
Operator Allocation in Borealis
with Integrated Sensor Network Query Processors

Wolfgang Lindner
MIT, CSAIL

The Stata Center, 32 Vassar ST, Cambridge, MA 02139, USA
wolfgang@csail.mit.edu

Holger Velke
FAU Erlangen-N̈urnberg, Informatik 6

Martensstr. 3, 91058 Erlangen, Germany
sihovelk@stud.uni-erlangen.de

Klaus Meyer-Wegener
FAU Erlangen-N̈urnberg, Informatik 6

Martensstr. 3, 91058 Erlangen, Germany
kmw@acm.org

Abstract

Today, Sensor Network Query Processors (SNQPs) are
being integrated with Data Stream Management Systems
(DSMSs). Due to the query capabilities of SNQPs, query
processing can be extended from the DSMS into the sen-
sor network. The problem then is to decide which oper-
ators should be allocated to the SNQP rather than being
processed in the DSMS. This paper presents a first solu-
tion to this problem. Operators are classified as movable or
not movable. Next, a QoS-based rating model, a two-stage
neighborhood function browsing through the set of possible
operator allocations, and an optimization algorithm using
heuristics are introduced. Finally, it is shown how the op-
erator allocation process fits into the Borealis optimization.

1. Introduction

Over the recent years Sensor Network Query Processors
(SNQPs) like TinyDB [8], Cougar [9], and Directed Diffu-
sion [6] have been developed to simplify the access to data
produced by a sensor network (SN). The SNs addressed in
this paper consist of battery-powered motes. The acquired
data are sent to a base station via wireless communication
which can be lossy. In general, the goal of such an SN is to
reduce power consumption to obtain maximum lifetime.

Sensor networks are a natural source for data stream
management systems (DSMSs) like STREAM [4], Tele-
graphCQ [5], and Borealis [2]. At MIT we developed an in-
tegration framework [3] meeting the challenges of integrat-
ing DSMSs and SNQPs. Until now the integration frame-

work uses only a very simple optimization for distributing
operators. In this paper we present a more advanced op-
timization approach for Borealis with integrated SNQPs.
Still, it will only be the second step, since many other ap-
proaches are possible.

The goal of the Borealis optimization [2] is to satisfy the
quality-of-service (QoS) requirements of the users for each
query in the system. The tasks of the Borealis optimization
are twofold. First, the operator order of the query diagram
(all queries in the system) is optimized. Second, the distri-
bution of operators over the sites of the distributed Borealis
system is optimized. The result is a running Borealis system
meeting the optimization goal.

Integrating an SNQP with Borealis adds another de-
gree of flexibility, namely the versatility of operator allo-
cation between Borealis and the SNQP. The Borealis query
system as well as its operators descend from Aurora [1].
For the examples in this paper the following subset (Ω =
{F,M,U,A}) of Borealis operators is considered:

• Filter: extended relational selection, splits an input
stream into one or more output streams depending on
predicates;

• Map: generalized projection, performs computations
on attributes of the input tuples;

• Union: merges two or more streams;

• Aggregate: applies aggregate functions to a sliding
window of input-stream tuples.

It is assumed that the SNQP supports all these operators
except the union.

The Borealis system uses the box-and-arrow paradigm to
specify data flow. Abox represents a query operator while

F AM
SNQP Borealis

U

F AM

SNQP Borealis

U

F A M

SNQP Borealis

U

F AM

SNQP Borealis

U

FAM

SNQP Borealis

U

one operator more:

one operator different:

one operator less:

Figure 1. Ordered Query Diagram

anarrow represents the data flow between boxes. The fol-
lowing examples use this query notation.
Figure 1 shows an example of a query diagram with oper-
ators allocated in an SNQP. Optimization can be illustrated
using the aggregate operator. Aggregate operators reduce
the number of tuples. SNs use wireless communication
for transmitting tuples from the motes to the base station.
As already mentioned this communication can be lossy so
the SN may lose tuples. Processing the aggregate operator
in the SNQP reduces the number of transmissions and in-
creases the lifetime. On the other hand losing an aggregate
tuple has a significant impact on the quality of data since
the information of all tuples contributing to the aggregate is
lost. The decision of optimization is therefore a trade-off
between the goal of the SNQP to increase lifetime and the
goal of Borealis to satisfy user requirements (quality of data
in this example).

The purpose of this paper is to present ideas for inte-
grating an arbitrary SNQP with Borealis. It will give an
overview of some the tasks to be accomplished and will
show some initial solutions. A set of notions is introduced
to identify the potential as well as the limitations of the op-
timization. In particular it is shown how to decide whether
an operator should be processed in the SNQP rather than in
Borealis. This has to take the different and potentially con-
tradicting optimization goals into account. The proposed
approach can also be used to integrate location-aware SNs
since it could easily be extended to optimize partitions of
the sensor network separately.

2. Background and Related Work

First, a short survey of our integration framework [7, 3] is
given. It is used to connect Borealis with an SNQP. The
proposed architecture and the constraint model are briefly
described. Second, the components collaborating in the Bo-
realis optimization are sketched.

2.1. Integration Framework

The architecture proposed in the integration framework [3]
consists of wrappers and a connection layer. Each data
source is covered by a specificwrapperwhich creates a uni-
form way to access it. The wrapper provides information
about services and constraints of the SNQP. Services of the
SNQP are the data it produces and the Borealis operators

it supports. The data is described by its attributes and the
corresponding domains. The costs for processing an oper-
ator initially allocated to the SNQP are provided for each
supported operator. At runtime the wrapper also provides
information about the actual system state. Theconnection
layer consists of sensor proxies. Asensor proxyconnects
one Borealis site with one or more data sources covered by
wrappers.

Theconstraint model[7] defines metrics as quantitative
measures of the actual system state. AmetricM represents
a single aspect of the system, e.g. lifetime or latency, by a
valuem from the domaindom(M) of the metric. Scores
are defined on these metrics.

S : dom(M1)× dom(M2)× . . .× dom(Mn) → X

A score combines several metrics into a value that indicates
the quality of processing. Several scores can be collected
in thescore vectorVS . A vector of weightsVW is used to
indicate the relative importance of each score. Addition-
ally, a vector of soft constraintsVSC and a vector of hard
constraintsVHC are defined. Thevector of hard constraints
defines a lower bound for acceptable values of each score.
The values given by thevector of soft constraintsalso de-
fine a lower bound, but here smaller values are allowed; they
only indicate a loss in QoS.

2.2. Borealis Optimization

with this issue. Third, scalability, size-wise and geograph-
ical, is becoming a significant design consideration with
the proliferation of stream-based applications that deal with
large volumes of data generated by multiple distributed
data sources. As a result, Borealis faces a unique, multi-
resource, multi-metric optimization challenge that is sig-
nificantly different than those explored in the past.

5.1 Overview
A Borealis application, which is a single connected dia-
gram of processing boxes, is deployed on a network of N
servers and sensor proxies, which we refer to as sites. Bo-
realis optimization consists of multiple collaborating moni-
toring and optimization components, as shown in Figure 3.
These components continuously optimize the allocation of
query network fragments to processing sites.

Monitors. There are two types of monitors. First, a
local monitor (LM) runs at each site and produces a collec-
tion of local statistics, which it forwards periodically to the
end-point monitor (EM). LM maintains various box- and
site-level statistics regarding utilization and queuing delays
for various resources including CPU, disk, bandwidth, and
power (only relevant to sensor proxies). Second, an end-
point monitor (EM) runs at every site that produces Bore-
alis outputs. EM evaluates QoS for every output message
and keeps statistics on QoS for all outputs for the site.

Optimizers. There are three levels of collaborating op-
timizers. At the lowest level, a local optimizer runs at every
site and is responsible for scheduling messages to be pro-
cessed as well as deciding where in the locally running di-
agram to shed load, if required. A neighborhood optimizer
also runs at every site and is primarily responsible for load
balancing the resources at a site with those of its immedi-
ate neighbors. At the highest level, a global optimizer is
responsible for accepting information from the end-point
monitors and making global optimization decisions.

Control Flow. Monitoring components run contin-
uously and trigger optimizer(s) when they detect prob-
lems (e.g., resource overload) or optimization opportuni-
ties (e.g., neighbor with significantly lower load). The lo-
cal monitor triggers the local optimizer or neighborhood
optimizer while the end-point monitors trigger the global
optimizer. Each optimizer tries to resolve the situation it-
self. If it can not achieve this within a pre-defined time pe-
riod, monitors trigger the optimizer at the higher level. This
approach strives to handle problems locally when possible
because in general, local decisions are cheaper to make and
realize, and are less disruptive. Another implication is that
transient problems are dealt with locally, whereas more per-
sistent problems potentially require global intervention.

Problem Identification. A monitor detects specific re-
source bottlenecks by tracking the utilization for each re-
source type. When bottlenecks occur, optimizers either re-
quest that a site sheds load, or, preferably, identify slack
resources to offload the overloaded resource. Similarly, a
monitor detects load balance opportunities by comparing
resource utilization at neighboring sites. Optimizers use
this information to improve overall processing performance

Global Optimizer

at every site

Local Monitor

Neighborhood Optimizer

Local Optimizer

statistics decisiontrigger

at output sites

End−point Monitor

Figure 3: Optimizer Components

as we discuss in Sections 5.3.1 and 5.3.2.
Dealing with QoS is more challenging. In our model,

each tuple carries a VM. These metrics include informa-
tion such as the processing latency or semantic importance
of the tuple. For each tuple, the score function maps the
values in VM to a score that indicates the current predicted
impact on QoS. For instance, the score function may give a
normalized weighted average of all VM values. The local
optimizer uses differences in raw score values to optimize
box scheduling and tuple processing as we discuss in Sec-
tion 5.3.1.

To allow the global optimizer to determine the prob-
lem that affects QoS the most and take corrective ac-
tions, Borealis allows the DA to specify a vector of
weights: [Lifetime, Coverage, Throughput,
Latency] for multiple discrete segments along these
four dimensions, which indicates the relative importance of
each of these components to the end-point QoS. The most
interesting of these dimensions, lifetime, is the mechanism
by which Borealis balances sensor network optimization
goals (primarily power) with server network optimization
goals. The lifetime attribute indicates how long the sensor
network can last under its current load before it stops pro-
ducing data. The second dimension, coverage, indicates the
amount of important, high quality data that reaches the end-
point. Coverage is impacted negatively by lost tuples, but
the relative impact is lower if less important or low qual-
ity messages are lost. We address these issues further in
Section 5.3.3. Because each of these metrics is optionally
a component of the VM, the end-point monitor can keep
statistics on the components that are in VM. Together with
the vector of weights, these statistics allow the end-point
monitor to make a good prediction about the cause of the
QoS problem.

Sensor Proxies. We assume a model for sensor net-
works like [31] where each node in a sensor network per-
forms the same operation. Thus, the box movement op-
timization question is not where to put a box in a sensor
network, but whether to move a box into the sensor net-
work at all. This allows one centralized node to make a
decision for the entire sensor network. We call this cen-
tralized node a proxy, which is located at the wired root of
the sensor network at the interface with the Borealis server
network. There is one proxy for each sensor network that
produces stream data for Borealis. This proxy is charged

Figure 2. Borealis Optimizer Components

An overview of the Borealis optimizer components [2] is
given in Figure 2. Theglobal optimizeris responsible for
initial query distribution and for controlling the output QoS.
The neighborhood optimizerdoes load balancing between
immediate neighbors. Operators can be moved between
neighboring sites in the case of a communication or pro-
cessing bottleneck. Each Borealis site runs alocal optimizer
dealing with e.g. load shedding, reordering of operators, and
scheduling of operators and tuples. The three cooperating
optimizers are triggered by monitors.Local monitorscol-
lect local statistics and forward them to theendpoint moni-
tors which observe the QoS of output streams. They recog-
nize QoS problems and trigger optimization.

Borealis introduces four metrics (lifetime, coverage,
throughput, and latency) to measure the QoS of a stream
in the system. Borealis allows QoS to be accessible at any
point in the system [2].

3. Optimization

An important optimization goal is to decide which opera-
tor should be processed in the SNQP rather than in Bore-
alis. This will be referred to in the following asoperator
allocation. It must consider the optimization goals of the
participating systems, the system constraints, and the QoS
requirements of the users.

3.1. Operator Order

It is important to distinguish the actual and the logical oper-
ator order. The order in which the operators are actually
processed in the SNQP is not known because the SNQP
does its own optimization and uses a different query rep-
resentation. The logical order refers to a consistent order
with respect to Borealis. It is needed to create different op-
erator allocations, e.g. with a neighborhood function (see
3.4 below).

The operator order carries the semantics of the query di-
agram. Reordering can only take place between commuting
operators. Without knowledge of the logical operator order
in the SNQP, operators could be moved back to Borealis in
an order possibly violating commutation rules.

F AM
SNQP Borealis

U

F AM
SNQP Borealis

U

F A M
SNQP Borealis

U

F AM
SNQP Borealis

U

FAM
SNQP Borealis

U

one operator more:

one operator different:

one operator less:

Figure 3. Sets of Allocated Operators

Figure 1 has already shown a query diagram with operators
allocated to the SNQP. The sets of allocated operators re-
sulting from this query diagram can be found in Figure 3. A
particularoperator allocationis defined by the set of opera-
tors allocated to the SNQP. Obviously, reordering operators
will not create a new operator allocation if the set of oper-
ators allocated to the SNQP does not change. For example
by reordering the operators F and M in the query diagram
a new diagram is created but the sets of allocated operators
remain the same.

3.2. Operator Categories

For optimization purposes the following operator categories
are distinguished1:

1In fact there are also operators which are supported by the SNQP but
not by Borealis. They need not be considered here because users can only

• Operators supported by Borealis and the SNQP. These
operators are categorized assupported operator(SO).

• Operators supported by Borealis but not by the SNQP.
These are categorized asnot supported operator
(NSO).

The class SO is further sub-categorized intomovable oper-
ators(MO) andnot movable operators(NMO).

1

SNQP Borealis
2 3 4

1 2 34

1

SNQP Borealis

2 3 4

Figure 4. Scenario with MO

Figure 4 depicts a query diagram with three MOs (1, 2, 4)
and an NSO (3). Clearly an NSO cannot be moved into the
SNQP. Without reordering, operator 3 is a blocking operator
for operator 4. But operator 4 is an MO since it commutes
with operator 3. The two operators can be swapped and then
it is possible to move operator 4 into the SNQP.

1

SNQP Borealis
2 3 4

1 2 34

1

SNQP Borealis

2 3 4

Figure 5. Scenario with NMO

Figure 5 shows a similar query diagram. The difference is
that operator 3 and 4 do not commute. So operator 4, in
spite of being an SO, cannot be moved into the SNQP be-
cause it is blocked by operator 3. Therefore, operator 4 is
categorized as an NMO. To summarize, there are three cat-
egories of operators: NSOs, NMOs, and MOs. Only MOs
must be considered for optimization purposes.

3.3. Search Space

Based on the operator categories two different search spaces
are defined as operator allocations. If no operator is cate-
gorized as MO, no optimization is possible and the search
spaces are empty.

The first search space consists of the operator allocations
that can be produced without the overhead of reordering.
The size depends on the position of the first NSO down-
stream of the SNQP. If the first operator is an NSO, the
search space is empty and no optimization is possible. For
the following example the query shown in Figure 1 is used.
It is assumed that filter and map operators as well as filter

use Borealis operators to specify queries.

and aggregate operators commute. Then the search space 1
is:

S1 = {(), (F), (FM), (FMA)}
The second search space considers reordering and therefore
contains all operator allocations that can be produced. Its
size depends on the number of MOs and their commutativ-
ity: |S2| ≤ |MO|. The resulting search space 2 is:

S2 = {(), (F), (M), (FM), (MA), (FMA)}

Naturally, search space 1 is a subset of search space 2. It
should be first choice unless no suitable operator allocation
can be found, in which case search space 2 will be used.
Note: Since there is no actual operator order in SNs, orders
such as(MF) or (MFA) are implicitly contained in the
spaces.

3.4. Neighborhood Function

A neighborhood function is defined to traverse a search
space without spanning it. It derives a neighboring operator
allocation from the search space based on a given operator
allocation.

F AM
SNQP Borealis

U

F AM
SNQP Borealis

U

F A M
SNQP Borealis

U

F AM
SNQP Borealis

U

FAM
SNQP Borealis

U

one operator more:

one operator different:

one operator less:

Figure 6. Neighbors of the Operator Alloca-
tion in Figure 3

Examples for neighboring operator allocations are shown in
Figure 6. They are defined as operator allocations differing
in just one operator, i.e.one operator more, one operator
less, or one operator different. All neighbors of an oper-
ator allocation can be reached with one transition. There-
fore, the neighborhood functions can be illustrated using
a graph (see Figures 7, 8). In this graph the nodes rep-
resent the operator allocations and the edges represent the
transitions. Since there are two different types of transi-
tions the edges are labelled withm for moving an opera-
tor and withr for reordering two operators. The moving
transition reaches the one-operator-more and one-operator-
less neighbors whereas the reordering transition reaches the
one-operator-different neighbors.

MAM

FMA

FMF
m

m

m

m

m

m

r rm

FMAFMFm mm

Figure 7. Neighborhood for Search Space 1

MAM

FMA

FMF
m

m

m

m

m

m

r rm

FMAFMFm mm

Figure 8. Neighborhood for Search Space 2

The neighborhood functions for the two search spaces are
different. Figure 7 shows the neighborhood function of
search space 1. In it a new operator allocation is created
by moving an operator between Borealis and the SNQP. In
contrast to that Figure 8 shows the neighborhood function
of search space 2. Here a new operator allocation is created
by first reordering and then moving an operator between
Borealis and the SNQP.

3.5. Rating Model

A rating model is defined to lead the optimization through
the elements of the search spaces. It is based on the QoS
of the tuples crossing the border between the SNQP and
Borealis. The goal is then to maximize the output QoS of
the SNQP. The QoS of a tuple is monotonically decreasing
on its way through Borealis. Thus the final Borealis output
QoS to the user can only be less than or equal to the output
QoS of the SNQP (which is also the input QoS of Borealis).
The rating is only based on the operator allocation; the part
of the query diagram remaining in Borealis will not be con-
sidered.

Queries are distinguished as either running or new. In
case of a running query statistics on the operators and the
data are available. They can be used to predict system be-
havior during optimization. In case of a new query however,
statistics are usually not available. Hence, estimated values
or operator-dependent standard values must be used. Ob-
viously, optimization based on these values is not likely to
achieve best results.

The scores introduced in Section 2 can be used to repre-
sent the considered optimization goals which can be classi-
fied as follows. First, the optimization goals of the SNQP
have to be taken into account. They are the same for all
queries in the SNQP. Second, the optimization goals of Bo-
realis have to be considered. They are defined by the users
who specify QoS requirements for each query in Borealis.

QoS

S

1

100 %Slow Sup

0
0 %

Figure 9. QoS Function for Score S

These QoS requirements refer to the output QoS of Bore-
alis. They must be propagated upstream.

A rating value is calculated for each operator alloca-
tion. The optimization goal is then tomaximizethis rat-
ing value but the constraints introduced in Subsection 2.1
must also be respected. The rating-value calculation is
based on the metrics provided by the wrapper. For SNQP-
dependent scores these measurements can be used directly.
For the Borealis-dependent scores the Borealis QoS metrics
[2] must be generated based on these measurements.

If a hard constraint is violated the minimum rating value
is returned for the evaluated operator allocation. This as-
sures that such a constraint-violating operator allocation
will not be chosen.

For the rating a simplified way of specifying user QoS
requirements is used here. For each score two values rep-
resenting the upper and lower QoS bounds are given. The
lower boundSlow can be found in the vector of hard con-
straints. Scores below the lower bound are not acceptable
whereas scores above the upper boundSup do not improve
the best QoS for the user any further. With these two values
a QoS functionis defined. The domain for it is set to[0, 1]
where1 indicates best QoS and0 indicates worst. A QoS
function transforms a score into a QoS value. For example
a QoS functionQoSS with the lower boundSlow and the
upper boundSup can be:

QoSS =


0 if S < Slow

1 if S > Sup
S−Slow

Sup−Slow
else

Figure 9 shows the graph of this QoS function.
Similar to the score vector a QoS vectorVQoS is defined
that holds all QoS values. Thenormalized vector of weights
VWN is the vector of weights normalized to values between
0 and 1. The QoS vector and the normalized vector of
weights are used to calculate the rating value of a specific
operator allocation.

For the rating the QoS valuesQoSS = VQoS [i] can be
used. So the optimization goal is defined to maximize the
QoS. As rating value the simple weighted and normalized
sum of the individual ratings is proposed:

r(VQoS , VWN) =
n∑
i

VWN [i]VQoS [i]
n

3.6. Changing Queries

If an optimal operator allocation has been found that is dif-
ferent from the current allocation the allocation should be
changed. This means moving operators between Borealis
and the SNQP. This leads to two problems. For stateful op-
erators (e.g. aggregates) their state must migrate, too. Due
to the limited space this problem will not be addressed here.

The second problem is how to change the query in the
SNQP. If the SNQP does not support changing a running
query the current query must be stopped and the new query
must be issued. There are two approaches to do this. First,
the new query can be started while the old query is still run-
ning. The old query is stopped after the new query has been
fully propagated to the SNQP. This creates additional load
on the SNQP. Even if optimization handles the QoS prob-
lems caused by that the additional query will worsen the
situation for a certain time. Second, the old query can be
stopped before the new query is started. During a certain
start-up time the results of the new query will be inaccurate
due to the ongoing query propagation in the SNQP. How-
ever, the additional load caused by the first approach might
also lower the accuracy of results and might influence other
queries in the SNQP. So it seems to be better to accept the
temporary inaccuracy of results caused by the query propa-
gation. This favors the second approach.

3.7. Allocation Optimization

For the optimization of operator allocation the algorithm of
Figure 10 is proposed.

The algorithm contains two loops. In the first loop the
neighborhood function of search space 1 is used. It is
preferable to find an operator allocation there because no
reordering is needed. If no such operator allocation is found
the second loop is entered. It uses the neighborhood func-
tion of search space 2.

The purpose of the subroutines used in the algorithm is
the following.

• evaluate()rates an operator allocation based on the rat-
ing model

• neighwithout reor() retrieves a neighbor of an oper-
ator allocation from search space 1 and inserts this
neighbor into the visited list

op_alloc := curr_op_alloc
rating := evaluate(op_alloc)

while (new_neigh_without_reor(op_alloc)) {
neigh_alloc := neigh_without_reor(op_alloc)
neigh_rating := evaluate neigh_alloc)
if (neigh_rating < rating) {

op_alloc := neigh_alloc
rating := neigh_rating

}
if (stop_criteria())

return op_alloc
}

while (new_neigh (op_alloc)) {
neigh_alloc := neigh(op_alloc)
neigh_rating := evaluate(neigh_alloc)
if (neigh_rating < rating) {

op_alloc := neigh_alloc
rating := neigh_rating

}
if (stop_criteria())

return op_alloc
}

return op_alloc

Figure 10. Optimization Algorithm

• neigh()retrieves a neighbor using search space 2 and
inserts this neighbor into the visited list

• new. . . ()return whether there are neighbors of an op-
erator allocation which have not yet been visited

• stopcriteria() checks if a stop criterium is fulfilled

For our purposes we currently use a simple greedy algo-
rithm as this will already improve results. More sophisti-
cated algorithms, however, are likely to produce even better
results.

4. Integration into Borealis

This Section discusses which functionality the sensor proxy
and Borealis should offer. Further, it is shown how the allo-
cation optimization fits into the Borealis optimization.

4.1. Sensor Proxy Functionality

¿From a Borealis point of view the sensor proxy hides the
integrated SNQP. It acts as a virtual Borealis site and has the
same interface as a regular site. In the network of Borealis
sites the sensor proxy is connected with exactly one site and
it runs in that site.

To fit into the Borealis optimization the sensor proxy
provides Borealis with statistics and information on its ca-
pabilities. First, this means supported operators rated with
initial costs which are used for initial query distribution.
Second, it describes the data source provided by the SNQP
which is a virtual data source for the Borealis system. The
information is used by the global optimizer and by the users.

The sensor proxy further provides Borealis with infor-
mation about its state. Its local monitor delivers local statis-
tics to the Borealis endpoint monitor.

4.2. Borealis Interfaces

For interactions with the neighboring Borealis sites the sen-
sor proxy needs an interface to:

• see the part of the query diagram running at its neigh-
bor,

• find out whether a certain operator order can be pro-
duced,

• request reordering of the current query diagram, and

• move operators from/to the neighboring Borealis site.

For interacting with the Borealis system as a whole the sen-
sor proxy needs:

• the ability to trigger the endpoint monitor,

• an interface to forward the monitored statistics to the
endpoint monitors, and

• information on the users’ QoS requirements specified
for a certain point in the query diagram. Therefore,
the Borealis system has to propagate the users’ QoS
requirements upstream.

5. Conclusion

This paper presented an initial solution to the problem of
finding an optimal operator allocation in Borealis with an
integrated SNQP, i.e. deciding whether to process a specific
operator in the SNQP or in Borealis.

Based on the existing integration framework the collab-
oration of the sensor proxy with Borealis and the SNQP has
been described. The proposed solution fits nicely into the
Borealis optimization process. Further, an algorithm for
the allocation optimization has been given. The two-staged
neighborhood function and the QoS-based rating model en-
sure the optimization goals and the constraints of the partic-
ipating systems.

For evaluation purposes we built a first prototype inte-
grating Borealis with TinyDB.

Future work will investigate cost models in addition to
the QoS-based optimization. The heuristics will be replaced
by exhaustive search whenever feasible.

References

[1] D. J. Abadi et al. Aurora: A new model and architecture for
data stream management.VLDB J., 12(2), 2003.

[2] D. J. Abadi et al. The design of the Borealis stream processing
engine. InProc. CIDR, 2005.

[3] D. J. Abadi, W. Lindner, S. Madden, and J. Schuler. An inte-
gration framework for sensor networks and data stream man-
agement systems. InProc. VLDB, 2004.

[4] A. Arasu et al. STREAM: The Stanford stream data manager.
IEEE Data Eng. Bull., 26(1), 2003.

[5] S. Chandrasekaran et al. TelegraphCQ: Continuous dataflow
processing for an uncertain world. InProc. CIDR, 2003.

[6] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: A scalable and robust communication paradigm for
sensor networks. InProc. MOBICOM, 2000.

[7] W. Lindner and J. Schuler. Integrating arbitrary constraints
into the query optimization process of data stream manage-
ment systems. Technical report, MIT, 2006.

[8] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
The design of an acquisitional query processor for sensor net-
works. InProc. ACM SIGMOD, 2003.

[9] Y. Yao and J. Gehrke. Query processing in sensor networks.
In Proc. CIDR, 2003.

