Unsupervised Learning of Disentangled and Interpretable Representations from Sequential Data Wei-Ning Hsu, Yu Zhang, James Glass

SUMMARY

- Proposed a factorized hierarchical variational autoencoder (FHVAE) model, which learns to encode sequence-level attributes (e.g. speaker) and segment-level attributes (e.g. phoneme) into different sets of latent variables.
- Showed the capability of voice conversion and denoising without parallel data.
- Applied learned representations to speaker verification and domain invariant speech recognition tasks, which outperform i-vectors and reduce word error rate by 35%.

MOTIVATION

- Generation of sequential data involves multiple independent factors operating at different temporal scales (channel/speaker/phoneme).
- ▶ If we chunk a sequence into segments, and analyze the attributes of each segment:

Some attributes tend to have a smaller amount of variation within a sequence, compared to between utterances, such as F0 and volume \rightarrow Sequence-Level Attributes Other attributes tend to have a similar amount of variation within and between utterances, such as phonetic content \rightarrow Segment-Level Attributes \Rightarrow We can exploit this property to factorize sequence-level and segment-level attributes

FACTORIZED HIERARCHICAL VARIATIONAL AUTOENCODERS

• A generative process for a sequence $X = \{x^{(n)}\}_{n=1}^N$:

- 1. draw an s-vector μ_2 from $p_{\theta}(\mu_2) = \mathcal{N}(\mu_2 | \mathbf{0}, \sigma_{\mu_2}^2 \mathbf{I})$ 2. draw *N* i.i.d. latent sequence variables $Z_2 = \{z_2^{(n)}\}_{n=1}^N \text{ from } p_{\theta}(z_2|\mu_2) = \mathcal{N}(z_2|\mu_2, \sigma_{z_2}^2 I)$ **3**. draw *N* i.i.d. **latent segment variables** $Z_1 = \{z_1^{(n)}\}_{n=1}^N \text{ from } p_{\theta}(z_1) = \mathcal{N}(z_1|\mathbf{0}, \sigma_{z_1}^2 I).$ **4**. draw *N* i.i.d. **observed variables** $X = {x^{(n)}}_{n=1}^{N}$ from $p_{\theta}(x|z_1, z_2) = \mathcal{N}(x|f_{\mu_x}(z_1, z_2), diag(f_{\sigma_y^2}(z_1, z_2))).$
- Joint probability:

$$p_{\theta}(\mathbf{X}, \mathbf{Z}_1, \mathbf{Z}_2, \mu_2) = p_{\theta}(\mu_2) \prod_{n=1}^N p_{\theta}(\mathbf{x}^{(n)} | \mathbf{z}_1^{(n)}, \mathbf{z}_2^{(n)}) p_{\theta}(\mathbf{z}_1^{(n)}) p$$

An inference model $q_{\phi}(\cdot|\mathbf{X}^{(i)})$ for approximating $p_{\theta}(\cdot|\mathbf{X}^{(i)})$ (*i* is a sequence index):

- $\mathbf{P}_{\Phi}(\mathbf{\mu}_{2}^{(i)}) = \mathcal{N}(\mathbf{\mu}_{2}^{(i)}|g_{\mathbf{\mu}_{\mathbf{\mu}_{2}}}(i), \sigma_{\tilde{\mathbf{\mu}}_{2}}^{2}\mathbf{I})$ • $q_{\phi}(z_2|x) = \mathcal{N}(z_2|g_{\mu_{z_2}}(x), diag(g_{\sigma_{z_2}}(x)))$
- $P_{\Phi}(z_1|x,z_2) = \mathcal{N}(z_1|g_{\mu_{z_1}}(x,z_2), diag(g_{\sigma_{z_1}}(x,z_2)))$
- Posterior probability: $q_{\Phi}(\mathbf{Z}_{1}^{(i)}, \mathbf{Z}_{2}^{(i)}, \boldsymbol{\mu}_{2}^{(i)} | \mathbf{X}^{(i)}) = q_{\Phi}(\boldsymbol{\mu}_{2}^{(i)}) \prod_{n=1}^{N^{(i)}} q_{\Phi}(\mathbf{z}_{1}^{(i,n)} | \mathbf{x}^{(i,n)}, \mathbf{z}_{2}^{(i,n)}) q_{\Phi}(\mathbf{z}_{1}^{(i,n)} | \mathbf{z}_{2}^{(i,n)} | \mathbf{z}_{2}^{(i,n)}$
- Objective Function: Segment Variational Lower Bound

$$\begin{split} \mathcal{L}(\theta, \phi; \mathbf{x}^{(n)}) &= \mathcal{L}(\theta, \phi; \mathbf{x}^{(n)} | \tilde{\mu}_{2}) + \frac{1}{N} \log p_{\theta}(\tilde{\mu}_{2}) + const \\ \mathcal{L}(\theta, \phi; \mathbf{x}^{(n)} | \tilde{\mu}_{2}) &= \mathbb{E}_{q_{\phi}(z_{1}^{(n)}, z_{2}^{(n)} | \mathbf{x}^{(n)})} \left[\log p_{\theta}(\mathbf{x}^{(n)} | z_{1}^{(n)}, z_{2}^{(n)}) \right] \\ &- \mathbb{E}_{q_{\phi}(z_{2}^{(n)} | \mathbf{x}^{(n)})} \left[D_{KL}(q_{\phi}(z_{1}^{(n)} | \mathbf{x}^{(n)}, z_{2}^{(n)}) | | p_{\theta}(z_{1}^{(n)})) \right] - D_{KL}(q_{\phi}(z_{1}^{(n)} | \mathbf{x}^{(n)}, z_{2}^{(n)})) \right] \\ \tilde{\mu}_{2} &= g_{\mu_{\mu_{2}}}(i) \end{split}$$

 $p_{\theta}(\boldsymbol{z}_{2}^{(n)}|\boldsymbol{\mu}_{2})$

$$\mathbf{x}_{2}^{(i,n)}|\mathbf{x}^{(i,n)})$$

 $q_{\Phi}(\boldsymbol{z}_{2}^{(n)}|\boldsymbol{x}^{(n)})||p_{\theta}(\boldsymbol{z}_{2}^{(n)}|\boldsymbol{\tilde{\mu}}_{2}))|$

BOOSTING FACTORIZATION WITH DISCRIMINATIVE OBJECTIVE

- We do not want $\tilde{\mu}_2$ for different sequences to collapse to the same mode ⇒ FHVAE would degenerate to normal VAE in this case • Encourage **discriminability of** z_2 regarding sequences:

 $\log p(i|z_2^{(i,n)}) = \log p(z_2^{(i,n)}|i) - \log \sum p(z_2^{(i,n)}|j)$

New Objective Function: Discriminative Segment Variational Lower Bound $\mathcal{L}^{dis}(\theta, \phi; \mathbf{x}^{(i,n)}) = \mathcal{L}(\theta, \phi; \mathbf{x}^{(i,n)}) + \alpha \log p(i|\mathbf{z}_2^{(i,n)})$

SEGMENT-TO-SEGMENT FHVAE ARCHITECTURE

- Each *x* is a **segment** (sub-sequence) of a sequence *X*. • we need an *encoder* to infer z_1 and z_2 from a segment $x(g_{\mu_{z_2}}(\cdot), g_{\sigma_{z_2}^2}(\cdot), g_{\mu_{z_1}}(\cdot, \cdot), \text{ and } g_{\sigma_{z_1}^2}(\cdot, \cdot))$,
- We apply a **segment-to-segment model**. Let $x = \{x_t\}_{t=1}^T$ be a segment of T time steps:

EXPERIMENT SETUP

Datasets

- **TIMIT:** clean speech dataset, 6300 utterances (5.4 hours), 630 speakers.
- Aurora-4: multi-condition speech dataset, 2 microphone types, 6 noise types, 4620 WSJ-0 based utterances (9 hours)

QUALITATIVE EVALUATION – VISUALIZE FACTORIZATION

Generate a segment **C**, conditioned on the **latent segment variable of A** and the **latent** sequence variable of B

- **C** should preserve **A**'s segment-level attributes, such as phonetic content, and
- consistent linguistic content (contour of formants) within a row
- consistent speaker identity (spacing between harmonics) within a column

same speaker identit

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139

$$) := \log p_{\theta}(\boldsymbol{z}_{2}^{(i,n)} | \boldsymbol{\tilde{\mu}}_{2}^{(i)}) - \log \left(\sum_{i=1}^{M} p_{\theta}(\boldsymbol{z}_{2}^{(i,n)} | \boldsymbol{\tilde{\mu}}_{2}^{(j)}) \right)$$

• and a *decoder* to generate a segment x conditioned on z_1 and $z_2(f_{\mu_x}(\cdot, \cdot))$ and $f_{\sigma_x^2}(\cdot, \cdot))$.

Model

- **Input:** *x* is a segment of 20 frames, represented as mel-scale filter bank coefficient (FBank) or log power spectrum. Feature frames are computed every 10ms
- Encoder/Decoder: 256 hidden units, $\sigma_{z_1}^2 = \sigma_{\mu_2}^2 = 1, \, \sigma_{z_2}^2 = 0.25, \, \text{ADAM optimizer.}$

C should exhibit **B**'s sequence-level attributes, such as speaker identity and volume

Female Speaker Segments monics Har

QUALITATIVE EVALUATION – AUDIO TRANSLATION

We cast *denoising* and *voice conversion* as **audio translation** problems, which aim to transform sequence-level attributes while preserving segment-level attributes. In our framework, it is equivalent to mapping the distribution of latent sequence variables of the source utterance $X^{(src)}$ to that of the target utterance $X^{(tar)}$. For each segment in $X^{(src)}$, shift $z_2^{(src,n)}$ by $\Delta \mu_2 = \mu_2^{(tar)} - \mu_2^{(src)}$. Keep $z_1^{(src,n)}$ unaltered. sequence-level attributes (volume/pitch) are translated, while linguistic content is preserved. relative volume levels between segments in the source sequence are preserved.

QUANTITATIVE EVALUATION – SPEAKER VERIFICATION

S-vectors and **latent sequence variables** should capture information about sequence-level attributes. We evaluate this property quantitatively via a speaker **verification** task on TIMIT: (full table is available in paper)

Features	Dimension	α	Raw	LDA (12 dim)	LDA (24 dim)
i-vector	48	_	10.12%	6.25%	5.95%
	100	_	9.52%	6.10%	5.50%
	200	_	9.82%	6.54%	6.10%
	16	0	5.06%	4.02%	—
μ_2	16	10	2.38%	2.08%	_
	32	10	2.38%	2.08%	1.34%
	16	10	27.68%	22.17%	_
μ_1	32	10	22.47%	16.82%	17.26%

Table: Comparison of speaker verification equal error rate (EER) on the TIMIT test set

QUANTITATIVE EVALUATION – DOMAIN INVARIANT ASR

We want to examine if **latent segment variables** contain segment-level attributes, phonetic content, but not sequence-level attributes, speaker/environmental noise. Itrain an automatic speech recognition system using latent segment variables on one domain, and test on mismatched domains.

_								
_	Irain Set and Configuration			Test PER by Set				
	ASR FHVAE			Features	A11			
=	Train Mala	_		FBank	21.0%	32.8%	25.2%	
	Iram Male	Train	All, $\alpha = 10$	$oldsymbol{z}_1$	22.0%	26.2%	23.5%	
M	IT test phone	error r	rate of acoustic	models tr	ained on	different f	eatures an	d sets
an	d Configur	ation			Tes	t WER by	v Set	
	$\{FH-,\beta-\}VA$	AE	Features	Clean	Noisy	Channe	INC	All
	_		FBank	3.47%	50.97%	36.99%	71.80%	55.51%
	Dev		z (VAE)	4.95%	23.54%	31.12%	46.21%	32.47%
n	Dev, $\beta = 4$:	z (β -VAE)	3.89%	24.40%	29.80%	47.87%	33.38%
	Dev, $\alpha = 1$	0	z_1 (FHVAE)	5.01%	16.42%	20.29%	36.33%	24.41%
	Dev, $\alpha = 1$	0	z_2 (FHVAE)	41.08%	68.73%	61.89%	86.36%	72.53%
ro	ra-4 test word	d error	rate of acoustic	c models f	rained or	n different	features a	nd sets

Table: TI

Train Set a ASR

mants

Train Clea

Table: Au

