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Summary
IProposed a factorized hierarchical variational autoencoder (FHVAE) model, which

learns to encode sequence-level attributes (e.g. speaker) and segment-level attributes
(e.g. phoneme) into different sets of latent variables.
IShowed the capability of voice conversion and denoising without parallel data.
IApplied learned representations to speaker verification and domain invariant speech

recognition tasks, which outperform i-vectors and reduce word error rate by 35%.

Motivation
IGeneration of sequential data involves multiple independent factors operating at

different temporal scales (channel/speaker/phoneme).
I If we chunk a sequence into segments, and analyze the attributes of each segment:
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utterance1 utterance2

ISome attributes tend to have a smaller amount of variation within a sequence,
compared to between utterances, such as F0 and volume→ Sequence-Level Attributes
IOther attributes tend to have a similar amount of variation within and between

utterances, such as phonetic content→ Segment-Level Attributes
⇒We can exploit this property to factorize sequence-level and segment-level attributes

Factorized Hierarchical Variational Autoencoders
IA generative process for a sequence X = {x(n)}Nn=1:
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1. draw an s-vector µ2 from pθ(µ2) = N(µ2|0,σ2
µ2
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2. draw N i.i.d. latent sequence variables

Z2 = {z(n)
2 }Nn=1 from pθ(z2|µ2) = N(z2|µ2,σ2
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3. draw N i.i.d. latent segment variables
Z1 = {z(n)

1 }Nn=1 from pθ(z1) = N(z1|0,σ2
z1

I).
4. draw N i.i.d. observed variables X = {x(n)}Nn=1 from

pθ(x|z1, z2) = N(x|fµx(z1, z2), diag(fσ2
x
(z1, z2))).

I Joint probability:
pθ(X, Z1, Z2,µ2) = pθ(µ2)
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IAn inference model qφ(·|X(i)) for approximating pθ(·|X(i)) (i is a sequence index):
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IObjective Function: Segment Variational Lower Bound

L(θ,φ; x(n)) = L(θ,φ; x(n)|µ̃2) +
1
N

log pθ(µ̃2) + const
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Boosting Factorization with Discriminative Objective

IWe do not want µ̃2 for different sequences to collapse to the same mode
⇒ FHVAE would degenerate to normal VAE in this case

IEncourage discriminability of z2 regarding sequences:
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INew Objective Function: Discriminative Segment Variational Lower Bound

Ldis(θ,φ; x(i,n)) = L(θ,φ; x(i,n)) + α log p(i|z(i,n)
2 )

Segment-to-Segment FHVAE Architecture
IEach x is a segment (sub-sequence) of a sequence X.
Iwe need an encoder to infer z1 and z2 from a segment x (gµz2

(·), gσ2
z2
(·), gµz1

(·, ·), and gσ2
z1
(·, ·)),

I and a decoder to generate a segment x conditioned on z1 and z2 (fµx(·, ·) and fσ2
x
(·, ·))).

IWe apply a segment-to-segment model. Let x = {xt}
T
t=1 be a segment of T time steps:
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Experiment Setup
Datasets
ITIMIT: clean speech dataset, 6300

utterances (5.4 hours), 630 speakers.
IAurora-4: multi-condition speech dataset,

2 microphone types, 6 noise types, 4620
WSJ-0 based utterances (9 hours)

Model
I Input: x is a segment of 20 frames,

represented as mel-scale filter bank
coefficient (FBank) or log power spectrum.
Feature frames are computed every 10ms
IEncoder/Decoder: 256 hidden units,
σ2

z1
= σ2

µ2
= 1, σ2

z2
= 0.25, ADAM optimizer.

Qualitative Evaluation – Visualize Factorization
Generate a segment C, conditioned on the latent segment variable of A and the latent
sequence variable of B
IC should preserve A’s segment-level attributes, such as phonetic content, and
IC should exhibit B’s sequence-level attributes, such as speaker identity and volume
I consistent linguistic content (contour of formants) within a row
I consistent speaker identity (spacing between harmonics) within a column
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Qualitative Evaluation – Audio Translation
We cast denoising and voice conversion as audio translation problems, which aim to
transform sequence-level attributes while preserving segment-level attributes.
I In our framework, it is equivalent to mapping the distribution of latent sequence

variables of the source utterance X(src) to that of the target utterance X(tar).
IFor each segment in X(src), shift z(src,n)

2 by ∆µ2 = µ
(tar)
2 − µ

(src)
2 . Keep z(src,n)

1 unaltered.
I sequence-level attributes (volume/pitch) are translated, while linguistic content is preserved.
I relative volume levels between segments in the source sequence are preserved.
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Quantitative Evaluation – Speaker Verification
S-vectors and latent sequence variables should capture information about
sequence-level attributes. We evaluate this property quantitatively via a speaker
verification task on TIMIT: (full table is available in paper)

Features Dimension α Raw LDA (12 dim) LDA (24 dim)

i-vector
48 - 10.12% 6.25% 5.95%
100 - 9.52% 6.10% 5.50%
200 - 9.82% 6.54% 6.10%

µ2

16 0 5.06% 4.02% -
16 10 2.38% 2.08% -
32 10 2.38% 2.08% 1.34%

µ1
16 10 27.68% 22.17% -
32 10 22.47% 16.82% 17.26%

Table: Comparison of speaker verification equal error rate (EER) on the TIMIT test set

Quantitative Evaluation – Domain Invariant ASR
We want to examine if latent segment variables contain segment-level attributes,
phonetic content, but not sequence-level attributes, speaker/environmental noise.
I train an automatic speech recognition system using latent segment variables on one

domain, and test on mismatched domains.

Train Set and Configuration Test PER by Set
ASR FHVAE Features Male Female All

Train Male - FBank 21.0% 32.8% 25.2%
Train All, α = 10 z1 22.0% 26.2% 23.5%

Table: TIMIT test phone error rate of acoustic models trained on different features and sets

Train Set and Configuration Test WER by Set
ASR {FH-,β-}VAE Features Clean Noisy Channel NC All

Train Clean

- FBank 3.47% 50.97% 36.99% 71.80% 55.51%
Dev z (VAE) 4.95% 23.54% 31.12% 46.21% 32.47%
Dev, β = 4 z (β-VAE) 3.89% 24.40% 29.80% 47.87% 33.38%
Dev, α = 10 z1 (FHVAE) 5.01% 16.42% 20.29% 36.33% 24.41%
Dev, α = 10 z2 (FHVAE) 41.08% 68.73% 61.89% 86.36% 72.53%

Table: Aurora-4 test word error rate of acoustic models trained on different features and sets
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