Extracting Domain Invariant Features by Unsupervised Learning for Robust Automatic Speech Recognition

Wei-Ning Hsu, James Glass

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139

SUMMARY

- Proposed an unsupervised learning framework for extracting domain invariant ASR features using factorized hierarchical variational autoencoders (FHVAEs).
- Achieved up to 41% and 27% absolute word error rate reductions in mismatched domains on CHiME-4 and Aurora-4.

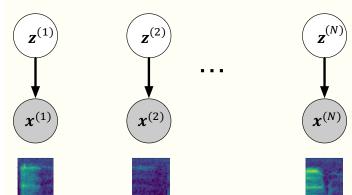
ROBUST AUTOMATIC SPEECH RECOGNITION

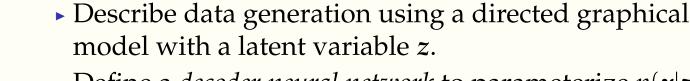
An ASR system often degrades significantly when testing on a domain mismatched from the training data. Here are a few ways to achieve robustness:

- 1. multi-condition training.
- 2. transform training or testing data. (corrupting training data or enhancing testing data) 3. use domain-invariant acoustic features.
- \Rightarrow 1. often requires labeled data in all domains, and 2. often requires parallel data between domains. We investigate 3. that has no such constraints.

Unsupervised Learning of Domain Invariant Features

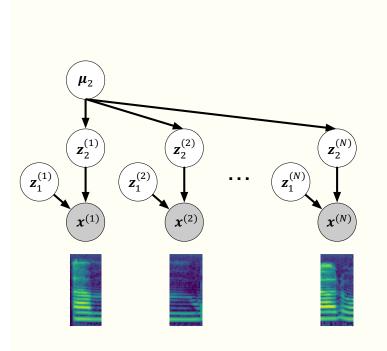
Background: Variational Autoencoders (VAEs)





- model with a latent variable z.
- ▶ Define a *decoder neural network* to parameterize p(x|z).
- Define an *encoder neural network* to parametrize q(z|x), an amortized approximation of the intractable p(z|x).
- ► The encoder/decoder networks are trained jointly to maximize a lower bound of the marginal likelihood p(x), called the *variational lower bound* $\mathcal{L}(x; p, q)$.
- ⇒ Learns a representation encoding *all* generating factors, not domain invariant

Factorized Hierarchical Variational Autoencoders (FHVAEs)



▶ Describe sequential data generation using a directed hierarchical graphical model with latent variables z_1 , z_2 , and μ_2 .

$$\mu_2 \sim \mathcal{N}(0, I)$$
 (1

$$z_1 \sim \mathcal{N}(0, I)$$

$$_{1}\sim\mathcal{N}(0,I)$$

$$z_2 \sim \mathcal{N}(\mu_2, \sigma^2 I)$$

$$x \sim \mathcal{N}(\operatorname{dec}_{\mu}(z_1, z_2), \operatorname{dec}_{\sigma^2}(z_1, z_2)) \tag{4}$$

- \blacktriangleright μ_2 is **shared** for segments from the same sequence.
- $ightharpoonup z_2$ within a sequence is encouraged to be close to each other. \Rightarrow encode static generating factors.
- $ightharpoonup z_1$ captures residual time-varying generating factors.
- ▶ Use encoder networks for variational inference

$$z_2|x \sim \mathcal{N}(z_2\text{-enc}_{\mu}(x), z_2\text{-enc}_{\sigma^2}(x))$$
 (5)

$$z_1|x, z_2 \sim \mathcal{N}(z_1\text{-enc}_{\mu}(x, z_2), z_1\text{-enc}_{\sigma^2}(x, z_2))$$
 (6)

$$\mu_2 |\{z_2^{(i)}\}_{n=1}^N \sim \mathcal{N}(\frac{\sum_{n=1}^N z_2^{(n)}}{N + \sigma^2}, I)$$
(7)

- ⇒ An FHVAE learns a disentangled representation
- ightharpoonup Domain-related factors are encoded by z_2 , as such factors are static within an utterance.
- ightharpoonup Domain-invariant phonetic factors are encoded by z_1 , which are time-varying within an utterance.

EXPERIMENT SETUP

We evaluate domain invariance of features by training a supervised model on one domain with different features, and testing on multiple domains.

 \Rightarrow smaller testing performance gap between domains indicates better invariance.

Datasets

- ► **Aurora-4:** synthesized noisy + clean
- ► CHiME-4: real noisy + clean

ASR Acoustic Model

- ▶ **Model**: three layer LSTM with 1024 cells and 512-node projection
- ► Training Set: clean
- ▶ **Objective:** frame-level cross entropy

FHVAE/VAE Model

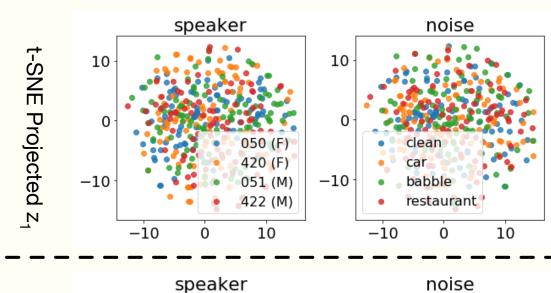
- ▶ **Input:** x is a segment of 20 frames, represented as mel-scale filter bank coefficient (FBank)
- ► Encoder/Decoder: Seq2Seq LSTM with 1/2/3 layers and 128/256/512 cells
- ► Training Set: clean + noisy
- ▶ **Objective:** Discriminative Segmental Variational Lower Bound

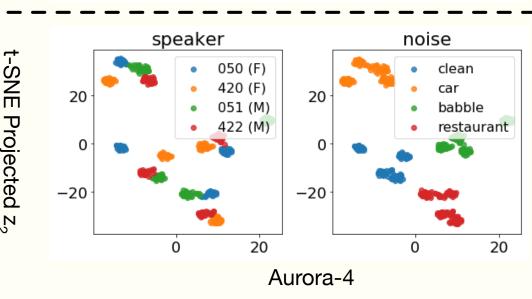
Discriminative Segmental Variational Lower Bound:

$$\mathcal{L}^{dis}(p,q;\mathbf{x}^{(i,n)}) = \mathcal{L}(p,q;\mathbf{x}^{(i,n)}) + \alpha \log \frac{p(\bar{\mathbf{z}}_{2}^{(i,n)}|\bar{\mathbf{\mu}}_{2}^{(i)})}{\sum_{j=1}^{M} p(\bar{\mathbf{z}}_{2}^{(i,n)}|\bar{\mathbf{\mu}}_{2}^{(j)})}; \quad \bar{\mathbf{z}}, \bar{\mathbf{\mu}} \text{ posterior means}$$
(8)

QUALITATIVE STUDY: T-SNE VISUALIZATION

We sample segments of 4 noise types and 4 speakers, infer their latent variable z_1 and z_2 , and use t-SNE to project z_1 and z_2 to two-dimensional spaces respectively.

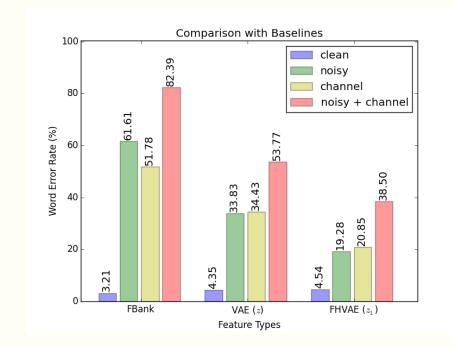




- ► Domain-related information, such as speaker and noise type, is clearly encoded by z_2 .
- Conditional distributions of projected z_1 of different domains do not seem to vary.

ASR Results Comparing with Baselines (Aurora-4)

Baseline Features: FBank / VAE latent variable z

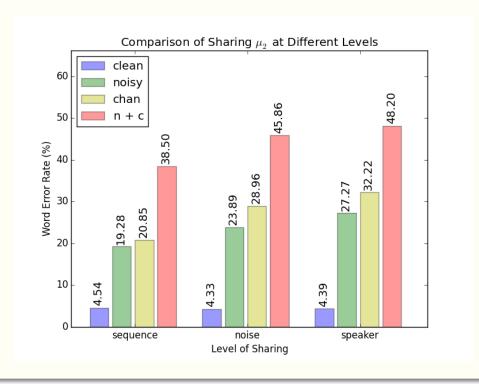


- ► FBank degrades significantly (49% to 79% absolute) in mismatched domains.
- Having been trained on both clean and noisy data, VAE features suffer less degradation. However such features still contain domain information.
- ► FHVAE features consistently outperform two baselines in all mismatched domains by a large margin, showing better domain resistance.

Shared μ_2 at Speaker Or Noise Level

Recall that μ_2 is shared at the sequence level in the original FHVAE formulation.

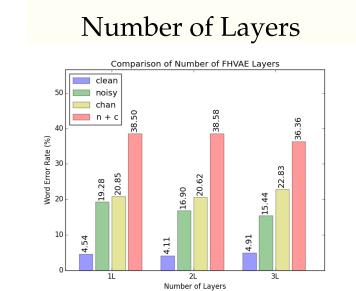
▶ With speaker or noise label available, we can share μ_2 at the speaker or noise level.

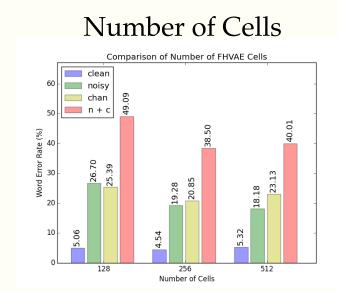


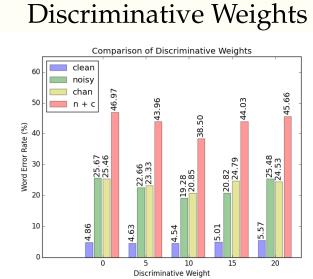
- Surprisingly, utilizing speaker/noise label in such way deteriorates the performance.
- ▶ Reasons are that when sharing μ_2 at the speaker level, noise is not a static generating factor anymore, which would then be encoded by z_1 .
- ▶ This also explains sharing at the speaker level results in worse performance than sharing at the noise-type level.

Extensive Hyper-parameter Search

We proceed with hyper-parameter search for FHVAE models:



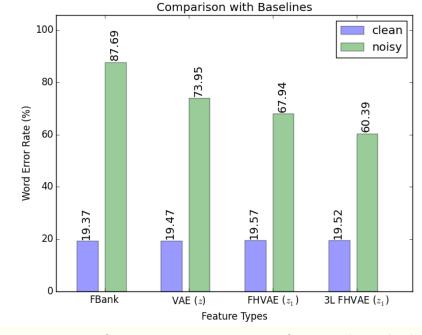


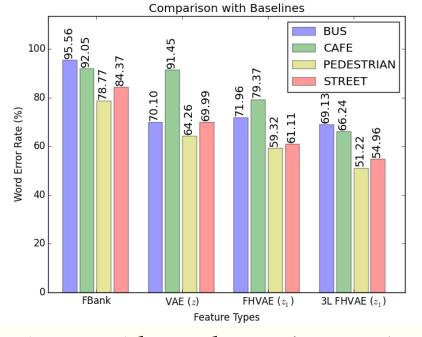


 \Rightarrow 3-Layer, 256-cells FHVAE trained with discriminative loss $\alpha = 10$ yields the best performance.

VERIFYING ASR RESULTS ON CHIME-4

Baseline Features: FBank / VAE latent variable *z*





- ▶ FHVAE features outperform both baselines, consistent with results on Aurora-4
- ▶ Increasing number of FHVAE layers from 1 to 3 shows further improvement.

FUTURE WORK

- ▶ Investigate data augmentation-based methods using FHVAEs.
- Combining domain invariant features with adversarial training for acoustic models to further boost the robustness.