
Towards a Secure Data Stream Management
System

Wolfgang Lindner1 and Jörg Meier2

1 MIT,
Cambridge, MA, USA

wolfgang@csail.mit.edu
2 University Erlangen-Nuremberg

Erlangen, Germany
sijomeie@stud.uni-erlangen.de

Abstract. Todays data stream management systems (DSMSs) lack se-
curity functionality. Based on adversary scenarios we show how a DSMS
architecture can be protected. We sketch a general DSMS architecture
and introduce security issues that need to be considered. To face the
threats we develop an extended system architecture that provides the
necessary security mechanisms. We descuss the chosen concepts and il-
lustrate how they can be realized by various system components. Our
design focus is, considering the unique properties of data stream engines,
to keep the impact on existing system components as little as possible
and to limit the effect on the overall performance to a minimum.

1 Introduction

Data Stream Management Systems (DSMSs) have been developed over the past
several years. The focus of research was on query processing and optimization
[2], distribution [9] and most recently integration of data sources [3]. Security
issues have not been addressed.

DSMSs differ from existing systems such as database management systems
(DBMSs) in many aspects. For instance users run continuous queries which
produce results by processing a continuous data stream. Without proper security
mechanisms users have access to the entire system, including the ability to view
and modify its behavior, data, and queries.

Because of this lack we focus in this paper on how to secure DSMSs based on
the unique properties of such systems. Next, we introduce some scenarios which
show the way a DSMS is used normally. In a second step we illustrate possible
attacks to an unprotected DSMS.

As an example consider a DSMS that processes stock prices. It receives the
changing share prices as an input data stream and executes queries of different
customers based on that information. A company providing this system gets
payed for delivering the results to its customers queries. We can describe the
way users work with the system by the following use cases.



2 Wolfgang Lindner and Jörg Meier

An administrator sets the system up, connects certain data sources
containing stock price information, and supervises the system while it is run-
ning. The operation company might want to integrate different data sources
from certain information providers. These sources delivering streamed data have
to be attached to the system. Based on the agreement between a certain cus-
tomer and the operating company the administrator ensures that the user is
able to perform the tasks he paid for. A customer connects to the system
with a client application, browses through the available data sources,
inserts queries to the DSMS, receives the results, and uses them. A customer
might want to change a query to get different results or to adjust the run-
ning query. He might also insert additional queries or delete existing ones.
Customers might store certain query results in the system for later analysis,
e.g., the average price of each day of certain shares.

Now imagine an adversary attacking such a system without proper security
mechanisms. We consider the following scenarios:

1. The adversary connects to the system and (a) sees all available data
sources and possibly (b) the internal state of the system disclosing the
other users’ identities and their operations including the results. The
malicious user can infer from that information strategies and possible plans
of competitors.

2. Not only by connecting directly to the system the adversary can read ”con-
fidential” data, but also by intercepting the connection of the output
stream to other clients.

3. The adversary can modify data by inserting certain operators into the
query graph. Another customer might therefore get wrong stock prices and
takes decisions which may cause financial damage.

4. In addition, it is possible that the adversary (a) fakes the incoming data
before it reaches the DSMS by changing it at any point in the network which
the data passes. Also, he could (b) pretend to be a certain information
supplier and deliver wrong source data.

5. A malicious user can perform unauthorized tasks, for example (a) using
certain operators for data processing without having permission. That
also includes (b) administrative actions like changing certain settings or
even shutting down the whole system.

6. An attacker could claim being a certain customer and perform actions
on behalf of that customer, e. g. deleting stored data, changing or quitting
running queries. Again, that could cause financial damage to the real cus-
tomer who uses the results.

7. An adversary could fully load the system by performing queries that
consume the whole available system capacity, e. g. in terms of computational
power. He might also increase his queries priorities’ so that the ones of other
customers can not deliver results in time.

According to [7], these adversary scenarios can be clustered in three threat
categories. We associate the described scenarios to the following categories:



Towards a Secure Data Stream Management System 3

(C1) Improper release of information which can be further divided into
(C1a) disclosure of data [scenarios 1a, 2] (either inside the query network or

while transferring it over the network) and
(C1b) disclosure of system internals [scenario 1b].

(C2) Improper modification of data where we distinguish between
(C2a) changes outside the system [scenarios 4a, 4b] (before the input stream

reaches the system or after the output stream leaves the system) and
(C2b) changes inside the query network [scenarios 3, 5a, 6] (either the

streaming data or the query graph).
(C3) Denial of service attacks [scenarios 5b, 7]

In this paper we address all of this problems. After sketching a general DSMS
architecture and briefly describing common security aspects that need to be con-
sidered in Section 2, we address the illustrated security problems with proper
solutions in Section 3. We show how the introduced mechanisms can be inte-
grated in the architecture.

2 Background and Related Work

As far as we know non of the current DSMSs provides security. The following
projects are examples for such data stream processing engines.

Borealis [1], an existing prototype, which is been developed at Brandeis
University, Brown University, and MIT, is based on Aurora [2] and Medusa
[21]. Aurora* is a distributed version of Aurora while Medusa is a federated
distributed system. Many of the ideas in Borealis are developed in these two
projects. STREAM [4] or the STanford stREam datA Manager is supposed to
be a “general-purpose” DSMS and is a project of Stanford University. To express
queries, a language called CQL (Continuous Query Language) is introduced.
Declarative queries are compiled into a query plan. PIPES [13] is a project
of the University of Marburg using a ”hybrid multi-threaded scheduling” three
layer architecture. TelegraphCQ [8] a general system for adaptive data flow
processing with an extension to support shared continuous queries is a project
developed at Berkley University.

To propose solutions for securing DSMSs we briefly sketch a general data
stream architecture. Next, we discuss security issues that have to be considered.

2.1 DSMS Architecture

Our general architecture of a data stream processing system (ignoring distribu-
tion [9] and high availability [11]) is shown in Figure 1. We derived the illustrated
architecture mainly from the mentioned prototypes and research projects [21, 4,
13, 8].

We differentiate between user-interaction with the system, which is shown
on the top right of Figure 1, and administrative actions which take place on the
top left. The later includes management tasks like connecting or disconnecting



4 Wolfgang Lindner and Jörg Meier

Query Processor

Optimizer

Operator Executer

Scheduler Monitor

Control Channel

Admin QoSCatalog

Queue Manager

Queue

Queue

Queue
Oper-
ator

Oper-
ator

Input 
Stream

Oper-
ator

Output 
Stream

Ad
m

in

R
eq

ue
st

Input 
Stream

I/O
 In

pu
t C

ha
nn

el

I/O
 O

ut
pu

t C
ha

nn
el

Fig. 1. Common DSMS Architecture

streams. Every request reaches the system through the Control Channel.
The Query Processor (QP) is the core of the system. The actual transforma-
tion of the incoming data stream (via the I/O Input Channel) is done there
by combining operator-boxes, executing them in the Operator Executer and
finally, streaming the results to the I/O Output Channel. The query opti-
mization process is controlled by the Optimizer supported by the Scheduler
and the Monitor. Queues are managed by the Queue Manager. They are
able to provide views on data streams as well as temporarily store data for win-
dow based operations. Queues can also be used between two operator-boxes.
The Admin module controls the system, especially the QP. Every control inter-
action with the system is managed here. The QoS component keeps track of the
overall system performance and the adherence to given QoS-requirements. The
Catalog stores meta-data and query diagram descriptions. It is accessible by
all components. The Catalog is consulted when a user wants to access objects
in the system.

In the future the described architecture can be extended with a database
attached to the DSMS. In this way persistently stored data can be processes
together with streaming data and users are able to save information, e.g. cal-
culated results (as an example see the use cases in Section 1). This extension
enables the DSMS to provide the user with a service which includes traditional
data management (like in DBMSs) together with stream processing capabilities.
However, we do not consider this scenario due to the limited space here.



Towards a Secure Data Stream Management System 5

2.2 Security Issues

Deliberating to secure an information system in general involves different issues
of security. According to [10, 7] this are

– Authentication,
– Authorization and Access Control,
– Confidentiality and Integrity,
– Availability,
– Auditing,
– Privacy,
– Inference security,
– Physical, hardware security, and
– Operating system security.

Next, we briefly present the concepts behind authentication, authorization
and access control, as well as confidentiality and integrity, since they are essential
for implementing any security mechanism and data protection. They address the
security categories C1 and C2, which are introduced in Section 1. The remaining
aspects are out of scope of this paper and not further investigated. Availability
is related to category C3.

In accordance with [7] we use the following terms: A subject is a user or
programs that runs on behalf of a user that accesses the system. Any entity
in the system that contains data or allows operations to be executed is called
an object. Access controls are responsible for ensuring that all accesses of
subjects to the system objects occur according to certain security policies.

Authentication In order to distinguish between different identities (subjects),
we need to authenticate. Authentication is any process by which the system
verifies that someone is, who he claims he is. This usually involves a username
and a password, but can include any other method of demonstrating identity,
such as biometric attributes [7]. The unique identification of subjects is the basis
of every further authorization mechanism.

Authorization Once a user is identified, the authorization process has to decide
if the subject is permitted to access a certain resource (object) [7]. This is usually
determined by finding out if that person is a part of a particular group, if that
person has paid admission, has a particular level of security clearance, or has
certain access rights. Authorization is based on access control, which consists of
access rights and control policies.

Access Control Access Control ensures that every access to the systems occur
according to certain security rules. That involves different aspects: Access Rights,
Access Matrix and Control Policies and some other issues like Quality of Service
and Time-based access. We illustrate them in the following paragraphs.



6 Wolfgang Lindner and Jörg Meier

Access Rights In [18] a reference for database access rights is given based
on the SQL99 standard: grant, revoke, select, insert, delete, references, update,
grant option, create and drop. According to [15, 16] commercial database systems
like Oracle [17] or Microsoft SQL-Server [14] distinguish several of these access
rights. We briefly describe the most important ones:

– Select. The data in the system can be read. That includes the meta data
(e.g. the schema) about an accessed object.

– Insert. Data can be added and saved persistently.
– Delete. Stored Data can be deleted.
– Grant option. Access rights can be passed to other subjects.
– References. The right to define foreign keys.
– Create, Alter, Drop. Creating, changing or deleting the schema.
– Grant, Revoke. The permission to change access rights.

Access Matrix and Control Policies Once a subject is authorized (or
a process running on behalf of users), we want to determine whether or not
the given identity is allowed to access a resource. For that reason we need to
implement a relation between subjects and objects with certain access rights. As
described in [19] there are two different concepts to implement an access matrix
which establishes the connection between subjects and objects by storing the
corresponding access rights.

– Access Control Lists. Each object has a list of valid subjects with their
access rights. This list is called an ACL [19].

– Capabilities. Each subject owns a list of objects with corresponding access
rights [19].

Also, [19] distinguishes between three different policies:

– Discretionary Policies. Discretionary protection regulates the access of
subjects to objects based on identities and authorizations that specify the
access mode for each subject and each object in the system.

– Mandatory Policies. Mandatory policies govern access based on classifi-
cation of subjects and objects with security levels. A security level reflects
the sensitivity of the information. The security level of a subject reflects the
subject’s trustworthiness. The levels are elements of a hierarchical ordered
set (e.g. top secret - secret - confidential - unclassified). Depending on the
security level of a subject and the one of the object the subject requests, the
access is granted or denied.

– Role-based Policies. Role-based access controls (RBAC) regulate the ac-
cess based on the activities the user executes in the system. It requires to
identify roles which are associated with a set of actions and responsibilities.
Access authorization on objects are specified for roles. A user playing a role
is allowed to execute all accesses for that role. Roles can be hierarchically
organized [19].



Towards a Secure Data Stream Management System 7

A temporal extension to RBAC is proposed in [6]. Temporal-RBAC adds
time-based constraints to the model including periodic role enabling and
disabling and temporal dependencies among such actions. A formal descrip-
tion and an implementation is given in [6].

Based on such a policy it is possible to store both allow-rules which give a
certain right to a subject (closed system) and deny-rules which explicitly remove
a right for a subject (open system) [7]. When both possibilities exist the system
has to know in which order the rules should be applied.

Quality of Service Besides access rights (like whether or not a subject
is allowed to perform a certain action), we also consider in which ”quality” an
action is executed. Think of applications where customers who want to get high
quality have to pay more than others. Quality can vary in different properties.
Related to stream processing, we consider the following.

– Latency. How fast will the answer arrive.
– Jitter. How big are the fluctuations in latency.
– Bandwidth. How much data is transferred in an given amount of time.
– Priority. Which priority in relation to others does the user’s query has.
– Special operators. Which operators an user is allowed to perform, e.g.

a certain user is only allowed to use an aggregation operator but no join
operator.

Confidentiality and Integrity To ensure confidentiality of transferred data
we have to secure communication links. These links are either inside the system
among different nodes in a distributed environment or they are connections
from the system to a outside point, e.g. a client. We have to make sure that
only the authorized destination of a data connection is able to read the data.
Another issue is data integrity which means to ensure that the information is
not changed unauthorized during transfer. Both problems can be solved using
cryptographic mechanisms like encryption and electronic signatures. There are
existing protocols like SSL/TLS [20] and IPSEC [12] which can be used for that
purpose.

2.3 Challenges in DSMSs

In contrast to discrete queries (as known from database systems) users enter
continuous queries to process streaming data in DSMSs. As a consequence,
the control- and the dataflow is separated (Control Channel and I/O In-
put/Output Channel).

Further, the QP arranges operators which process data streams connected to
them and the optimization process continuously adjusts the query network.
This dynamic reconfiguration has to be considered because data and operations
might be merged inside the system and we have to ensure that the results a user
gets suit the authorization rules.



8 Wolfgang Lindner and Jörg Meier

Another aspect is the different user abstraction level DSMSs provide. Ei-
ther there is a SQL-like interface (analog to DBMSs) or users work with the
system via a box-and-arrow-semantic specifying, a data flow. The security con-
cept has to be implemented according to the used model because the system’s
changed behavior reflecting the security functionality affects directly the users’
interactions with the system.

An important challenge is to keep the impact of the security checks on
the overall system performance as little as possible (system load, latency,
throughput).

In Section 3 we show how to adopt existing security concepts, which are in-
troduced in Section 2, and extend them to face the unique challenges of DSMSs.

3 Security Model

In Section 1 we illustrated how an unprotected DSMS can be attacked. We now
focus on the problem of improper release of information (data or running
queries) and improper modification (outside or inside the system). Based
on the general DSMS architecture we propose solutions for these problem classes.

3.1 Secure DSMS Architecture

The three major mechanisms towards a secure DSMS that face the described
threats are: First associating an identity to users by authentication, second de-
ciding if and in what way access is allowed by authorization and access control,
and third securing communication to ensure confidentiality and integrity.

Figure 2 shows the extended architecture including the security components.
One of the design goals was to keep the impact on the existing system compo-
nents as little as possible so that every module can still focus on it’s specific task.
The optimization process inside the QP for instance is able to work indepen-
dently of the security mechanisms. Each of the introduced components, which
are described in the following paragraphs, is responsible for a specific task and
can be assigned to one of the described security mechanisms:

a) Associating an identity to users and ensuring that to every request for the
system the corresponding subject is known

- Session Manager
- Authenticator

b) Deciding if and in what way access to certain objects is allowed and ensuring
that a subject only gets the information it is allowed to see

- Authorizer
- User Abstraction Layer
- Filter

c) Ensuring confidentiality and integrity of transferred requests and data
- Encrypted Transport (for input and output streams)
- Encrypted Transport (for users’ and administrators’ requests)



Towards a Secure Data Stream Management System 9

Query Processor

Optimizer

Operator Executer

Scheduler Monitor

Admin QoSCatalog

Queue Manager

Queue

Queue

Queue
Oper-
ator

Oper-
ator

Oper-
ator

Output 
Stream

User Abstraction Layer

Authenticator Authorizer

Fi
lte

r

E
nc

ry
pt

ed
 T

ra
ns

po
rt

E
nc

ry
pt

ed
 T

ra
ns

po
rt

Input 
Stream

Input 
Stream

Session Manager

Ad
m

in

R
eq

ue
st

Encrypted Transport

Control Channel

I/O
 O

ut
pu

t C
ha

nn
el

I/O
 In

pu
t C

ha
nn

el

Fig. 2. Secure DSMS Architecture

Session Manager The Session Manager assigns each request to a session
which belongs to a subject. This assignment is the basis for further authentica-
tion and authorization. Before the first request is accepted by the system the
user has to prove his identity via the Authenticator.

Authenticator The Authenticator checks whether a user is the one he
claims to be. This can be done by providing a name and password. There are
different other possibilities how an user can prove his identity [7]. We do not
focus on these any further. The authenticated name is mapped to an internal
user-id which identifies the subject uniquely. This id is the basis for the further
authorization mechanism.

Authorizer As stated before, once a user is successfully authenticated, a user-
session is established including the corresponding user-id. Every further action or
command the user requests has to be checked for permission by the Authorizer.

The Authorizer has to grant or deny any requested action. It implements
the access control and security model illustrated in the following. This enables
the system to decide whether or not a requested action on a certain object is
allowed. This verification can be done before any other component is instructed
to process the request.



10 Wolfgang Lindner and Jörg Meier

Based on RBAC [19], we propose a security model for DSMSs that is il-
lustrated in Figure 3. We distinguish between four entities: Users (subjects),
roles, objects and permissions (access rights, e.g. read, modify, delete). Roles
are associated to permissions on objects. Roles summarize certain access rights
necessary to perform a certain job function. Users ”can play” certain roles and
they activate one or more roles in a session when they log in the system. Users
get the permissions of all their activated roles.

user role

object permission

n m
can play

n m
session

n m
has

k

1 n
owner

Fig. 3. OxRBAC Security Model

As in existing systems, like the Unix file systems, we add the owner relation-
ship to the RBAC model. We refer to this model as OxRBAC (owner-extended
RBAC). An object always has an owner which is a user. By creating an object
(e.g. by inserting a query the instantiated query operators are created) the user
becomes the owner of this object and gets all available access rights for it.

There are several permissions and roles which can be predefined, e.g. an
administrator role which has all permissions for controlling the system, changing
its behavior including altering permissions and adding other users and roles.

Furthermore we define the following rule for maximizing security: Everything
which is not allowed explicitly is denied, meaning rights have to be assigned
explicitly to roles by using allow-rules (closed system).

In contrast to DBMSs, were updates and insertions of data in stored relations
are possible, we do not have to consider these actions in a pure data stream
environment because the calculated tuples are only read by the clients. Since
we believe that an extension to the general architecture will be, that DSMSs
are able to store data temporally or persistently, we include the corresponding
access rights in the following considerations.

We distinguish between three categories of access rights: For users, adminis-
trators, and rights relating to connected data sources:

a) User rights



Towards a Secure Data Stream Management System 11

– Read. The data on an available source stream (or on a view of it) can
be read. That includes that the user sees the stream and its meta data
when he is browsing through the catalog to define his query.

– Execute. Execution refers to operators. By having the right to a certain
operator, the user can include it in his query (e.g. a join or an aggregate
function).

– Insert. Data can be saved persistently to an attached storage.
– Delete. Stored data can be deleted.
– Pass right. Access rights can be passed to other subjects.

b) Additionally for managing the system some extended access rights must
exist.

– Attach, Detach. Analog to tables in DBMSs (create and drop), streams
must be attached to the system as data sources. The detach right allows
to disconnect a stream again.

– Create view, Alter view, Drop view. Unlike in DBMSs where you
create, alter or drop tables and views, these operations are only possible
on views (on streams) in DSMSs.

– Grant, Revoke. To change access rights on objects, the subject (either
an owner or an administrator) needs these rights on the corresponding
object.

– Shutdown, Restart, Adjust system behavior. Administrative oper-
ations like these can be handled with execution rights on corresponding
functions (which are also modeled as system objects) in the system.

c) Lastly, we manage rights related to data sources. In contrast to DBMSs
where users ”produce” data to store it, in a DSMS information is delivered
by the streaming sources. To be able to limit the actions a stream could
initiate through sending replacement or deletion tuples as described in [1],
we introduce the following rights:

– Insert. Normally a stream inserts data to the system. Therefore the
insert right is needed. Without that right a data source cannot interact
with the DSMS.

– Update. Some sources might send correction messages for previously
transferred tuples. For sending such replacement tuples the update right
is needed.

– Delete. A special case of replacement tuples is a deletion tuple. To be
able to delete a previously transmitted tuple, the delete right is necessary.

User Abstraction Layer To ensure that a subject only gets to see the objects
it has permissions for, we provide individual views on the system. Such a view,
which only includes objects and operations the subject is allowed to access,
is provided by the User Abstraction Layer. Considering the use cases of
Section 1 an user browsing the catalog or looking at running queries only sees
the objects he is authorized for. The User Abstraction Layer has to establish
a relation between the individual views of different subjects and the real internal



12 Wolfgang Lindner and Jörg Meier

state of the system, e.g. the whole query network. This component communicates
with the Authorizer to check access permissions on objects.

The available interface to interact with a DSMS might be either a descriptive
language (analog to SQL, like CQL [4]) or a formal description of the desired
data flow, from source to destination, including the transforming operators in
between (like the boxes and arrows in [2]). The User Abstraction Layer has
to provide a user-specific view on the system corresponding to the used model.

Filter The second module we introduce to avoid improper release of informa-
tion is the Filter at the end of the QP. It ensures that an output stream for a
certain subject only contains data the subject is allowed to get. This is necessary
because as a result of query optimization it might be possible that streams and
operators of different users get combined and merged inside the QP. However,
the output of the QP has to be a set of distinguished user streams. By introduc-
ing the Filter we allow the QP and Optimizer to work independently of the
security checks. Not only the implementation is easier because every component
provides separated services, but also the impact on performance will be smaller
as we do not influence any optimization algorithm or constrain the QP in any
way. Further, the access to output streams of the Filter has to be synchro-
nized with the corresponding request that produced the output. The request is
checked for permission by the User Abstraction Layer via the Authorizer.
Subsequently the Filter has to ensure that only an allowed subject gets the
corresponding query results. In that way not only the Control Channel is
secured by authorization, but also the actual data transfer is protected by access
control.

Encrypted Transport We propose to install components in the DSMS archi-
tecture to secure data transfers, both at the stream (input and output) and the
request side of the system (Encrypted Transport).

To ensure that data is transferred confidentially so that only the authorized
participants are able to access it, we need to encrypt the data and the control
channels. Referring to the secured architecture different levels of encrypting the
data transfer are possible.

– Inside the system. The flow of information inside the system should be
encrypted, especially when we assume that the query processing takes place
on different nodes connected via a network.

– Outside the system. Both the transferred data via I/O Input Channel
and I/O Output Channel and the requests for the system via Control
Channel should be secured.

We assume that nodes of the same DSMS can be trusted and the network is
under our own control. Then, the second case is the important one because the
information leaves the system boundaries and we cannot be sure which way it
takes to reach the client.



Towards a Secure Data Stream Management System 13

However, since the purpose of this paper is to develop a security framework
for DSMSs, rather than showing how to adopt existing encryption algorithms,
details for securing the data transfer are not considered here.

3.2 Example

Considering the illustrated use cases in Section 1, the behavior of the DSMS
changes with the introduced security mechanisms in following way:

A user connects from a client to the DSMS server by using an encrypted
transportation protocol. The server proves its identity by providing a certificate.
After the establishment of that connection through the Encrypted Trans-
port the user interacts with the DSMS. Every request which reaches the system
through the Control Channel is associated to a session (inside the Session
Manager), which is owned by that certain user. Before being able to perfom
any action, the user has to log in, proving his identity. After a successful authen-
tication process inside the Authenticator, certain roles the user is allowed
to play are activated, a new session is established and every further request is
connected to that session. Every action requested by the user can be checked
for permission by the Authorizer now. The user browses the catalog, where
he only sees objects he is allowed to access through the User Abstraction
Layer. He inserts a query by using available data sources. The system integrates
the inserted query in the internal query network and calculates the results. The
user connects to the produced output stream, which is available at the Filter,
by using another encrypted communication link to the Encrypted Transport
at the output side of the DSMS. As the user gets his individual view on the sys-
tem, he can look at his running queries and modify them. Finally the user logs
out and closes the connections to the system.

3.3 Future Issues

For the purposes of completeness we briefly want to mention two aspects we do
not further investigate because of limited space. These are secure distribution
and quality of service.

Distribution Many existing DSMSs, like Borealis [1], include distribution func-
tionality for load balancing and high availability. A distributed security concept
has to provide solutions for:

– Trusted authentication. We have to ensure that an user logged in at one
site can use the complete distributed system as one service. Either there is
a single point of entry for an user to connect to the whole system, or users
can interact with the distributed nodes at different sites.

– Permission management. The rules necessary for checking permissions
have to be replicated among the participating sites so that access control is
possible wherever resources are used.



14 Wolfgang Lindner and Jörg Meier

– Different administrative domains. In federated DSMSs, like Medusa
[5], sites can be under the control of different administrative domains. Data
that is distributed has to be protected of unauthorized access from users
working at the other site. The access control mechanisms have to work in
a global way, prohibiting unwanted disclosure of information. We propose
further to introduce the possibility for the users to decide whether or not
data processing could be pushed to other sites.

– Secure communication. In a distributed environment the secure com-
munication inside the system, as mentioned before, becomes important to
ensure that only allowed processes connect to output streams of other nodes.
The network connecting the sites might be untrusted.

QoS To provide a QoS-based security service like described in 2.2 the QoS
module of the system has to be extended too. Depending on rules defining QoS-
properties for subjects actions must be taken to guarantee them. For instance a
subject might be allowed to set the priority of his query to a certain level while
others are not allowed to do so.

4 Conclusion

As the adversary scenarios show there are different threats to unprotected DSMSs.
In this paper we proposed solutions towards a secure system. We gave a general
overview and showed which problems have to be investigated. We focused on two
main threat categories: Improper release and improper modification of data. We
described the concepts which are necessary to solve these problems. Based on the
introduced system architecture we illustrated how the security mechanisms can
be implemented. The third problem, denial of service attacks, was partly solved
by the authorization process as we did not consider auditing and QoS-related
security features in our solution.

The concept we propose in this paper is generic enough to be integrated into
any existing data stream management system and therefore an ideal basis for
enterprise architectures.

Currently, we are building a first prototype by implementing the proposed
security features into Borealis [1], proving that a DSMS can be secured without
creating too much of a performance overhead.

References

1. D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik.
The Design of the Borealis Stream Processing Engine. In CIDR, 2005.

2. D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik. Aurora: A new model and architecture for data
stream management. VLDB Journal, 2003.



Towards a Secure Data Stream Management System 15

3. D. J. Abadi, W. Lindner, S. Madden, and J. Schuler. An integration framework
for sensor networks and data stream management systems. In VLDB, 2004.

4. A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa,
U. Srivastava, D. Thomas, R. Varma, and J. Widom. Stream: The stanford stream
data manager. IEEE Data Engineering Bulletin, 26(1), 2003.

5. M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-based load man-
agement in federated distributed systems. In NSDI, 2004.

6. E. Bertino, P. A. Bonatti, and E. Ferrari. Trbac: A temporal role-based access
control model. ACM TOISS, 4(3), 2001.

7. S. Castano, M. Fugini, G. Martella, and P. Samarati. Database Security. Addison
Wesley, 1994.

8. S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin, J. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah. Tele-
graphCQ: Continuous Dataflow Processing for an Uncertain World. In CIDR,
2003.

9. M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, Y. Xing,
and S. Zdonik. Scalable distributed stream processing. In CIDR, 2003.

10. D. K. Hsiao, D. S. Kerr, and S. E. Madnick. Privacy and security of data commu-
nications and data bases. In VLDB, 1978.

11. J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and
S. Zdonik. High-Availability Algorithms for Distributed Stream Processing. In
ICDE, 2005.

12. IETF. IPSec. http://www.ietf.org/html.charters/ipsec-charter.html.
13. J. Krämer and B. Seeger. Pipes - a public infrastructure for processing and ex-

ploring streams. In SIGMOD, 2004.
14. Microsoft. Microsoft sql server. http://www.microsoft.com/sql.
15. Microsoft. Sql server 2000 sp3 security features and best practices: Sql

server 2000 security model. http://www.microsoft.com/technet/prodtechnol
/sql/2000/maintain/sp3sec01.mspx.

16. P. Needham and S. Iyer. Oracle database 10g security and identity
management, 2003. http://www.oracle.com/technology/deploy/security/pdf/
twp security db securityoverview 10r1 1203.pdf.

17. Oracle. Oracle database. http://www.oracle.com/database/index.html.
18. R. Ramakrishnan and J. Gehrke. Database Management Systems, chapter Security

and Authorization. Mc Graw Hill, 3rd edition, 2003.
19. Ravi S. Sandhu and Pierrangela Samarati. Access Control: Principles and Practice.

IEEE Communications Magazine, 32(9), 1994.
20. RFC. Rfc2246 tls. http://www.ietf.org/rfc/rfc2246.txt.
21. S. Zdonik, M. Stonebraker, M. Cherniack, U. Çetintemel, M. Balazinska, and

H. Balakrishnan. The Aurora and Medusa Projects. IEEE Data Engineering
Bulletin, 26(1), 2003.


