boldsymbol{\mu}_{r},\boldsymbol{\Sigma}_{r})$$

2. $\mu_{r_i} \perp \mu_{r_i}$ if r_i and r_j are independent attributes that affect the realization of speech. $\Rightarrow \mu_r$ is defined as **latent attribute representation** for *r*.

Estimating Latent Attribute Representations

(1)

(2)

Replace the nuisance attribute of one utterance with that of another utterance. Transformation vector:

Unsupervised Domain Adaptation for Robust Speech Recognition via Variational Autoencoder-Based Data Augmentation

Wei-Ning Hsu, Yu Zhang, James Glass

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139

TRANSFORMING AN UTTERANCE

given the orthogonality property, one can modify some attributes of a speech utterance without changing other independent attributes.

NUISANCE ATTRIBUTES AND DATA AUGMENTATION

Nuisance Attributes: factors that affect the surface form of a speech utterance but not the linguistic content, such as *speaker identity*, *channel*, *background noise*.

• nuisance attributes are independent from linguistic content.

 \Rightarrow Given a labeled utterance, (1) encode, (2) modify the latent subspace that models these attributes, and (3) decode, to generate augmented labeled data

Estimating Latent Nuisance Representations:

• nuisance attributes are generally consistent within an utterance.

▶ same labels for these attributes for all the segments within an utterance.

• suppose $\{x_{utt_i}^{(n)}\}_{n=1}^{N_j}$ be the set of segments from an utterance utt_j , we then have:

$$\boldsymbol{\mu}_{utt_j} = \sum_{n=1}^{N_j} f_{\boldsymbol{\mu}_z}(\boldsymbol{x}_{utt_j}^{(n)}; \boldsymbol{\theta}) / N_j$$

Type I: Nuisance Attribute Replacement (Repl.)

Type II: Latent Nuisance Subspace Perturbation (Pert.)

Discover the latent nuisance subspace and perturb that subspace

. determine latent nuisance subspace with principle component analysis (PCA)

- given a dataset of *M* utterance, we can compute $\{\mu_{utt_i}\}_{i=1}^{M}$, on which we apply PCA.
- obtain a list of eigenvectors $\{e_d\}_{d=1}^D$ with associated eigenvalues $\{\sigma_d^2\}_{d=1}^D$.

index of eigenvector

2. sample a transformation vector for soft latent nuisance subspace perturbation:

$$\Delta \mu = \gamma \sum_{d=1}^{D} \phi_{d} \sigma_{d} e_{d}, \quad \phi_{d} \sim \mathcal{N}(0, 1)$$
(5)

Datasets

- **CHiME-4:** the training set consists of 1600 real noisy utterances and 7138 WSJ0 SI-84 clean utterances
- **Aurora-4:** multi-condition speech dataset, 2 microphone types, 6 noise types, 4620 WSJ-0 based utterances.

ASR Acoustic Model

(3)

(4)

- correctness of soft latent nuisance subspace perturbation

Setting			WER (%)	WER (%) by Condition			
Exp. Index	Aug. Method/Baselines	Fold	Avg.	Cln	Noisy	Chan	N+Ch
0	Clean-DNN-HMM	-	36.22	3.36	29.74	21.02	50.73
	DDA-DNN-HMM	-	22.53	3.24	14.52	17.82	34.55
	DNN-PP	-	18.7	5.1	12.0	10.5	29.0
1	Orig.	1	53.98	3.38	50.56	42.67	67.70
2	Repl. Noisy	1	22.53	4.80	16.31	14.72	32.99
3	Pert., $\gamma = 2.0$	1	20.68	4.45	14.33	14.74	30.72
4	Pert., $\gamma = 2.0$	16	18.76	4.04	12.84	13.54	28.01

Table: Aurora-4 test_eval92 set word error rate of acoustic models trained on different augmented sets.

EXPERIMENT SETUP

VAE Model

- **Input:** x is a segment of 20 frames, represented as mel-scale filter bank coefficient (FBank)
- **Encoder/Decoder:** two layer LSTM with 512 hidden units. Adam optimizer.
- Training Set: all conditions (clean + noisy)

transcripts available for only clean set. augmentation is based on clean data. three layer LSTM with 1024 cells and 512-node projection (CHiME-4) / six layer fully-connected with 1024 hidden units (Aurora-4)

CHIME-4 RESULTS

Setting			WER (%) by Environment			
Fold	Clean	Noisy	BUS	CAF	PED	STR
1	19.04	87.80	96.16	92.35	78.46	84.24
1	20.03	67.12	71.99	76.84	55.32	64.33
1	26.31	57.66	62.12	69.25	46.89	52.38
1	20.01	53.06	55.66	66.12	41.94	48.50
1	19.70	65.07	69.27	75.28	53.65	62.06
1	19.75	87.98	95.13	90.58	76.71	89.50
1	19.55	65.61	67.87	77.37	54.54	62.66
1	20.01	53.06	55.66	66.12	41.94	48.50
1	19.99	53.59	57.09	64.91	42.23	50.11
2	19.88	55.72	60.72	66.46	45.08	50.63
2	25.26	55.59	59.24	67.85	44.65	50.63
2	19.82	52.49	55.52	65.04	41.17	48.24
	1 1 1 1 1 1 1 1 1 7 2 2	FoldClean119.04120.03126.31120.01119.70119.75120.01119.55120.01119.9972219.88225.26	$\begin{array}{c cccccc} 1 & 19.04 & 87.80 \\ \hline 1 & 20.03 & 67.12 \\ \hline 1 & 26.31 & 57.66 \\ \hline 1 & 20.01 & 53.06 \\ \hline 1 & 19.70 & 65.07 \\ \hline 1 & 19.75 & 87.98 \\ \hline 1 & 19.75 & 87.98 \\ \hline 1 & 19.55 & 65.61 \\ \hline 1 & 20.01 & 53.06 \\ \hline 1 & 19.99 & 53.59 \\ \hline 2 & 19.88 & 55.72 \\ \hline 2 & 25.26 & 55.59 \\ \end{array}$	FoldCleanNoisyBUS119.0487.8096.161 20.03 67.1271.99126.31 57.66 62.12120.01 53.06 55.661 19.70 65.0769.27119.7587.9895.131 19.55 65.6167.87120.01 53.06 55.66119.9953.5957.09219.8855.7260.72225.2655.5959.24	FoldCleanNoisyBUSCAF119.0487.8096.1692.351 20.03 67.1271.9976.84126.31 57.66 62.1269.25120.01 53.06 55.6666.12119.7065.0769.2775.28119.7587.9895.1390.58119.7565.6167.8777.37120.01 53.06 55.6666.12119.9953.5957.0964.91219.8855.7260.7266.46225.2655.5959.2467.85	FoldCleanNoisyBUSCAFPED119.0487.8096.1692.3578.461 20.03 67.1271.9976.8455.32126.31 57.66 62.1269.2546.89120.01 53.06 55.6666.1241.941 19.70 65.0769.2775.2853.65119.7587.9895.1390.5876.711 19.55 65.6167.8777.3754.54120.01 53.06 55.6666.1241.94119.9953.5957.0964.9142.237219.8855.7260.7266.4645.08225.2655.5959.2467.8544.65

Table: CHiME-4 development set word error rate of acoustic models trained on different augmented sets.

We showed the following results:

▶ effectiveness of both replacement and perturbation, and superiority of the latter. benefit of generating more augmented data

AURORA-4 RESULTS

• Outperformed a state-of-the-art domain adversarial training-based method (DDA). ► Matched the performance of an enhancement-based method (DNN-PP), which however requires parallel data.