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Abstract

One of the most important input providers for data stream
management systems (DSMSs) is a sensor network. Such
a network can have query functionality offered as a sensor
network query processor (SNQP). Then some of the data
stream operators can be executed in the DSMS as well as
in the SNQP. This paper addresses the problem of finding
the optimal solution. It shows first steps like the moving of
operators and the modification of the epoch duration. The
primary goal is to prolong the lifetime of the sensor net-
work. A QoS-based goal function is introduced, and the
optimization process is explained. It has been implemented
with Borealis and TinyDB. Some preliminary results from
the ongoing evaluation are given.

1. Introduction

Over the past years, sensor network query processors

(SNQPs) like Cougar [10] and TinyDB [7] have been devel-

oped to ease the access to data produced by sensor networks

(SNs). Such networks may consist of small battery-powered

motes with possibly lossy wireless communication. The

main goal for these SNs is to reduce the power consumption

in order to increase the lifetime of the motes. This paper fo-

cusses on such SNs of battery-powered motes.

SNQPs act as a natural data source for data stream man-

agement systems (DSMSs). Today, the major DSMSs are

STREAM [4], TelegraphCQ [5], and Borealis [2]. Adabi et

al. developed an integration framework [3] for DSMSs and

SNQPs. Integrating these systems is promising because it

extends the query execution from the DSMS to the SNQP,

so more flexibility is added to the query optimization. To

date the integration framework features only a very basic

optimization for allocating operators to the two systems.

This paper presents a more elaborated approach to that and

uses Borealis and TinyDB as platforms.

The problem of allocating operators in the SNQP rather

than in the DSMS can be faced with two approaches. First,

the basic approach is to move operators between the two

systems without changing their order in the query. Second,

an extended approach is to additionally reorder the opera-

tors of the query. Obviously, with reordering of operators

there are more possibilities of allocating the operators in

the combined system, yielding optimal results. However,

the intention of this paper is to show that even with the ba-

sic and much simpler approach of moving operators without

changing their order in the query, the lifetime of the SN can

be increased significantly. In a next step reordering can be

included. Operator reordering in the context of SNQPs is

already considered by Srivastava et al. [9].

The purpose of extending the query processing to the

SNQP is twofold. First, Borealis is enabled to better fulfill

the QoS requirements of the users. Second, the lifetime of

the SN is increased by executing tuple-reducing operators

in the network.

The ideas and concepts which are the basis for the op-

timization are clarified in the next section. In Section 3

the new optimization possibilities for DSMSs with an in-

tegrated SNQP are outlined. The QoS-based rating model

is pointed out in Section 4. In Section 5 the optimization

procedure is presented. Section 6 presents an evaluation

of the prototypical implementation. The paper ends with a

conclusion.

2. Background

2.1. Query-processing Operators: the Bo-
realis Boxes

The Borealis system [11] uses the box-and-arrow paradigm

to specify the data flow. A box represents a query operator

and an arrow represents the data flow between boxes. In this

paper box is used as a synonym for operator.

Borealis has inherited its set of boxes from Aurora [1].



From this set, the following are of interest for the optimiza-

tion, because they are available in most SNQPs, too:

• filter is equivalent to an extended relational selec-

tion. It can split an input stream into one or more out-

put streams depending on predicates.

• map is equivalent to a relational projection. It may also

perform computations on attributes of the input tuples.

• aggregate applies aggregate functions to a sliding

window of stream tuples.

For the purpose of this paper an additional user-defined box

named static join is used. It joins the tuples of its

input stream with those of a static table.

2.2. Sensor Network Query Processors

SNQPs provide database-like access to sensor data in SNs

via a simple querying interface. Today there are two impor-

tant SNQPs: Cougar [10] developed at Cornell University

and TinyDB [7] from UC Berkeley.

Both systems have important properties in common.

They use SNs of battery-powered motes connected by wire-

less communication. Communication with the outside

world (e.g. a DSMS) is directed through a base station. De-

pending on the surrounding conditions, the communication

can be lossy, i.e. tuples may get lost when sent from the

motes to the base station. Also, the motes have only a lim-

ited amount of energy. Energy is consumed by communi-

cating, processing and sensing. However, the energy con-

sumption of communication is dominant [8]. Due to this

fact processing on the motes that reduces communication is

worthwhile.

In both systems queries are specified using an SQL-like

query language such as TinySQL [7]. A query is deployed

at the base station and from there propagated into the net-

work of sensing motes. Either system supports the follow-

ing set of relational operators: selection, projection, aggre-

gation, and static join.

SNs acquire data in certain intervals. The sensing rate

for a query is specified as the time span between subsequent

sensings. In TinySQL, this sampling interval is called epoch
duration.

Compared with Borealis, the functionality of SNQPs is

limited by the SQL-like query language. Only operators

with one input stream and one output stream are avail-

able. Basically, the supported Borealis boxes are filter
(F), map (M), aggregate (A), and static join (J).

But due to the limited functionality of the SNQPs, they

only come as restricted versions. For example, a Borealis

filter box supports several output streams. To execute

it in the SNQP, it must be translated into a semantically

equivalent set of selection queries. Both SNQPs sup-

port only map boxes with a simple projection. Further re-

strictions specific to a certain SNQP will not be enumerated

here. From now on, only the restricted versions of boxes

will be considered, since they are eligible for execution in

the SNQP and thus subject to optimization.

2.3. Integration Framework

A framework for the integration of SNQPs with Borealis

has been proposed in [3]. It offers an architecture for in-

tegrating data sources with query capabilities and a system

with metrics and scores for measuring the integrated data

sources.

The proposed architecture consists of wrappers and a

connection layer. Each wrapper covers a specific integrated

data source and provides a uniform way to access it. It fur-

ther offers information about services and constraints of the

SNQP. Services are the available data and the supported

Borealis boxes. Constraints define boundaries for scores.

The wrapper also offers information about the actual sys-

tem state at runtime. The connection layer consists of sen-

sor proxies. A sensor proxy connects one Borealis site with

one or more data sources covered by wrappers.

Metrics and scores have first been introduced in [6]. Met-
rics are query- or system-dependent measurements taken

with a sampling interval that equals the epoch duration.

They represent the system behavior during the sampling in-

terval or at the sampling time.

In detail, the wrappers provide the following metrics.

The first two metrics (tl and tps) are system-dependent.

The remaining metrics are query-dependent.

• TransmissionsLeft (tl): The remaining number of

transmissions from the SN.

• Transmissions (tps): The number of transmissions per

second from the SN.

• Throughput (tp): The number of tuples per second for

a certain query.

• Sent (s): The number of tuples sent by the motes for a

certain query.

• Received (r): The number of tuples received by the

base station for a certain query. It can be less than s
since the communication is lossy.

• Selectivity (se): The selectivity of a certain query in

the SN.

tl represents the remaining energy of the motes in terms of

the number of transmissions until the SN is out of power.

tps gives the number of transmissions per second sent from



the SN to the base station including the tuples of all queries

in the network. tp represents the transmissions per second

for a particular query. se finally indicates the fraction of

transmitted tuples from the sensed tuples.

Based on metrics, scores can be defined as combined val-

ues that indicate the quality of processing. Here, the follow-

ing scores are used:

• Lifetime (LIF ): The remaining time until the SN is

out of power.

LIF = tl
tps

• Throughput (THR): The number of sensed tuples per

second for a certain query. The value represents the

input tuple rate of the SNQP.

THR = tp·s
se·r

• Coverage (COV ): The fraction of successfully re-

ceived tuples for a certain query.

COV = r
s

3. Optimization Possibilities

Borealis is a powerful data stream processing system. An

SNQP in contrast has less processing capabilities and most

notably, it has only a limited amount of energy. Therefore,

the main goal of the optimization should be to save energy

at the motes.

3.1. Optimization Tasks

The optimization has to decide which part of a query is ex-

ecuted in the SNQP. For this subquery, the regular interface

for querying the SNQP, namely the SQL-like query lan-

guage must be used. It allows to specify the operators for

the query and additionally the epoch duration. The follow-

ing two aspects are addressed here as optimization tasks:

First, the allocation of boxes to the two systems is opti-

mized. Second, the epoch duration for the query in the

SNQP is optimized.

The optimization of the box allocation decides which

boxes are processed by the SNQP rather than in Borealis.

Boxes are moved to the SN only to reduce the number of

tuples that have to be transmitted within the SN. In gen-

eral the number of transmissions is reduced by boxes with

a selectivity less than 1. But boxes with such a selectivity

should not always be processed in the SN; this depends on

the particular box. The box-specific aspects are described

below in 3.2.

A Borealis query does not specify an epoch duration. But

for a query in an SNQP an epoch duration must be given.

It can be computed based on the user requirements (see

Section 4) as a trade-off between lifetime and throughput.

A high epoch duration results in a high lifetime but a low

throughput and vice versa. Additionally, the epoch duration

can be used for load shedding: Instead of dropping tuples,

the epoch duration is increased.

3.2. Details on Boxes

The boxes can be classified in two categories. The first in-

cludes boxes that are generally executed in the SN: map and

filter. The second category contains boxes whose allo-

cation is determined by the optimizer: aggregate and

static join.

A filter box has a selectivity less than or equal to

1. If moved to the SN, it reduces the number of transmis-

sions (unless the selectivity is 1). This reduction decreases

power consumption and increases the lifetime of the SN. A

filter executed in an SN with a certain tuple loss rate

has no effect on the coverage of the query results. As a

consequence, it is always executed there.

The map box has a selectivity of 1. Due to the projection

of attributes, the size of the tuples can be reduced. Hence,

moving a map to the SN can reduce the amount of data to

transmit. In that case fewer sensors of the motes have to be

read, too. This decreases the consumed power. Executing

a map in an SN with lossy communication will not affect

the coverage of the query because the number of tuples to

transmit is not changed. So, map is always executed there.

The properties of a static join depend on the static

table and the join predicates. The selectivity can theoreti-

cally be between 0 and ∞. It depends on the sensed data

and on the data in the table. Based on them it is possible

to decide whether the selectivity can be greater than 1. The

tuple size can be enlarged. Moving a static join to

the SN requires initial transmission of the static table to the

motes, which consumes power and reduces the lifetime of

the SN. If the static join has a selectivity less than 1,

it reduces the number of transmissions within the SN and

thus improves the lifetime. The static join must be

executed in the SN long enough to amortize the initial cost

of table distribution. Executing a static join in an SN

with lossy communication does not affect the coverage of

the query.

An aggregate box cumulates tuples. It has a selec-

tivity less than 1. So an aggregate executed in the SN

reduces the number of transmissions and therefore increases

the lifetime. The loss of an aggregate tuple implies the loss

of all tuples contributing to the aggregate. Therefore the

loss of an aggregate tuple results in a low coverage score,

whereas a successfully transmitted aggregate tuple results

in a high coverage score. So the coverage has an increased

variance if the aggregate is executed in an SN with lossy

communication. An aggregate should be executed in the

SN if the network is not lossy or the increased variance of

coverage is acceptable for the user.



4. Rating Model

Borealis users define their QoS requirements for the output

of queries in terms of lifetime, latency, throughput, and cov-

erage. These requirements must be transformed upstream,

so they can be used for the optimization. Latency cannot be

supported at the moment.

For evaluation purposes a simplified way of specifying

user QoS requirements is used here. For each score (life-

time, throughput, and coverage), two values representing

the upper and lower QoS boundary are given. Scores be-

low the lower boundary are not acceptable, whereas scores

above the upper boundary indicate best QoS for the user.

With these two values a QoS function is defined. The do-

main for it is set to [0, 1], where 1 indicates best QoS and

0 indicates worst. A QoS function transforms a score into

a QoS value. For example, the QoS function for coverage

QoSCOV with the lower boundary COVlow and the upper

boundary COVup can be:

QoSCOV =

⎧⎨
⎩

0 if COV < COVlow

1 if COV > COVup
COV −COVlow

COVup−COVlow
else

The QoS functions for the other scores are defined in a sim-

ilar fashion. They are used to rate the box allocations and

epoch durations for the optimization. Those with the high-

est QoS are selected as the best solution.

5. Optimization Process

When a new query is deployed, the distribution is initially

optimized. Since no metrics are available yet, only maps

and filters are moved to the SN. The initial epoch dura-

tion is set to ed = nmotes/tpup using the number of motes

nmotes in the SN and the throughput requirement by the

user, namely the upper throughput boundary tpup. Once

running, each query in the SN is monitored individually.

The monitor checks whether the user QoS requirements are

met and no system constraints are violated. In addition the

monitor recognizes optimization opportunities. This is for

example a static join with a high selectivity running

in Borealis. When user or system requirements are violated

or an optimization opportunity is recognized, the monitor

triggers dynamic optimization.

The dynamic optimization consists of two independent

tasks: box allocation and adjustment of epoch duration. Op-

timizing the box allocation raises the selectivity and finds a

balance of coverage and lifetime (see aggregate). The

epoch duration is optimized to get the best trade-off be-

tween lifetime and throughput.

Optimizing the box allocation means to decide which

box should be best executed where. As stated above only

the allocation of aggregate and static join must

be considered.

The first allocation is the one with none of the considered

operators (aggregate and static join) allocated in

the SNQP. In each step, one additional aggregate or

static join is moved to the SNQP. Also, all maps and

filters behind it are moved.

To rate a certain box allocation, metrics must be esti-

mated. The estimation is based on the current metrics plus

the current and the new box allocation. It uses the selectiv-

ity of the boxes, the size of static join tables and the type of

the boxes that are to be moved to the SNQP.

For calculation of selectivity, the selectivity of the whole

query boxes currently running in the SNQP is multiplied

with the selectivity of the box considered for movement.

Borealis has statistics on the selectivity of each box.

When a selective box is moved to the SNQP, this also

changes the Transmissions tps, the Throughput tp, the Sent

s and the Received r metrics. Therefore these values have to

be estimated using their current values tpscur, tpcur, scur,

rcur and the current and estimated selectivity.

tpest = tpcur · selest/selcur

sest = scur · selest/selcur

rest = rcur · selest/selcur

tpsest = tpscur − tpcur + tpest

When a static join is moved to the SN, its table has to be

transmitted to the motes of the SN. This causes a certain

amount of transmission, depending on the size of the static

table. The number of transmissions ntable needed for the

distribution of the table reduces the tl metric.

tlest = tlcur − ntable

The estimated metrics are used as input for the QoS model

to evaluate the new allocation.

Optimization of the epoch duration is a trade-off between

lifetime and throughput. For rating a new epoch duration

ednew, the resulting Transmissions tps, the Throughput tp,

the Sent s, and the Received r metric are estimated:

tpest(ednew) = tpcur · edcur/ednew

sest(ednew) = scur · edcur/ednew

rest(ednew) = rcur · edcur/ednew

tpsest(ednew) = tpscur − tpcur + tpest

The resulting changes have influence only on the lifetime

and throughput score. The coverage score is not changed,

because the Sent and Received metrics are changed at the

same ratio.

The QoS values of lifetime and throughput for a query

are defined as functions of ednew. They use the lifetime



score LIF (ednew) and the throughput score THR(ednew):

LIF (ednew) =
tlcur

tpsest(ednew)

=
tlcur

tpscur − tpcur(1 − edcur/ednew)

THR(ednew) =
tpest(ednew) · sest(ednew)

selcur · rest(ednew)

=
tpcur · scur · edcur

selcur · rcur · ednew

The QoS functions for lifetime and throughput need the up-

per and the lower lifetime boundaries (LIFup, LIFlow) and

the upper and the lower throughput boundaries (THRup,

THRlow).

QoSLIV (ednew) =

⎧⎨
⎩

0 if LIF (ednew) < LIVlow

1 if LIF (ednew) > LIFup
LIF (ednew)−LIFlow

LIFup−LIFlow
else

QoSTHR is defined analogously.

With the combined QoS function for lifetime and

throughput the overall QoS is calculated. Optimization

should maximize the value of this function.

QoS(ednew) =

⎧⎨
⎩

0 if LIF (ednew) < LIFlow

0 if THR(ednew) < THRlow
QoST HR(ednew)+QoSLIF (ednew))

2 else

With inverted QoS functions, the epoch durations for the

upper or lower user-defined boundaries can be calculated.

These are the epoch durations for the lower lifetime bound-

ary edll, for the upper lifetime boundary edlu, for the lower

throughput boundary edtl, and for the upper throughput

boundary edtu.

edll : LIF (edll) = LIFlow

edlu : LIF (edlu) = LIFup

edtl : THR(edtl) = THRlow

edtu : THR(edtu) = THRup

with edll < edlu and edtu < edtl

The epoch duration must be within the interval [edll, edtl].
If the epoch duration is less than edll, the user requirement

for lifetime is violated. If the epoch duration is greater than

edtl, the user requirement for throughput is violated.

Figure 1 illustrates how the QoS values are associated

with the epoch duration. Each row (a – f) shows a cer-

tain arrangement of the epoch durations that represents the

boundaries of the QoS functions. For each interval a certain

continuous QoS function is specified. With the derivation

of the QoS functions their gradients and extrema are calcu-

lated. The dashed line symbolizes gradient and extrema for

a certain interval. For example, the illustration in line (a)

shows:

edll edtu edlu edtl

edlledtu edlu edtl

edll edtu edluedtl

edlledtu edluedtl

edll edtuedlu edtl

edlledtu edluedtl

(a)

(f)

(e)

(d)

(c)

(b)

Figure 1. Epoch Duration – QoS Function

• [edll, edtu] – The QoS function is strictly monotoni-

cally increasing.

• [edtu, edlu] – The QoS function has one minimum.

Therefore it is strictly monotonically decreasing before

the minimum and strictly monotonically increasing af-

ter the minimum.

• [edlu, edtl] – The rating function is strictly monotoni-

cally decreasing.

The symbols of the other rows (b – f) are to be inter-

preted in the same way. In line (a), edtu and edlu are the

candidate epoch durations with a maximum QoS value. So

for them the QoS values are calculated and the one with the

maximum is selected.

For the cases of the first four lines (a – d), the two can-

didates for the optimal epoch duration are commonly the

maximum of {edll, edtu} and the minimum of {edlu, edtl}.

The lines (e) and (f) are special cases. Line (e) has the inter-

val [edlu, edtu] with a QoS value of 1. Hence, the optimal

epoch duration is edtu. Line (f) shows the case where no

epoch duration fulfills both user requirements at a time. So

the query must be suspended.

6. Evaluation

The proposed optimization has been implemented with

TinyDB. It allows for dynamic optimization of box allo-

cation and epoch duration. To investigate their respective



measurement box allocation epoch duration

One off off

Two off on

Three on off

Four on on

Table 1. The Measurements

influence, either can be switched on and off. A monitor for

queries in TinyDB and boxes in Borealis has also been im-

plemented. TinyDB can only be monitored per query and

not per operator. In Borealis, only movable boxes are mon-

itored.

Two queries are used here, one with a static join,

the other with an aggregate box. Since the map and

filter boxes are always allocated to the SN, the opti-

mizer has to decide on the allocation of those boxes only.

For each measurement, the scores and the metrics of the

SNQP are recorded per epoch. Here the most interesting

is the lifetime score. The four different measurement cases

are shown in Table 1. They differ in the optimization tasks

being switched on or off.

For space reasons, the diagrams of the measurement re-

sults are not included here. Please contact the authors for

the full version of the paper.

The results clearly state that the optimization makes the

right decision for reallocating aggregate and static
join operators. Each optimization tasks individually

yields an improvement of lifetime already. The optimiza-

tion of the epoch duration obviously has the side-effect

of lowering the throughput of the query. The combina-

tion of both optimizations produces the best results for both

queries. Hence, the proposed optimization makes the right

decisions for the considered operator types.

7. Conclusion

In this paper a solution for optimizing the query execution

between Borealis and an integrated SNQP has been pre-

sented. The optimization is split into optimizing the op-

erator allocation and the epoch duration in the SNQP. It is

sufficient to reduce the optimization of the operator allo-

cation to the decision where to execute aggregate and

static join operators. A solution for directly calcu-

lating the optimal epoch duration based on the mathemati-

cal properties of a QoS-based optimization model has been

given. That solution has been evaluated with a prototype

which integrates TinyDB with Borealis. Preliminary results

show that the optimization rises the lifetime of the sensor

network significantly.

Ongoing work addresses the reordering of boxes in a Bo-

realis query in order to move even more to the SNQP. Ad-

ditional metrics and scores will be introduced, e.g. the la-

tency of a tuple from sensing to the output. Different QoS

functions can be defined and tested. And finally, more eval-

uations are still to be done.
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