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Summary

I Proposed an unsupervised learning framework for extracting domain invariant ASR
features using factorized hierarchical variational autoencoders (FHVAEs).

I Achieved up to 41% and 27% absolute word error rate reductions in mismatched
domains on CHiME-4 and Aurora-4.

Robust Automatic Speech Recognition
An ASR system often degrades significantly when testing on a domain mismatched
from the training data. Here are a few ways to achieve robustness:
1. multi-condition training.
2. transform training or testing data. (corrupting training data or enhancing testing data)
3. use domain-invariant acoustic features.
⇒ 1. often requires labeled data in all domains, and 2. often requires parallel data
between domains. We investigate 3. that has no such constraints.

Unsupervised Learning of Domain Invariant Features
Background: Variational Autoencoders (VAEs)
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I Describe data generation using a directed graphical

model with a latent variable z.
I Define a decoder neural network to parameterize p(x|z).
I Define an encoder neural network to parametrize q(z|x),

an amortized approximation of the intractable p(z|x).
I The encoder/decoder networks are trained jointly to

maximize a lower bound of the marginal likelihood
p(x), called the variational lower bound L(x; p, q).

⇒ Learns a representation encoding all generating factors, not domain invariant

Factorized Hierarchical Variational Autoencoders (FHVAEs)
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I Describe sequential data generation using a directed
hierarchical graphical model with latent variables z1,
z2, and µ2.

µ2 ∼ N(0, I) (1)
z1 ∼ N(0, I) (2)
z2 ∼ N(µ2,σ2I) (3)
x ∼ N(decµ(z1, z2), decσ2(z1, z2)) (4)

I µ2 is shared for segments from the same sequence.
I z2 within a sequence is encouraged to be close to each

other. ⇒ encode static generating factors.
I z1 captures residual time-varying generating factors.
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I Use encoder networks for variational inference

z2|x ∼ N(z2-encµ(x), z2-encσ2(x)) (5)
z1|x, z2 ∼ N(z1-encµ(x, z2), z1-encσ2(x, z2)) (6)

µ2|{z
(i)
2 }Nn=1 ∼ N(

∑N
n=1 z(n)

2

N + σ2 , I) (7)

⇒ An FHVAE learns a disentangled representation
I Domain-related factors are encoded by z2, as such factors are static within an utterance.
I Domain-invariant phonetic factors are encoded by z1, which are time-varying within

an utterance.

Experiment Setup
We evaluate domain invariance of features by training a supervised model on one
domain with different features, and testing on multiple domains.
⇒ smaller testing performance gap between domains indicates better invariance.
Datasets
I Aurora-4: synthesized noisy + clean
I CHiME-4: real noisy + clean

ASR Acoustic Model
I Model: three layer LSTM with 1024

cells and 512-node projection
I Training Set: clean
I Objective: frame-level cross entropy

FHVAE/VAE Model
I Input: x is a segment of 20 frames,

represented as mel-scale filter bank
coefficient (FBank)

I Encoder/Decoder: Seq2Seq LSTM with
1/2/3 layers and 128/256/512 cells

I Training Set: clean + noisy
I Objective: Discriminative Segmental

Variational Lower Bound

Discriminative Segmental Variational Lower Bound:

Ldis(p, q; x(i,n)) = L(p, q; x(i,n)) + α log
p(z̄(i,n)
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; z̄, µ̄ posterior means (8)

Qualitative Study: t-SNE visualization

We sample segments of 4 noise types and 4 speakers, infer their latent variable z1 and
z2, and use t-SNE to project z1 and z2 to two-dimensional spaces respectively.
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I Domain-related information,
such as speaker and noise type,
is clearly encoded by z2.

I Conditional distributions of
projected z1 of different
domains do not seem to vary.

ASR Results Comparing with Baselines (Aurora-4)

Baseline Features: FBank / VAE latent variable z

I FBank degrades significantly (49% to
79% absolute) in mismatched domains.

I Having been trained on both clean and
noisy data, VAE features suffer less
degradation. However such features
still contain domain information.

I FHVAE features consistently
outperform two baselines in all
mismatched domains by a large margin,
showing better domain resistance.

Shared µ2 at Speaker Or Noise Level

Recall that µ2 is shared at the sequence level in the original FHVAE formulation.
I With speaker or noise label available, we can share µ2 at the speaker or noise level.

I Surprisingly, utilizing speaker/noise
label in such way deteriorates the
performance.

I Reasons are that when sharing µ2 at the
speaker level, noise is not a static
generating factor anymore, which
would then be encoded by z1.

I This also explains sharing at the speaker
level results in worse performance than
sharing at the noise-type level.

Extensive Hyper-parameter Search
We proceed with hyper-parameter search for FHVAE models:

Number of Layers Number of Cells Discriminative Weights

⇒ 3-Layer, 256-cells FHVAE trained with discriminative loss α = 10 yields the best
performance.

Verifying ASR Results on CHiME-4
Baseline Features: FBank / VAE latent variable z

I FHVAE features outperform both baselines, consistent with results on Aurora-4
I Increasing number of FHVAE layers from 1 to 3 shows further improvement.

FutureWork

I Investigate data augmentation-based methods using FHVAEs.
I Combining domain invariant features with adversarial training for acoustic models to

further boost the robustness.
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