
Cluedump Notes.oo3

Topic
Disclaimer

I'm not a pro
No warranty, as-is, etc.
This requires some thought to tailor to your situation and understand the risks

Only you know your threat model
Introduction

Introduction
PGP is a protocol & some ideas
GPG is one implementation of many
I'd love to show you everything straight from GPG, but I'm going to keep it more general at first

Cryptography Primer
What is cryptography? Encryption

Providing confidentiality — plaintext into ciphertext using a "key"
Mathematical operations — security is only dependent on knowledge of the key
Security is provided by the selection of large enough numbers that make reversing/brute-forcing
the mathematical operations difficult and time-consuming

Symmetric Key
One key for encryption and decryption
Fast, but there's a key distribution problem
Common algorithms: AES, DES, Blowfish, etc.

Public (Asymmetric) Key
One key for can encrypt, the other can decrypt, and vice versa
Typically called "public key" because one is made "public" and one is kept "private"/secret —
nice properties... different key distribution problems, but more on that later
Relatively slow, but there are good workarounds
Common algorithms: RSA, ElGamel (Diffie-Hellman), DSA

Hybrid Cryptosystem
Leveraging benefits of both algorithms
Symmetric encryption for data confidentiality
Asymmetric encryption for symmetric key confidentiality
"Session key"

The other "half": Signatures
Provide integrity — assurance that a message was not tampered with
Provide authenticity — assurance that a message came from its purported author

Non-repuditation
Typically implemented as encryption of a compact representation of the message

Hash/Message Digest Function
Given some arbitrary input, generates a fixed length output that is unique to the input, and will
change if the input accidentally or intentionally changes
Features

Difficult to invert (preimage resistance): given d, find an m for d=H(m)
Difficult to find a second equal-hashing input (second preimage resistance)
Difficult to find arbitrary equal-hashing inputs (collision resistance)

Topic

Cryptography Primer

Hash/Message Digest Function

Features

Difficult to find arbitrary equal-hashing inputs (collision resistance)
[source: http://en.wikipedia.org/wiki/Cryptographic_hash_function]

Common algorithms: SHA, MD5, RIPEMD
Difference between authenticity and integrity: CRC, non-HMAC hash, etc.

PGP history
Historical backdrop

Bills outlawing cryptography
Clipper chip telephones, and FBI key escrow

Phil Zimmerman
software developer, anti-nuclear activist
PGP = Pretty Good Privacy
original release via ftp in 1991
Email-focused

Export Controls
First amendment > ITAR
Publish source as a book

MIT Involvement
Pushing to develop a non-encumbered version
Maintenance & Release
Standardization at IETF
jis, jdb, hal, simsong

Up to present
OpenPGP RFC

interoperability
1991, 2440, 4880

PGP Corporation
New legal & policy environment

PGP "key" ideas
Public key crypto
No central point of control
Distributed web trust
Strong crypto for everyone

PGP concepts
PGP Operations

Symmetric
compression first

Encrypt/decrypt
compression first

Sign/Verify
canonicalizes text files by changing line-endings to CRLF

ASCII Armor
Transmit binary over base64 email

Your Keys
Key Storage Problem: Need to keep these keys somewhere to stay organized and ease of use
Keyring — at least two, one with secret key(s) and one with public keys

some kind of DB (often — as in GnuPG — just a blob) of all public keys
Public Key

Topic

PGP concepts

Your Keys

Keyring — at least two, one with secret key(s) and one with public keys
some kind of DB (often — as in GnuPG — just a blob) of all public keys

Public Key
pgpdump my public key
uids — binding identity to public key material
expiry dates
algorithms for pre-negotiation
signatures — more on this later

Secret Key — encrypted with your hashed passphrase (S2K) by a symmetric algorithm (typically
CAST5)

subkeys
Key Distribution

Key Distribution Problem: How do I get other people's keys? It would be inconvenient to ask
them to send them before communicating
You can still do that, and import them
But, a key directory — keyservers — are the trick

http or pgp access
pgp.mit.edu & others — synchronize with eachother, can be updated but not really deleted

need to revoke your key
key compromise, expiry, etc.
how to provide continuity

screenshots — woodrow, jis, etc.
Trust in PGP

Authentication Problem: How do you know this is my key, and not someone posing as me to
MITM me?
Abstract notions

validity — does a key really belong to the person named on it?
trust — do you trust the honesty and judgement of the keyholder to claim that others' keys are
valid?

GPG it's 'ownertrust'
X.509 — MIT Certificates

absolute trust of the root, everyone's certificate in the system that isn't expired is valid
PGP — Trust as an individual decision

Directly certify (sign) some keys
Control who you trust to verify others

The Web of trust
Authentication is difficult if you only trust verified friends

By trusting friends, you can treat their signatures as "probably" valid
You might want confirmation — GPG defaults to 1 completely trusted or 3 marginally
trusted to view a key as (transitively) valid
You might be able to find a "chain of trust" between multiple people
Most benefit comes from publicity of web of trust, but also problems of inference of
association

The Strong Set
The largest strongly connected graph on public keyservers — there is a bidirectional path
from A to B for every pair (A,B) in the set

What does it mean to sign a key
minimum expectations vary —
explicit signing policies (particularly anal: http://www.nieveler.org/PGP/pgp.htm)
what is actually being signed?

Topic

PGP concepts

Trust in PGP

What does it mean to sign a key

explicit signing policies (particularly anal: http://www.nieveler.org/PGP/pgp.htm)
what is actually being signed?
degrees of verification

0x10: Generic certification of a User ID and Public-Key packet.
 The issuer of this certification does not make any particular
 assertion as to how well the certifier has checked that the owner
 of the key is in fact the person described by the User ID.
0x11: Persona certification of a User ID and Public-Key packet.
 The issuer of this certification has not done any verification of
 the claim that the owner of this key is the User ID specified.
0x12: Casual certification of a User ID and Public-Key packet.
 The issuer of this certification has done some casual
 verification of the claim of identity.
0x13: Positive certification of a User ID and Public-Key packet.
 The issuer of this certification has done substantial
 verification of the claim of identity.

Methods of signing
individuals meeting up
keysigning party (HOWTO)

How to sign a key
Bring paper with UIDs and key fingerprint — probably not a laptop
Require whatever you feel you need to verify someone's identity as matching their key UIDs
— a valid photo ID, but it depends on your personal signing policy (just like a certificate
authority)
Go home and get public key from keysever, match fingerprint, and sign the key
Export their signed public key and encrypt it with their public key to verify their control over
their key, mail it back to one of their addresses — question of politeness
Other tricks to verify control of mail addresses in uid, etc.
Problem: not everyone has the same standards, but this is where trust comes in

Changing your mind: signature deletion & revocation
generate a revocation certificate and upload it

What PGP is good for/where itʼs used
Encrypting and decrypting/signing files & email

email a password or other sensitive data
keep your own files private
Things that you sign to CYA?

Debian & Ubuntu & Debathena
uploading packages
securing APT

Signing your code in a repository — git-tag
Signing software releases — better than md5 or sha1 because it provides authentication too

In all these cases where you desire encryption, consider your threat model
Technical Threats

Assume that the GPG source wasn't tampered with
You can inspect the source of major implementations

Assume that your GPG binaries haven't been tampered with
Assume your machine is trusted and files you might depend on can't easily be modified

Other threats
Rubber hose cryptanalysis
Government supercomputers?

Topic

In all these cases where you desire encryption, consider your threat model

Other threats
Rubber hose cryptanalysis
Government supercomputers?
Inference about your relationships

Think about your threat model and make decisions accordingly
GPG, a PGP implementation

Implementations
GPG is popular, free, OpenPGP compliant (1.4 vs. 2)
PGP Corp — non-free, desktop software, business-oriented
Graphical frontends for gpg (kgpg, gnome-gpg, firegpg)
MUA/Mail clients (Enigmail, GPGMail, etc.)
apt-cache search "gpg|pgp|gnupg" (though there's some overlap)

GPG
a complex program with lots of options — you'd do well to read the manpage: man gpg | wc -l >>
2950

GPG Files
~/.gnupg/

pubring.gpg & secring.gpg — default public & secret keyrings
gpg.conf — configuration options (like in manpage, without leading "--")
trustdb.gpg — calculated ownertrusts based on web of trust
WARNINGS/CAVEATS:

Trust storage in GPG, etc. has no integrity protection
GPG Commands

gpg -s Sign
--clearsign
--detach-sign
-e Encrypt -r Recipient
-c Symmetric
-d Decrypt
-a Armor
-o Output (or > Output)

GPG Key Commands
--export
--import
--list-keys
--check-sigs
--fingerprint
--edit-key

Referring to keys
KeyID: last 4 bytes of fingerprint (0x optional)
Full fingerprint — hopefully unique
Exact UID Match (=)
Email match (<a@b.c>)
All words (+word1 word2 ...)
Substring (default)

Setting up & using GPG
My motivation here:

Lots of tutorials about getting started by running default gen-key and uploading keys to a
keysever — that's it

Topic
Setting up & using GPG

My motivation here:
Lots of tutorials about getting started by running default gen-key and uploading keys to a
keysever — that's it

What happens if you forget your password?
How do you backup your keys?
Should your secret key be on an internet-connected computer?

This may not be an ideal setup to start with, and you never think about your threat model
Things to think about

Many of these things are tradeoffs of convenience and security
Expiry dates
Key size & hash/encryption algorithm choice

Key longevity
compatibility with OpenPGP and PGP $VERSION
Forward secrecy & attestation given technical advancement

Private key storage
Use across multiple machines
Backup

Getting Started — Set Things Up Right in gpg.conf (use this file almost everywhere)
Choose better defaults (url: http://csrc.nist.gov/groups/ST/hash/statement.html)

cert-digest-algo SHA256
personal-cipher-preferences AES256 AES192 AES CAST5
personal-digest-preferences SHA512 SHA384 SHA256 SHA224
personal-compress-preferences ZLIB BZIP2 ZIP Uncompressed
default-preference-list SHA512 SHA384 SHA256 SHA224 AES256 AES192 AES CAST5
ZLIB BZIP2 ZIP Uncompressed

Multiple keyrings to stay organized:
no-default-keyring
primary-keyring default.gpg
keyring signed-by-<ID>.gpg
keyring username-<ID>.pub.gpg
secret-keyring username-<ID>.sec.gpg **(or subsec)**

Generating keys
Subkey approach (URL: http://tjl73.altervista.org/secure_keygen/en/index.html, http://fortytwo.ch/
gpg/subkeys, etc.)

Large, signing-only key that never changes and is maintained securely
Smaller, sign and encrypt subkeys that are used day-to-day without risk to primary key
Allow subkeys to be changed without throwing out all of my signatures
Subkeys can't sign other keys

On a disconnected trusted laptop, on a separate volume (USB key, etc.) --homedir ** also can
use PGPcard**

generate primary sign-only key (4096R) and sub signing+encryption (2048R and 2048g)
add UIDs
generate primary key revocation certificate
--export public.gpg and --export-subkeys subsec.gpg
copy public & subkeys to other volume (i.e. ~/.gnupg on laptop) and import

Backing up keys — do this after creation
Backup KRC, public & private (full keyring) to CD
Paperkeys for secret and subsecret keys
If you want, you could base64 encode the KRC

Topic

Setting up & using GPG

Backing up keys — do this after creation

Paperkeys for secret and subsecret keys
If you want, you could base64 encode the KRC
store in a very safe place — secret keys are still encrypted, but KRC is "armed"

Signing new keys
Lifecycle — Retiring old keys & rolling over new keys

Doing more with PGP & GPG
utilities

pgpdump
gpgsplit

packages
signing-party — caff and others

keysigning party!

