Extracting Domain Invariant Features by Unsupervised Learning ]r_\f‘
for Robust Automatic Speech Recognition {

Wei-Ning Hsu, James Glass CSAIL
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139

SUMMARY EXPERIMENT SETUP SHARED U, AT SPEAKER OR NOISE LEVEL
» Proposed an unsupervised learning framework for extracting domain invariant ASR We ev‘alua.te dqmain invariance of featu.res by traini'ng d supervised model on one Recall that p; is shared at the sequence level in the original FHVAE formulation.
features using factorized hierarchical variational autoencoders (FHVAES). domain with chfferent features, and testing on mul’F1plc? d(.)mams. . . » With speaker or noise label available, we can share u, at the speaker or noise level.
» Achieved up to 41% and 27% absolute word error rate reductions in mismatched = smaller testing performance gap between domains indicates beltter invariance.
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ASR Acoustic Model Encod D( d ) Seq2Seq LSTM with _ — - e N » Reasons are that when sharing u, at the
An ASR system often degrades significantly when testing on a domain mismatched : > Encoder/Decoder: Seq2Seq ok g 40 E N speaker level, noise is not a static
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1. multi-condition training. Trainine Set: clean . .g : clean + n y S - K would then be encoded by z;.
2. transform training or testing data. (corrupting training data or enhancing testing data) O > Objective: Discriminative Segmental > This also explains sharing at the speaker
3 domain-i iant tic feat > LTS EGIEIEVE G0 CaiEioRy) Variational Lower Bound )l B 2 7 level results in worse performance than
. use domain-invariant acoustic features. < ¢ ¢
= 1. often requires labeled data in all domains, and 2. often requires parallel data Discriminative Segmental Variational Lower Bound: 0 Dsequm Eve.”ﬁisﬁhamg = speater sharing at the noise-type level.
between domains. We investigate 3. that has no such constraints. | | | ( Z(i,n)| _ (i))
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S M o)) EXTENSIVE HYPER-PARAMETER SEARCH
UNSUPERVISED LEARNING OF DOMAIN INVARIANT FEATURES /
o We proceed with hyper-parameter search for FHVAE models:
Background: Variational Autoencoders (VAEs) QU ALITATIVE STUDY: T-SNE VISUALIZATION
» Describe data generation using a directed graphical . . . . Number of Layers Number of Cells Discriminative Weights
model with a latent variable z. We sample segments of 4 noise types and 4 speakers, infer their latent variable z; and tomparon ot et Fs g Comparion of umber of e cals S
» Define a decoder neural network to parameterize p(x|z). 2z, and use t-SNE to project z; and z; to two-dimensional spaces respectively. [= == [m= B w
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= Learns a representation encoding all generating factors, not domain invariant g T el O TR et > Domain-related information, = 3-Layer, 256-cells FHVAE trained with discriminative loss « = 10 yields the best
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Factorized Hierarchical Variational Autoencoders (FHVAEs) B e ———————— is clearly encoded by z». P ’
» Describe sequential data generation using a directed . speaker noise » Conditional distributions of
hierarchical graphical model with latent variables z;, %3 s WK Pl ° clean projected z; of different VERIFYING ASR Resurts on CHIME-4
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1 L L 211, 72 ~ N(z1-enc, (%, 22), z1-ence (¥, 22))  (6) | & = aome | - Having been trained on both clean and » FHVAE features outperform both baselines, consistent with results on Aurora-4
: L : | SN e § 3 h noisy data, VAE features suffer less » Increasing number of FHVAE layers from 1 to 3 shows further improvement.
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= An FHVAE learns a disentangled representation - “T& - » FHVAE features consistently
- Doma¥n-?elate.d factors e encoded by z,, as such factors e statl? within i uttefraflce. » . . H oqtperform two ba.sehnes in all |  Investigate data augmentation-based methods using FHVAEs.
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