
An Integration Framework for Sensor Networks and
Data Stream Management Systems

Daniel J. Abadi
MIT

Wolfgang Lindner
MIT

Samuel Madden
MIT

Jörg Schuler
Tufts University

Computer Science and Artificial Intelligence Lab.
Massachusetts Institute of Technology
{dna, wolfgang, madden}@csail.mit.edu

Dept. of Computer Science
Tufts University
js@cs.tufts.edu

Abstract

This demonstration shows an integrated query
processing environment where users can seam-
lessly query both a data stream management
system and a sensor network with one query
expression. By integrating the two query pro-
cessing systems, the optimization goals of the
sensor network (primarily power) and server
network (primarily latency and quality) can
be unified into one quality of service metric.
The demo shows various steps of the unified
optimization process for a sample query where
the effects of each step that the optimizer
takes can be directly viewed using a quality
of service monitor. Our demo includes sensors
deployed in the demo area in a tiny mockup
of a factory application.

1 Introduction

Collections of tiny, radio-equipped, battery-powered
sensing devices, or sensornets promise to collect a sig-
nificant amount of interesting data about the world
around us. Unlike conventional remote (satellite-
based) sensing which typically consists of large images,
sound files, or scientific data processed by individu-
ally developed software, much of the data from sensor-
nets promises to be small, tuple-oriented, and struc-
tured. Typical applications include sensors that con-
tinuously report the temperature of refrigerated boxes
being shipped across the country to detect spoilage or
theft, or sensors that report the light and temperature

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

values in various offices in a building as input to an
HVAC (Heating, Ventilation, and Air Conditioning)
control system. In recent years we have seen the de-
velopment of sensor network query-processing systems
(SNQPs), most notably Cougar [1] and TinyDB [8].

Alone, these systems provide a convenient inter-
face for extracting data from sensornets. Further-
more, query optimization appears to be a promis-
ing approach for reducing sensornet power consump-
tion [11, 7, 4], the primary sensor performance met-
ric [6, 10]. Despite the promising advances seen in
the research, we believe there is a substantial oppor-
tunity to further improve both the power efficiency and
utility of SNQPs by their integration with one of sev-
eral streaming database systems, such as STREAM [9],
TelegraphCQ [5], or Aurora [3], commonly referred to
as data stream management systems (DSMSes).

This integration offers three major benefits:

• The ability to combine stored or streaming data
from the DSMS with data from the sensornet.
For example, users may want to compute a join
to decide if readings from a motion-detector are
correlated with network activity, or if truck loca-
tions match the expected locations on the planned
route.

• A single, integrated interface for interacting with
both the streaming database and the sensor net-
work. TinyDB currently allows users to log
query results into a RDBMS table via JDBC,
but queries must still be input to TinyDB inde-
pendently of the RDBMS. By providing a single,
seamless system, users are only required to learn
to configure and interact with one set of interfaces.

• The ability to optimize between the database sys-
tem and the sensor network. For example, it may
be desirable to push certain filters and aggregates
into the sensor network if user queries are inter-
ested in only particular subsets or coarse sum-
maries of readings.



Borealis

Query

Processor

Proxy

Query

Processor

Proxy

Sensornet Sensornet . . .

. . .

Query

Processor

Proxy

Sensornet

Figure 1: General Architecture

We have begun the development of a next gener-
ation stream processing system, called Borealis [2],
with a team from Brandeis, Brown, and MIT. This
demonstration shows one piece of this larger project
where the stream processing engine seamlessly queries
a SNQP system.

Our demo includes sensors deployed in the demo
area in a tiny mockup of a factory application; users
can query both Borealis and TinyDB, and see the
power consumption and efficiency of execution of their
queries. A detailed description of our demonstration
is provided in Section 4. Next we describe the general
architecture of our system with a description of a few
of the technical challenges.

2 Architecture

The architecture allows the sensor network to com-
municate its processing capabilities and constraints,
along with descriptions of the data it can produce to
the DSMS. It also provides a translation mechanism
so that query operations entered through the DSMS
application interface can be performed in the sensor-
net should the system choose to do so. In addition,
it provides a way to resolve contrasting optimization
goals of sensor networks and DSMSes. Finally, the ar-
chitecture is sufficiently general so that future efforts
to integrate other forms of data sources (with limited
query processing capabilities) with DSMSes (such as
xml-streams, web sources or even other DSMSes) can
be worked into the same architecture.

Figure 1 shows an overview of our architecture.
Here we show a DSMS (in our demonstration, a Bore-
alis prototype) distributed across 3 sites, two of which
receive data from sensor networks. The fundamental
idea behind the integration architecture is to place a
proxy intermediary at each interface between sensor
networks and instances of the DSMS. The role of the
proxy is to make the sensor network appear to the
DSMS instance as if it were another instance running

Query Processor

Proxy

Sensornet

Wrapper

Sensornet

Wrapper

. . .

Figure 2: Proxy and Wrapper

on a different site. The DSMS can then move operators
and stored relations across the server/sensor bound-
ary with the same ease as if it were moving across
server/server boundaries.

We assume that each sensornet is uniquely con-
nected to just one DSMS instance and that the sen-
sornet is capable of performing some portion of the
query plan. The proxy has three primary functions.
First, it gathers statistics about constraints of con-
nected subnetworks so that it can reject proposals from
the DSMS to move operators or stored relations into
the network (or change the parameters of operators
already in the sensor network) that the sensor net-
work does not have the processing power, storage, or
bandwidth capacity to handle. Second, if it accepts an
operator on behalf of the sensor network, it selects the
appropriate implementation of the operator. Finally,
it works with the DSMS to optimize the query (with
respect to application QoS). This third function is de-
scribed in Section 3. These functions are performed by
the proxy for all connected sensor networks. However
the proxy needs information about the current state of
each connected subnetwork (e.g. how much available
bandwidth is being used or how much power is remain-
ing). For this reason, the proxy interacts with its sen-
sornets using a wrapper for each network as shown in
Figure 2. The wrapper provides a standardized API
to integrate the connected sensornets into the opti-
mization process. That includes a set of meta data
which describes the related sensornet. All additional
data sources to the DSMS are connected through these
wrappers.

3 Query Optimization

Query optimization across a DSMS-sensor network in-
tegration faces three primary challenges. First, the
processing capabilities of the sensor network is much
smaller than the capabilities of the DSMS and thus
only a subset of potential query plans (mappings of
query operators to nodes upon which they will be run
and implementations of these operators) can actually
be executed.

Second, in contrast to a DSMS, in a sensor network
the same operator will be run on multiple nodes (for



standard SNQPs such as TinyDB). Thus, the decision
is not where to put an operator in the sensor network,
but whether to place an operator in the network at all.
Such a decision must be made in a centralized manner
since the result affects multiple nodes. The proxy ar-
chitecture described above provides a simple solution
to both of these problems in that the proxy serves as
a central decision maker that is cognizant of the pro-
cessing capabilities of the underlying network and can
accept or reject query plans and operator movements
using knowledge of these capabilities. For example,
if the sensor network does not support windowed ag-
gregations, the proxy can reject all query plans that
involve the network performing a windowed aggregate
operator.

The third challenge is that a DSMS and a sen-
sor network have different and potentially conflicting
goals. The DSMS is responsible for maximizing the
QoS to end applications, and thus is interested in de-
creasing latency, increasing throughput, and maximiz-
ing the quality of results delivered to these applica-
tions. In contrast, a sensor network is primarily con-
cerned with minimizing power consumption in order to
extend lifetime and reduce cost. In some cases, these
goals conflict. As a case in point consider whether
or not to place a join operation (of sensor data with a
static table) in a sensor network. Assume that the join
predicate is highly selective, but that the static table is
large so that the table must be horizontally partitioned
and the join performed in parallel on many sensors.
Assuming the network has the processing capability
for the operator, it is in the sensor network’s interest
to perform the operation in-network since it reduces
the number of transmitted tuples and thus power used.
Due to the lossy nature of wireless communication, tu-
ples generated by sensors might not reach nodes stor-
ing parts of the static join table, leading to lost join
results. This affects the quality of results observed by
the end application. While the sensor network might
want to perform the join in-network, the DSMS might
prefer to have the network just transmit the original
data and perform the join once the data reaches the
wired interface.

We attempt to solve this problem by aggregating
sensor network constraints into one lifetime metric and
supplementing DSMS QoS with an additional dimen-
sion to optimize. The lifetime of a query is equal to
the minimum of the lifetimes of all data sources of this
query. Lifetime can be thought of as a fixed amount of
service the DSMS has bought from the sensor network.
When the service runs out, no data will be produced
for the query. This effectively terminates the query as
a consequence. The more work the query requires of a
sensor network, the faster the fixed amount of service
is used. Thus, there is cost observable to the applica-
tion in making decisions that might improve latency or
quality while also increasing power utilization in the

Perform join to find if
in required range

Stored table containing
temperature ranges

Sensor Network

Proxy Aggregate
Join

Take average temperature

Figure 3: Query Shown as a Workflow Diagram

sensor network. This allows the DSMS to choose in
which direction of the power/latency/quality trade-off
to optimize using application QoS functions.

4 Demonstration Highlights

This demonstration shows a simulated factory environ-
ment with temperature sensitive construction phases.
The factory produces a product whose creation re-
quires the temperature to remain in a small, fixed
range that varies over time. Should the temperature
fall outside this range, the product is in danger of be-
ing damaged and action must be taken immediately.
A continuous query is thus desired that joins aggregate
temperature readings from sensors located at various
positions in the factory with a time-indexed relation
that encodes the desired temperature range. Should
the temperature ever fall outside the required range,
an appropriate reaction can be taken (such as to halt
production until temperature falls within the required
range).

We simulate this factory query with a small fac-
tory replica built out of Lego and placing inside it a
portable air conditioner and several Mica motes that
can sense ambient temperature.

The continuous query demonstrated is (in a deriva-
tive of TinySQL [8]):

SELECT a.atemp, a.anum
FROM schedule AS s,

(SELECT AVG(temp) AS atemp,
COUNT(temp) AS anum

FROM sensors) AS a
WHERE s.ts > t.tsmin AND

s.ts < t.tsmax AND
a.atemp > t.tempmin AND
a.atemp < t.tempmax

This query can be more clearly shown in a workflow
diagram as in Figure 3.

As shown, the sensors relay their temperature read-
ings through the proxy to the DSMS which then aggre-
gates these readings and joins them with a stored ta-
ble. There is clearly an alternative choice for where the
aggregation and join can be performed: the sensor net-
work. However, the decision of where to perform these



operators has a variety of consequences on the QoS di-
mensions of power utilization, tuple loss rate, and la-
tency. Further, the system has the option of changing
the sensor sample rate to maximize the lifetime-tuple
quality trade-off.

The demonstration shows, through a QoS monitor
graphical interface, how QoS varies with system opti-
mization decisions of operator movements and sensor
sample rates. Other monitors show the results in each
individual QoS dimension of these optimization deci-
sions (the user can see the lifetime QoS increase when
the aggregate operator moves into the sensor network
and the quality dimension increasing at the same time
as lifetime decreasing as the sensor sample rate is in-
creased). The effects on latency, loss rate, and lifetime
of moving the join operator into the sensor network de-
pend on the size of the static table and the selectivity
of the join predicates. We allow the user to send up-
dates to the join table to observe how changing these
statistics increases or decreases QoS upon moving the
join into the network. We also allow the user to change
the temperature of the air conditioned “factory” and
to change the parameters of the query to observe the
DSMS/sensor network integration successfully run the
query.

5 Conclusion

It is clear that the integration of sensor networks and
DSMSes is important. Sensor networks serve as a nat-
ural data source to DSMSes, and in return DSMSes are
capable of executing much more complex operations on
the data than nodes in the network, allowing a wider
variety of queries to be performed on sensor produced
data. Integration of these systems to create a uni-
fied query plan that will execute across DSMS/sensor
boundaries is not a trivial task because of the different
architectures and assumptions of these systems. Sen-
sor networks (using SNQPs such as TinyDB) perform
the same operation in parallel across many different
nodes in a lossy and power constrained environment.
The DSMS performs only one instance of an operation
on a server node with fewer power, CPU, and storage
constraints. Optimization of this query plan presents
further difficulties. We demonstrate a successfully in-
tegrated sensor network and DSMS where user queries
can be run and optimized across these heterogeneous
query processing components.

References

[1] Cougar web page. http://www.cs.cornell.
edu/database/cougar/.

[2] Daniel Abadi, Yanif Ahmad, Hari Balakrishnan,
Magdalena Balazinska, Ugur Cetintemel, Mitch
Cherniack, Jeong-Hyon Hwang, John Jannotti,
Wolfgang Lindner, Samuel Madden, Alexander
Rasin, Michael Stonebraker, Nesime Tatbul, Ying

Xing, and Stan Zdonik. The design of the borealis
stream processing engine. (submitted for publica-
tion).

[3] Daniel J. Abadi, Don Carney, Uğur Çetintemel,
Mitch Cherniack, Christian Convey, Sangdon Lee,
Michael Stonebraker, Nesime Tatbul, and Stan
Zdonik. Aurora: A new model and architecture
for data stream management. VLDB Journal,
September 2003.

[4] Boris Bonfils and Philippe Bonnet. Adaptive and
decentralized operator placement for in-network
query processing. In Proceedings of the First
Workshop on Information Processing in Sensor
Networks (IPSN), April 2003.

[5] S. Chandrasekaran, A. Deshpande, M. Franklin,
J. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. Shah.
TelegraphCQ: Continuous Dataflow Processing
for an Uncertain World. January 2003.

[6] Chalermek Intanagonwiwat, Ramesh Govindan,
and Deborah Estrin. Directed diffusion: A scal-
able and robust communication paradigm for sen-
sor networks. In MobiCOM, Boston, MA, August
2000.

[7] Samuel Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong. The design of an ac-
quisitional query processor for sensor networks.
In ACM SIGMOD, 2003.

[8] Samuel Madden, Wei Hong, Joseph M. Heller-
stein, and Michael Franklin. TinyDB web page.
http://telegraph.cs.berkeley.edu/tinydb.

[9] R. Motwani, J. Window, A. Arasu, B. Babcock,
S.Babu, M. Data, C. Olston, J. Rosenstein, and
R. Varma. Query processing, approximation and
resource management in a data stream manage-
ment system. In CIDR, 2003.

[10] Greg Pottie and William Kaiser. Wireless inte-
grated network sensors. Communications of the
ACM, 43(5):51 – 58, May 2000.

[11] Yong Yao and Johannes Gehrke. Query process-
ing in sensor networks. In Proceedings of the First
Biennial Conference on Innovative Data Systems
Research (CIDR), 2003.


