
Understanding PGP
and Using GPG

SIPB Cluedump Series / 17 November 2009

Steve Woodrow / woodrow@mit.edu
7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

Agenda

• Public key crypto

• PGP overview (history & key ideas)

• PGP concepts

• What PGP is good for/where it’s used

• GPG, a PGP implementation

• Setting up & using GPG

• Doing more with PGP

Disclaimer

• Protip: I am not a crypto pro

• This talk has no warranty and is provided
“as-is”

• This has come out of much thought on the
subject, but this is my first run, and there
may be changes

• Tailoring to your situation will require some
thought and understanding the risks
— think!

Crypto primer

• What is cryptography? Encryption?

• Confidentiality: p => Ek => c

• Mathematical operations: security comes
from secrecy of key

• Use of “large enough” numbers and
specific operations makes reversing the
math difficult

Symmetric key

• One key for encryption and decryption

• What we’ve known as crypto for most of
history

• Fast, but the key must be confidentially
shared beforehand

• Common Algorithms: AES, DES, Blowfish,
etc.

Public (asymmetric) key

• Math allows two keys to be used

• Encryption by one key is decrypted by the
other key

• Called “public key” because one key typically
made public and the other kept secret —
provides nice properties

• Relatively slow

• Common algorithms: RSA, ElGamal, DSA

Hybrid cryptosystem

• Benefits of both algorithms

• Generation of a one-time session key

• Public Key used to exchange session key

• Symmetric Key used to exchange data

Digital signatures

• Provides integrity — assurance a message
was not tampered with

• Provides authenticity — assurance a
message came from its purported author

• Non-repudiation

• Implemented as encryption of a compact,
unique representation of the message (hash)

Hash/message digest
functions

• Generates a fixed-length output statistically
unique to the input

• Difficult to invert

• Collision resistant

• Common algorithms: SHA, MD5, RIPEMD

• Difference between authenticity & integrity

A bit of PGP history*

• Politics — Gov. bill outlawing strong crypto,
clipper chip telephones and FBI key escrow

• Phil Zimmerman (prz)— software developer
& anti-nuclear/military policy activist

• “Pretty Good Privacy”

• Originally “released” in 1991

• Focused mainly on email security

Export Controls

• Crypto > 40 bits was a munition under ITAR
and couldn’t leave the US

• First Amendment > ITAR

• MIT Press published a 900 pp. book of
the source for OCRing

MIT’s Involvement

• hal, jis, jdb and others worked with prz to
release a non-encumbered version

• MIT was involved in maintaining and
releasing new versions

• simsong wrote a pretty good book

Up to the present

• Standardization: OpenPGP

• RFCs 1991, 2440, 4880

• PGP® Corporation

• New legal and policy environment

PGP’s key ideas

• Public key cryptography

• No central point of control

• Distributed web of trust

• Strong crypto for everyone

Basic PGP operations

• Symmetric Encryption/Decryption

• Public Key Encryption/Decryption

• ZIP/etc. compression first

• Sign/Verify

• canonicalizes text with CRLF line endings

• ASCII armor — base64 + checksum

General Encrypted
Message

• Every PGP message is a series of packets

plaintextsession key

public key E

E

E(KS)Kp

E(p)Ks

Z
plaintext.zip

ASCII Armor

-----BEGIN PGP MESSAGE-----
Version: GnuPG v1.4.9 (Darwin)

jA0ECQMC6+Nriien1Rhg0koBxK+eAtTlzxAh2Aw9fRw+HR+/Cf59xzwkp2NMYDWS
TU/gD/SH9xKr7lxWAMnYGHnm17O7BEQ2lM6FjQ/+DeaF6Iek9Giu1OXQOg==
=7sWL
-----END PGP MESSAGE-----

What about keys?

• Keyring — a collection of keys of interest, at
least one public and one secret

• What’s in a key? More packets:

• Key material

• uid, algorithm preferences, etc.

• signatures

• subkeys

• Look inside with pgpdump

Inside a PGP key

Public Key

User ID

Signature

...

Subkey

Binding Sig.

...

pub 4096R/F18688B8 2009-08-23
uid Stephen Woodrow <srwoodrow@gmail.com>
uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

mailto:srwoodrow@gmail.com
mailto:srwoodrow@gmail.com
mailto:woodrow@mit.edu
mailto:woodrow@mit.edu
mailto:woodrow@csail.mit.edu
mailto:woodrow@csail.mit.edu

Inside a PGP key

Public Key

User ID

Signature

...

Subkey

Binding Sig.

...

pub 4096R/F18688B8 2009-08-23
uid Stephen Woodrow <srwoodrow@gmail.com>
uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

Signature, algorithm & hash type

<expiry date>

<creation date>

<usage flags>

<prefered algorithms>

...

Digital Signature of above

mailto:srwoodrow@gmail.com
mailto:srwoodrow@gmail.com
mailto:woodrow@mit.edu
mailto:woodrow@mit.edu
mailto:woodrow@csail.mit.edu
mailto:woodrow@csail.mit.edu

A note about secret keys

• Secret key material is encrypted by a
symmetric algorithm (typically CAST5) to
keep it safe on disk

• Your hashed passphrase (S2K) as key

Key Distribution

• How do I get other people’s keys?

• Trading beforehand is inconvenient

• How about a key directory? PGP keyservers

• http://pgp.mit.edu and others (pools)

• synchronize with each other

• keys updated, but can’t be deleted

• must be revoked

http://pgp.mit.edu
http://pgp.mit.edu

http://pgp.mit.edu

http://pgp.mit.edu
http://pgp.mit.edu

http://pgp.mit.edu

http://pgp.mit.edu
http://pgp.mit.edu

What about trust?

• How do I know which one “is” Jeff Schiller?

• Nothing stops Mallory from creating a key
with uid “Jeff Schiller <jis@mit.edu>”

• Each key has a unique “fingerprint” — the
hash of the public

• I could ask jis (in person) which fingerprint
is correct

• I could sign a copy of his key to note this
to me and to others who trust me

mailto:jis@mit.edu
mailto:jis@mit.edu

Trust-related concepts

• Validity: does the key really belong to the
person named on it?

• Trust: Do I trust the honesty and judgement
of the keyholder to claim that others’ keys
are valid?

• “ownertrust”

Trust in PGP is an
individual decision

• MIT’s X.509 Certs:

• absolute trust of the root CA

• root certifies all certs as valid

• PGP:

• You certify some keys as valid

• You control who you trust to verify the
keys of others

The Web of Trust

• Authentication is difficult if you only trust
verified friends

• By trusting some friends, you can treat their
certification of other keys as “probably”
valid

• You may find a chain of trust from to you a
desired recipient

From http://www.cs.bham.ac.uk/~mdr/teaching/modules/security/lectures/PGP.html,
from William Stallings, Cryptography and Network Security, Principles and Practice,
Prentice Hall, 1999. Copyright 2003 by Pearson Education Inc

http://www.cs.bham.ac.uk/~mdr/teaching/modules/security/lectures/PGP.html
http://www.cs.bham.ac.uk/~mdr/teaching/modules/security/lectures/PGP.html

The “Strong Set”
• The largest strongly connected graph on public

keyservers

• Bidirectional path between every pair of keys

The “Strong Set”

• Find a path through the strong set:
http://people.cs.uu.nl/henkp/henkp/pgp/

• Publicity of signing others keys allows the
strong set to be constructed, but it also
allows inference about associations

• potential privacy violation

http://people.cs.uu.nl/henkp/henkp/pgp/
http://people.cs.uu.nl/henkp/henkp/pgp/

What does it mean to
sign a key?

• Certifying the key is valid

• Steps to verify validity vary greatly

• Some people have policies, though it’s
pretty intense:
http://www.nieveler.org/PGP/pgp.htm

• Degrees of verification are allowed to be
specified, but not always used and are a bit
vague

http://www.nieveler.org/PGP/pgp.htm
http://www.nieveler.org/PGP/pgp.htm

Callas, et al Standards Track [Page 19]

RFC 4880 OpenPGP Message Format November 2007

 0x10: Generic certification of a User ID and Public-Key packet.
 The issuer of this certification does not make any particular
 assertion as to how well the certifier has checked that the owner
 of the key is in fact the person described by the User ID.

 0x11: Persona certification of a User ID and Public-Key packet.
 The issuer of this certification has not done any verification of
 the claim that the owner of this key is the User ID specified.

 0x12: Casual certification of a User ID and Public-Key packet.
 The issuer of this certification has done some casual
 verification of the claim of identity.

 0x13: Positive certification of a User ID and Public-Key packet.
 The issuer of this certification has done substantial
 verification of the claim of identity.

 Most OpenPGP implementations make their "key signatures" as 0x10
 certifications. Some implementations can issue 0x11-0x13
 certifications, but few differentiate between the types.

http://tools.ietf.org/html/rfc4880#page-20
http://tools.ietf.org/html/rfc4880#page-20
http://tools.ietf.org/html/rfc4880
http://tools.ietf.org/html/rfc4880

How to sign a key
• Bring paper with a double-checked key fingerprint and UID

— probably not a laptop

• Demand whatever you feel you need to verify someone’s
identity — typically a couple of pieces of ID (one photo)

• If you’re satisfied with identity, go home and pull their
public key from a keyserver

• Does fingerprint match? Sign their key.

• Export their signed public key and encrypt it with their key
to verify their control of the associated private key

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

pub 4096R/F18688B8 2009-08-23 Stephen Woodrow <srwoodrow@gmail.com>
Key fingerprint = 7901 C8DB 4886 EB01 4FC7 EBBA 8A10 C01C F186 88B8

uid Stephen Woodrow <woodrow@mit.edu>
uid Stephen Woodrow <woodrow@csail.mit.edu>
sub 2048R/7C46749C 2009-08-23
sub 2048g/4899B1CF 2009-08-23

Other signing thoughts

• When to sign keys?

• Individually

• Keysigning parties are efficient (stay tuned)

• Not everyone has the same standards

• This is where trust and judgement come in

• Made a bad decision?

• Revoke signature or adjust trust

What is PGP good for?

• Encrypting/decrypting & signing files and
mail

• passwords & other sensitive data

• sign things to CYA?

• Debian/Ubuntu/Debathena

• uploading packages & securing APT

• Signing code in repository: git-tag -s

• Signing software you release (better than
MD5 or SHA1)

Threat Model

CC-BY-NC Randall Munroe (http://xkcd.com/538/)

http://xkcd.com/538
http://xkcd.com/538

Threat Model

Actual actual reality: nobody
cares about his secrets. (Also,
I would be hard-pressed to
find that wrench for $5.)

CC-BY-NC Randall Munroe (http://xkcd.com/538/)

http://xkcd.com/538
http://xkcd.com/538

Assumptions & Threats
• Assume source wasn’t tampered with

• You can inspect source of major
implementations

• Assume GPG binaries haven’t been
tampered with

• Assume your machine is trusted & files you
depend on can’t be modified

• Other threats?

• Only you know your threat model: think
hard and act accordingly

Implementations

• GPG: popular, free, OpenPGP compliant
(1.4 vs. 2)

• PGP Corp: non-free, desktop software,
business-oriented

• Graphical frontends for gpg: kgpg, gnome-
gpg, firegpg

• MUA/Mail clients: Enigmail, GPGMail, etc.

• apt-cache search "gpg|pgp|gnupg"
(though there's some overlap)

References

• S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly, 1995.

• P. Zimmerman. The Official PGP User’s Guide. MIT
Press, 1995.

