
Received: 20 June 2016 Revised: 20 September 2016 Accepted: 3 November 2016

DOI 10.1002/cpe.4064

R E S E A R C H A R T I C L E

Efficient and high-quality sparse graph coloring on GPUs

Xuhao Chen Pingfan Li Jianbin Fang Tao Tang Zhiying Wang Canqun Yang

College of Computer, National University of

Defense Technology, Changsha, 410073, China

Correspondence

Xuhao Chen, College of Computer, National

University of Defense Technology, Changsha

410073, China,

Email: cxh@illinois.edu

Funding Information

National Natural Science Foundation of China

(NSFC), Grant/Award Number: 61502514,

61602501, 61402488, 61502509; National

Key Research and Development Program of

China, Grant/Award Number:

2016YFB0200400

Summary

Graph coloring has been broadly used to discover concurrency in parallel computing. To speed up

graph coloring for large-scale datasets, parallel algorithms have been proposed to leverage mod-

ern GPUs. Existing GPU implementations either have limited performance or yield unsatisfactory

coloring quality (too many colors assigned). We present a work-efficient parallel graph coloring

implementation on GPUs with good coloring quality. Our approach uses the speculative greedy

scheme, which inherently yields better quality than the method of finding maximal independent

set. To achieve high performance on GPUs, we refine the algorithm to leverage efficient operators

and alleviate conflicts. We also incorporate common optimization techniques to further improve

performance. Our method is evaluated with both synthetic and real-world sparse graphs on the

NVIDIA GPU. Experimental results show that our proposed implementation achieves averaged

4.1 × (up to 8.9 × ) speedup over the serial implementation. It also outperforms the existing GPU

implementation from the NVIDIA CUSPARSE library (2.2× average speedup), while yielding much

better coloring quality than CUSPARSE.

KEYWORDS

GPU, graph coloring, speculative greedy

1 INTRODUCTION

Graph processing algorithms are getting a growing research interest

in the past decade. They are pervasively used in many application

domains, such as scientific computing, social networks, simulations and

bioinformatics. Parallelizing graph algorithms is challenging because

of their inherent irregularity. To leverage modern massively parallel

processors, eg GPUs, make the problem even harder because of the

difficulty of managing massive hardware resources and sophisticated

memory hierarchies. In this paper, we investigate the problem of graph

coloring, which assigns colors to all the vertices of a graph such that

no neighboring vertices have the same color. Graph coloring is a fun-

damental graph algorithm that has been used in many applications1–5

and is also intensively used by scientific computing to discover con-

currency, eg, high performance conjugate gradient6 and incomplete-LU

factorization,7 where coloring is used to identify subtasks that can be

performed or data elements that can be updated simultaneously.

To deal with large-scale datasets, parallel graph coloring

algorithms8,9 have been proposed to leverage the massive hardware

resources on modern multicore CPUs or GPUs. Existing parallel imple-

mentations of graph coloring can be classified into 2 categories: (1)

speculative greedy (SGR) scheme based10 and (2) maximal indepen-

dent set (MIS) based11. There are existing GPU implementations

of both categories. With different algorithms, they exhibit differ-

ent characteristics of performance and coloring quality. The MIS

implementations7 are usually fast because multiple threads can find

MIS in parallel independently, and more importantly, they can substan-

tially reduce the total number of memory accesses. But they inherently

yield too many colors. On the other hand, SGR implementations12

generally use fewer colors than MIS ones, but without careful map-

ping and optimizations, they spend much more time to complete

coloring.

To overcome the limitations of existing approaches, we propose a

high-performance GPU graph coloring implementation, which can pro-

duce high-quality coloring. Our method is built on the basis of the

SGR scheme so that good coloring quality is guaranteed. It is then

optimized specifically for the GPU architecture to improve perfor-

mance. We choose data-driven instead of topology-driven mapping

strategy for better work efficincy and make algorithm trade-offs to

leverage efficient operators and alleviate the side effects of massive

parallelism on GPUs. Meanwhile, we incorporate common optimiza-

tion techniques, eg, kernel fusion, to further improve performance.

The major insight of this work is that algorithm-specific optimizations

are as important as common optimization techniques for high per-

formance graph algorithm on GPUs. The main contributions of this

paper are:

Concurrency Computat: Pract Exper. 2017;29:e4064. wileyonlinelibrary.com/journal/cpe Copyright © 2016 John Wiley & Sons, Ltd. 1 of 13
https://doi.org/10.1002/cpe.4064

:

https://doi.org/10.1002/cpe.4064


2 of 13 CHEN ET AL.

1. We present a work-efficient GPU graph coloring algorithm on the

basis of the SGR scheme. The algorithm is carefully refined to better

leverage GPU’s bulk-synchronous model. It shows the importance

of algorithm refinement to achieve high performance on GPUs.

2. We use optimization techniques specifically for the GPU archi-

tecture to take advantage of GPU’s computation resources and

memory hierarchies. Our practice further demonstrates GPU’s

capability on accelerating graph algorithms.

The rest of the paper is organized as follows: the existing serial and

parallel algorithms as well as the state-of-the-art GPU implementa-

tions are introduced in Section 2. Our proposed design is presented in

Section 3. We present the experimental results in Section 4. Section 5

discusses related work, and Section 6 concludes.

2 BACKGROUND AND MOTIVATION

The graph coloring problem refers to the assignment of colors to ele-

ments (vertices or edges) of a graph subject to certain constraints. In

this paper, we focus on vertex coloring, which assigns colors to vertices

so that no 2 neighboring (connected) vertices are assigned the same

color. There are several known applications of graph coloring, such as

time-tabling and scheduling,1–3 register allocation,4 high-dimensional

nearest-neighbor search,5 sparse-matrix computation,6,7 and assign-

ing frequencies to wireless access points13.

Graph coloring that minimizes the number of colors is an

NP-complete problem and is known to be NP-hard even solved

approximately.14 In this paper, we focus on approximate graph coloring,

which yields near-optimal coloring quality. Many heuristics have been

developed for approximate solutions, including first fit and largest

degree first (LF). These heuristics make trade-offs between minimizing

the number of colors and execution time, but generally faster algo-

rithms have poor coloring quality while slower ones tend to yield fewer

colors. In the following, we introduce some existing sequential and

parallel algorithms.

2.1 Sequential graph coloring

A sequential algorithm10,15 on the basis of the greedy scheme is shown

in Algorithm 1. In all the algorithms specified in this paper, we use sim-

ilar data structures to those introduced to the work of Çatalyürek et

a.l10adj(v) denotes the set of vertices adjacent to the vertex v, color is a

vertex-indexed array that stores the color of each vertex, and colorMask

is a color-indexed mask array used to mark the colors that are imper-

missible to a particular vertex v. At the beginning of the procedure, the

array color is initialized with each entry color[w] set to zero to indicate

that vertex w is not yet colored, and each entry of the array colorMask

is initialized with some value a ∉ V. When processing the vertex v, the

algorithm scans all its neighbors (line 3), and their colors are forbidden

to be assigned to the vertex v (line 4). By the end of the inner for-loop,

all of the colors that are impermissible to the vertex v are recorded in

the array colorMask. It is then scanned from left to right to search the

lowest positive index i at which a value different from the current ver-

tex v is encountered; this index corresponds to the smallest permissible

color c to the vertex v (line 6). The color c is then assigned to the vertex

v (line 7).

2.2 Parallel graph coloring

Parallel graph coloring has been applied to large-scale problems, such as

sparse-matrix computation6,7 and chromatic scheduling3 to meet the

performance requirement. Because of its sequential nature, the greedy

scheme is challenging to parallelize. Basically, 2 classes of approaches

have been proposed in the past to tackle this issue.

Gebremedhin and Manne (GM)9 used speculation to deal with the

inherent sequentiality of the greedy scheme. It colors as many vertices

as possible in parallel, tentatively tolerating potential conflicts, and

resolve conflicts afterwards. Algorithm 2 shows the details of the GM

algorithm. It can be divided into 2 parts: the first part (from lines 4 to 10)

is the same as the sequential algorithm but done in parallel. The second

part (from lines 12 to 18) does the conflict resolve (line 14) and puts the

conflicting vertices into the remaining worklist (line 15). On the basis

of this SGR algorithm, Çatalyürek et al developed OpenMP implemen-

tations for the multicore and massively multithreaded architectures.10

Rokos et al improved Çatalyürek algorithm and implemented it on the

Intel Xeon Phi coprocessor.16



CHEN ET AL. 3 of 13

Another approach relies on iteratively finding an MIS of vertices in a

progressively shrinking graph and coloring the vertices in the indepen-

dent set in parallel. In many of the methods in this class, the indepen-

dent set is computed in parallel using some variant of Luby algorithm.11

An example is the work of Jones and Plassmann (JP).17 Algorithm 3

shows the details of the JP algorithm. Gjertsen et al18 introduced

an advanced parallel heuristic, PLF, that consistently generates better

colorings than the JP heuristic with slight overhead. Two new paral-

lel color-balancing heuristics, PDR(k) and PLF(k) are also introduced.

Hasenplaugh et al19 futher improve the ordering heuristics on the basis

of the JP algorithm.

2.3 CUDA programming and GPU graph coloring

With the success of CUDA20 programming model, general-purpose

graphics processing units (GPGPUs)21 have been widely used for high

performance computing (HPC) and many other application domains

during the last decade.

In CUDA, individual functions executed on the GPU device are called

kernel functions, written in a single program multiple-data form. Each

instance of the single program multiple-data function is executed by a

GPU thread. Groups of such threads, called thread blocks, are guaran-

teed to execute concurrently on the same streaming multiprocessors

(SMs). Within each group, subgroups of threads called warps are exe-

cuted in lockstep, evaluating 1 instruction for all threads in the warp

at once. One of the major difficulties of CUDA programming is to man-

age the GPU memory hierarchy. It consists of register files, L1 memories

(scratchpad, L1 cache, and read-only data cache), the shared L2 cache,

and the off-chip GDDR DRAM.22

Scratchpad memory (shared memory in CUDA terminology) is pro-

grammer visible and can be used for explicit intra thread block commu-

nication.

The L2 cache works as the central point of coherency and is shared

across all threads of the entire kernel.

Several GPU graph coloring implementations have been proposed

so far using either GM or JP algorithm. Grosset et al12 implement the

GM algorithm using CUDA. They use a 3-step graph coloring frame-

work: (1) graph partitioning, which partitions the graph into subgraphs

and identifies boundary vertices; (2) graph coloring and conflicts detec-

tion, which colors the graph using the specified heuristic, eg, first fit,

and identifies color conflicts; and (3) sequential conflicts resolution, which

goes back to CPU and resolves the conflicts. Note that step 2 is per-

formed multiple times on GPU to reduce the number of conflicts before

FIGURE 1 Comparison between 2 existing GPU graph coloring implementations:3-step GM andcsrcolor. A, Performance, ie, runtime speedup
normalized to the serial implementation (the more the better); B, Coloring quality, ie, the number of colors assigned (the less the better). This
figure shows that existing GPU implementations either have poor performance or yield unsatisfactory coloring quality, which motivates our work



4 of 13 CHEN ET AL.

going back to CPU. Although this 3-step GM algorithm assigns as few

colors as the serial algorithm, its performance is poor, or even worse

than the sequential graph coloring for many datasets, meaning the GPU

computation horsepower is not leveraged very well.

The CUSPARSE23 library offered by NVIDIA includes a csrcolor7

routine, which does graph coloring on a given graph in compressed

sparse row (CSR) format.24 The algorithm ofcsrcolor is derived from

the JP algorithm, but uses the multihash method to find independent

sets. Basically, several hash functions (instead of random number gen-

erators) are selected and used to generate hash values for each vertex

with the vertex number as the input of the hash functions. Given the

generated hash values, local maximum and minimum values can be

found, and distinct (maximal) independent sets are generated for each

of the hash values. Assume N hash values are associated with each ver-

tex and used to create different pairs of (maximal) independent sets,

this multihash method can generate 2N (maximal) independent sets at

once. Compared to the GM algorithm, this method significantly reduces

accesses to the color array, because it compares the generated hash val-

ues (in the registers) instead of the colors of neighbors (in the memory).

As reported in the work of Naumov and Cohen,7 the csrcolor imple-

mentation runs pretty fast on modern NVIDIA GPUs. However, it usu-

ally produces several times more colors than the sequential algorithm,

which is not satisfactory for many applications. For example, when

applied to exploiting concurrency in parallel computing, more colors

means less parallelism, because tasks (vertices) with the same color can

be processed concurrently.

We evaluate the 2 existing GPU implementations of graph col-

oring on the NVIDIA K40c GPU. Figure 1 shows the performance

and coloring quality of both implementations. As illustrated, 3-step

GM yields much better coloring quality than csrcolor, but its per-

formance is even worse than the sequential implementation, mean-

ing it does not exploit GPU hardware very well. On the other hand,

csrcolor runs much faster than 3-step GM and gains a certain

degree of speedup over the sequential implementation. However,

this good performance comes at the expense of much worse color-

ing quality: it yields several times more colors than the sequential

implementation and 3-step GM. The limitations of csrcolor and

3-step GM motivate us to design a better implemention of parallel

graph coloring for GPUs to achieve both high performance and good

coloring quality.

3 DESIGN

Graph algorithms are typical irregular algorithms25 that are considered

to be difficult to parallelize on GPUs. However, recent works26–31 show

that GPUs are capable to substantially accelerate graph algorithms if

they are carefully designed and optimized for the GPU architecture.

Although the previously proposed optimization techniques for other

graph algorithms can be applied to graph coloring, we show that refin-

ing the algorithm for GPUs is essential for our case.

As mentioned in Algorithm 2, the graph coloring workload is com-

posed of 2 major components: assign the first permissible color

(Algorithm 4.FirstFit) and resolve conflicting vertices (Algorithm 5.

ConflictResolve). The operations are trivial, but GPU’s massively

parallel model makes it challenging to efficiently parallelize these

workloads. We investigate the 2 activities in the following analyses

using NVIDIA Tesla K40c GPUs.

Note that we use the well-known CSR24 sparse matrix format to

store the graph in memory consisting of 2 arrays. Figure 2 provides

a simple example. The column-indices array C is formed from the set

of the adjacency lists concatenated into a single array of m (m is the

number of edges) integers. The row-offsets R array contains n + 1 (n is

the number of vertices) integers, and entry R[i] is the index in C of the

adjacency list of the vertex vi.

3.1 The baseline design

In the previous evaluation we find that SGR (ie, GM) algorithm inher-

ently yields better coloring quality than the MIS (ie, JP) method. Thus,

we choose to use the SGR scheme and design our baseline algorithm on

top of it. Compared to the 3-step GM algorithm, our proposed GPU

implementation maps the entire coloring work onto the GPU; conse-

quently, removing the data transfer between the CPU and the GPU

while the CPU is only responsible for controlling the progress. The

rationale behind this change of mapping is that throughput-oriented

processors are good at exploiting data-level parallelism, and thus,

recomputing the conflicting vertices rather than serializing it onto the

CPU would be more straightforward and efficient.

Nasre et al32 introduced the concept of topology-driven and

data-driven imlementations of irregular applications on GPUs. For

graph algorithms, the topology-driven implementation simply maps

each vertex to a thread, and in each iteration, the thread stays idle or

is responsible to process the vertex depending on whether the cor-

responding vertex has been processed or not. The topology-driven

implementation is straightforward, and since GPUs are suitable for

accelerating data-parallel applications, it is easy to map onto the GPU

hardware and possibly get speedup. By contrast, the data-driven

implementation maintains a worklist that holds the remaining vertices

to be processed. In each iteration, threads are created in proportion

to the size of the worklist (ie, the number of vertices in the worklist).

Each thread is responsible for processing a certain amount of vertices

in the worklist, and no thread is idle. Therefore, the data-driven imple-

mentation is generally more work efficient than the topology-driven



CHEN ET AL. 5 of 13

FIGURE 2 An example of the compressed sparse row (CSR) format. For this graph, at least 3 colors (red, green, and blue) are needed.

one, but it needs extra overhead to maintain the worklist. Note that the

data-driven implementation still suffers from load imbalance problem,

because vertices may have different amount of edges to be processed

by the corresponding threads.

We implement graph coloring in these 2 fashions. Algorithm 6 shows

the topology-driven graph coloring algorithm. In this topology-driven

algorithm, a flag changed is used to indicate whether all the vertices

are colored or not. It is cleared at the beginning of each iteration, and

set by 1 or more threads if any vertex is colored. Once all the vertices

have been colored, the flag remains false, and the algorithm finally ter-

minates. BothFirstFit andConflictResolve are similar to those

in the GM algorithm, but in ConflictResolve a bitmask colored is

used to avoid recomputation. Algorithm 7 shows the data-driven graph

coloring algorithm. It is almost the same as the GM algorithm except

that Algorithm 7 uses double buffering32 to avoid copying the worklist.

The 2 worklists Win and Wout are referenced by pointers, and they are

swapped at the end of each iteration. Since they are operated using

pointers instead of data values, no copy operation is required between

the 2 worklists.

Atomic operation reduction. In Algorithm 7, since the out work-

list is a shared data structure, pushing elements into the worklist (line

11) requires atomic operations to ensure correctness. Although GPU

architects have paid a lot of effort to optimize atomic operation, seri-

alization from atomic synchronization is still expensive for GPUs.26

Merrill et al26 proposed to use software prefix sum33,34 for updating the

shared worklist. Given a list of allocation requirements for each thread,

prefix sum computes the offsets for where each thread should start

writing its output elements. Fortunately, efficient GPU prefix sums35

have been proposed, and the CUB36 library has already provided stan-

dard routines for CUDA users to invoke. Thus, we need only 1 atomic

operation for each block.

Color clearing. In Algorithm 7, when a vertex is determined to be

conflicting, it is pushed into the worklist. Intuitively, its color should be

cleared, and it will be assigned color in the next iteration. However, func-

tionally, it is not a necessary operation. In the CPU parallel algorithm,

this is not an issue. But for the GPU implementation, it is important

to clear the color, so that when its neighbors check its color, there will

be no conflicts. Thus, in Algorithm 5, the color is cleared (line 4). We

observe nontrivial performance drop if the operation is removed. In the

following sections we will see that the techniques to alleviate conflicts

are performance critical to our GPU implementations.

Figure 3 compares their performance. As shown in the figure, the

data-driven implementation outperforms the topology-driven one on



6 of 13 CHEN ET AL.

FIGURE 3 Runtime speedup of topology- and data-driven implementations, normalized to the sequential implementation

FIGURE 4 Average number of iterations with the baseline and heuristic implementations. Faster convergence leads to an average of 10.4% entire
program speedup over the baseline

average, although the latter is more intuitive to implement on the

GPU. This is easy to understand because the parallelism decreases in

graph coloring as the iteration moves forward, and the topology-driven

implementation has plenty of threads with no work to do, while the

data-driven implementation is work-efficient although mantaining the

worklist costs extra overhead. In the following discussion, we take

this data-driven implementation as our baseline implementation. To

achieve higher performance, we refine the algorithm to alleviate the

side effects of massive parallelism and leverage efficient operators.

We call them algorithm-specific optimizations. We also use common

(nonalgorithm-specific) optimization techniques in Section 3.3.

3.2 Algorithm-specific optimizations

As most parallel graph processing algorithms, parallel graph coloring

is iterative. Therefore, it is important to ensure quick convergence

for high performance. In the case of graph coloring, the number of

iterations required to complete coloring highly depends on the con-

flict situation. For dense graphs, conflicts happen so frequently that

no parallel algorithm can efficiently solve the problem. Our work thus

focuses on sparse graph coloring, which is more common in real-world

applications. Even so it is still challenging to parallelize it on GPUs,

because the thousands of threads in the massively parallel program-

ming model make the conflicts happen much more frequently. This is

not an issue on CPUs because there are only several or dozens of

threads running simultaneously. We propose heuristic conflict resolve

and use thread coarsening technique to alleviate this side effect of GPU

parallelism.

3.2.1 Heuristic conflict resolve

To reduce the number of iterations, an important part is to reduce con-

flicts. Since conflicts happen when 2 adjacent vertices are assigned the

same color, deciding which of the 2 conflicting vertices to be reassigned

in the next iteration affects the following conflict situation. An intu-

itive scheme is to pick the one with smaller or larger vertex id, but this

is surely far away from optimal. We apply heuristic conflict resolve that

prioritizes coloring the vertex with larger degree and puts the smaller

one into the worklist to be processed in the next iteration. The ratio-

nal behind this heuristic is that vertices with larger degrees have more

neighbors and thus are more likely to cause conflicts in the future. So

it is better to color large-degree vertices first and reduce the possibil-

ity of conflicts. When the 2 vertices have the same degree, the one with

smaller vertex id is picked. Figure 4 illustrates the average number of

iterations required to complete coloring. It is shown that benchmarks,

eg, rmat-g and cage15 can have significant iteration reduction using



CHEN ET AL. 7 of 13

the heuristic. We also observe 43% and 50% execution time speedup of

the entire program for the 2 benchmarks compared to the baseline. On

average, the heuristic yields 10.3% speedup over the baseline.

3.2.2 Thread coarsening

Thread coarsening is a common technique used in CUDA or OpenCL pro-

grams. It merges several threads together and thus have each thread

do more work. This reduces the total number of threads and directly

affects how data parallel work is mapped to the underlying hardware.

Usually it is used to reduce the amount of redundant computation

and thus can improve performance. For our case, however, it is used

to reduce conflicts, because massive amount of threads on the GPU

cause severe conflicts, which is not an issue on the CPU. Figure 5 shows

the effect of thread coarsening applied to FirstFit, ConflictRe-

solve, or both. Here we launch nSM×max_blocks thread blocks, where

nSM is the number of SMs on the GPU and max_blocks is the maximum

number of thread blocks that is allowed to be launched on each SM.

max_blocks depends on how many resources (eg, registers and shared

memory) a thread block allocates. Each block has 128 threads. Note

that this is not the optimal configuration, which is different for different

benchmarks, and some benchmarks, would be faster with even fewer

thread blocks. Autotuning techniques would be helpful, but this is out

of the range of this paper. As shown, benchmarks, eg,G3_circuit and

cage15 can remarkably benefit from thread coarsening. On average,

applying thread coarsening on both kernels can improve performance

by 4.4% over the baseline.

3.2.3 Bitset operation

Another major time-consuming part stems from writes and reads on

the colorMask data structure in the FirstFit kernel. For each vertex,

all its neighbors are visited to collect impermissible colors, which are

written into colorMask. This information is then sequentially checked

to find the first permissible color. In the worst case, all the elements

in the colorMask array are checked, but actually we only need to find 1

permissible color. To reduce the costs of this operation, we propose to

usebitsetoperations to implement reads and writes on the colorMask

array. bitset is a standard class template in C++, but no similar sup-

port is provided in CUDA yet. Thus, we implement similar operations to

mimic the functionality of the bitset class.

Fortunately, NVIDIA GPU architecture provides the__ffs() intrin-

sic for our use. Find first set (ffs) or find first one is a bit opera-

tion that identifies the least significant index or position of the bit

set to one in the word. So our scheme is to initialize the bits as all

“1” s and clear the bit if the corresponding color is impermissible. To

FIGURE 5 Program execution time speedup of thread coarsening on FirstFit (TC-ff), ConflictResolve (TC-cr), and both kernels
(TC-both), all normalized to the baseline

FIGURE 6 FirstFit kernel execution time speedup of bitset over the baseline. The kernel execution time is obtained by nvprof



8 of 13 CHEN ET AL.

FIGURE 7 Program execution time speedup of kernel fusion, ldg, and load balancing over the baseline

find the first permissible color, we need only to call the __ffs()

intrinsic. This implemention turns a for-loop into a single instruc-

tion and thus significantly reduces the operations required to com-

plete the FirstFit kernel. Figure 6 shows a 61% speedup of the

FirstFit kernel runtime over the baseline on average when bit-

set is applied. We also observe that this kernel improvement leads

to an average of 28% speedup of the entire program compared to the

baseline.

3.3 Common optimization techniques

Existing GPU graph processing algorithms have already used many

optimization techniques to improve performance. In graph coloring we

use some of these optimizations, including kernel fusion, read-only data

caching, and load balancing to enhance our implementation.

3.3.1 Kernel fusion

Previous techniques focus on individual kernels. However, another

important optimization technique called kernel fusion combines multi-

ple GPU kernels into a single one and thus can keep the entire program

on the GPU. Since adjacent kernels in CUDA share no state, this tech-

nique can leverage producer-consumer locality between operations

and thus save significant memory bandwidth.37 Note that global barrier

is required between FirstFit and ConflictResolve operations.

We use the existing method proposed by Xiao et al.38 With this global

barrier, kernels can only launch limited number of thread blocks; and

thus, thread coarsening is forced to be applied to both kernels. Figure 7

shows an average 10% speedup of kernel fusion over the baseline. As

shown, benchmarks, eg, cage15 and rmat-g can benefit from better

locality brought by kerel fusion because they are relatively denser and

more irregular than others. We observe an improved L2 cache hit rate

for cage15.

3.3.2 Read-only data caching

In CUDA devices of compute capability 3.5 and higher, data that are

read-only for the entire lifetime of the kernel can be kept in the

read-only data (unified L1/texture) cache by reading it using the intrin-

sic__ldg().20 We use the texture cache to hold the read-only data, ie,

the C array and the R array. And then more read-only data are forced to

be cached in the L1 read-only cache whose access latency is around 30

cycles, which is much shorter than the DRAM access latency (about 300

cycles). Therefore,__ldg() can capture temporal locality and improve

the performance because of reduced DRAM accesses. As shown in

Figure 7, __ldg() can bring 3.6% speedup over the baseline

3.3.3 Load balancing

Another important issue for graph algorithms is load imbalance. The

problem is particularly worse for scale-free (power-law) graphs. Mer-

rill et al26 proposed a hierarchical load balancing strategy that maps

the workload of a single vertex to a thread, a warp, or a thread block,

according to the size of its neighbor list. At the fine-grained level,

all the neighbor list offsets in the same thread block are loaded into

shared memory, then the threads in the block cooperatively process

per-edge operations iteratively. At the coarse-grained level, per-block

and per-warp schemes are used to handle the extreme cases: (1) neigh-

bor lists larger than a thread block and (2) neighbor lists larger than a

warp but smaller than a thread block respectively. We implement this

strategy on graph coloring. Figure 7 illustrates the effect of load bal-

ancing on the benchmarks. Irregular benchmarks with uneven degree

distribution, eg, rmat-g and cage15 can substantially benefit from

this technique. On average, it achieves 6.4% speedup over the baseline.

4 EVALUATION

We use the R-MAT39 graph generator to create synthetic graphs.

The R-MAT algorithm determines the degree distribution by using 4

non-negative parameters (a; b; c; d) whose sum equals 1. We generated

2 graphs (Rmat-er and Rmat-g) with 1M vertices size but varying struc-

tures by using the following set of parameters: (0:25; 0:25; 0:25; 0:25);

(0:45; 0:15; 0:15; 0:25). We also pick real-world sparse graphs from the

University of Florida Sparse Matrix Collection.40 These benchmarks

are also used in previous works.7,26 The matrices with the respective

number of vertices (ie, rows) and edges (nonzero elements) are shown

in Table 1. The graphs vary widely in size, degree distribution, density of

local subgraphs, and application domain.



CHEN ET AL. 9 of 13

TABLE 1 Suite of benchmark graphs

Name n(106) m(106) d̄ 𝝈 Description

europe.osm 50.9 108.1 2.1 0.23 Road network

hugebubbles 21.2 63.6 3.0 0 Adaptive mesh

rmat-er 1.0 10.0 10.0 10.83 Synthetic

rmat-g 1.0 10.0 10.0 123.34 Synthetic

Hamrle3 1.4 11.0 7.6 7.2 Circuit sim.

thermal2 1.2 8.6 7.0 0.7 Thermal sim.

atmosmodd 1.3 8.8 6.9 0.1 Atmosphere

G3_circuit 1.6 7.7 4.8 0.4 Circuit sim.

ASIC_320ks 0.3 1.8 5.7 63.2 Circuit sim.

parabolic_fem 0.5 3.7 7.0 0.02 General

kkt_power 2.1 14.6 7.1 54.8 Optimization

nlpkkt160 8.3 229.5 27.5 7.3 Optimization

cage15 5.2 99.2 19.2 32.9 Electrophoresis

n means number of vertices; m means number of edges; d̄ means average
dergee; 𝜎 means degree variance.

4.1 Experiment setup

We compare 6 implementations including (1)Serial, the serial imple-

mentation in CUSP15; (2) OpenMP, the baseline OpenMP implementa-

tion in the work of Çatalyürek et al10; (3) 3-step GM, the previously

proposed GM GPU implementation12; (4) csrcolor, the routine

provided by NVIDIA CUSPARSE7; (5) Proposed-base, our proposed

baseline data-driven implementation; and (6)Proposed-opt, our pro-

posed optimized data-driven implementation. We conduct the exper-

iments on the NVIDIA K40c GPU with CUDA Toolkit 7.5 release.

Serial is executed on Intel Xeon E5-2690V2 2.30 GHz CPU with 12

cores. All the benchmarks are executed 10 times, and we collect the

average execution time to avoid system noise. Timing is only performed

on the computation part of each program. For all the GPU implemen-

tations, the input/output data transfer time (usually takes 10%-20% of

the entire program execution time) is excluded because data is resident

on the GPU in real applications7.

4.2 Coloring quality

Figure 8 shows the number of colors needed by different implementa-

tions for each graph. It is not surprising that implementations except

csrcolor need similar amount of colors, because they are all on

the basis of the greedy scheme. The slight difference among these 5

implementations may result from the different orderings that are

caused by different thread mapping stratigies and so on. csrcolor,

however, needs 3.9 ×∼ 31 × more colors than Serial, making

this MIS-based implementation unattractive or even unapplicable in

many scenarios. This substantial difference of coloring quality between

csrcolor and another implementations stems from the inherent

algorithm property of the SGR scheme and the MIS scheme. The SGR

uses greedy scheme, and for parallel versions it optimistically does col-

oring in parallel with later conflict resolve. The MIS, however, tries to

find independent sets iteratively, which does not cause any conflict, but

for performance concern, the methods used to find independent sets

should be simple enough and thus generate solutions that are far away

from the optimal.

4.3 Performance

Figure 9 illustrates the execution time speedup normalized to Serial.

OpenMP on CPU achieves only moderate speedup (1.54 × ). As men-

tioned before,3-step GM gets unacceptable performance: 62% aver-

age slowdown compared to Serial. The slowdown stems from its

mapping strategy and different data representation. In contrast, csr-

color is a much faster GPU implementation. It achieves an average

speedup of 1.84× overSerial. For regular graphs, such ashugebub-

bles and parabolic_fem, it performs much better than OpenMP.

This shows the high throughput and bandwidth advantages of GPUs

over CPUs.

Our proposed baseline implementation performs even better than

csrcolor. We observe 2.87 × speedup on average over Serial.

It is 85.8% and 56.1% faster than OpenMP and csrcolor respec-

tively. For some benchmarks, eg, Hamrle3 and parabolic_fem,

Proposed-base significantly outperforms csrcolor (4.18 × and

2.46 × ). This performance boost mainly comes from the selection of

data-driven algorithm structure and the atomic operation reduction.

However, for relatively dense or irregular benchmarks, eg, cage15, it

performs worse than csrcolor, because no specific work is done to

handle irregular cases, and csrcolor has fewer memory accesses as

mentioned before.

With careful algorithm refinement and optimization techniques,

we further improve the performance with an average speedup of

4.08 × over Serial. It is 2.63 × , 2.21 × , and 1.42 × speedup over

OpenMP, csrcolor, and Proposed-base, respectively. Generally,

for regular benchmarks, it takes advantage of GPU’s high throughput

as csrcolor does and performs even better because of the efficient

FIGURE 8 Total number of colors assigned with different implementations



10 of 13 CHEN ET AL.

FIGURE 9 Runtime speedup normalized to the serial algorithm

FIGURE 10 Execution time speedup of Rmat-er and Rmat-gwith various graph size (number of vertices), all normalized to Serial

bitset operator, fast convergence, and so on, eg, hugebubbles (8.8 × )

and thermal2 (8.9 × ). For irregular benchmarks, better locality

and load balance lead to better performance. Thus, Proposed-opt

can consistently outperform existing CPU and GPU parallel

implementations.

We also notice that for some benchmarks, eg, G3_circuit and

nlpkkt160, Proposed-opt gets very limited performance improve-

ment compared to Serial. It is clear that the performance of graph

coloring highly depends on the graph characteristics (scale, density,

degree distribution, and topology). For example, nlpkkt160 has a rel-

atively large average degree and suffers from conlicts. And some are

small in size, which limits the potential of performance improvement

using GPUs. But more importantly, because the compute operation is

trivial, the performance is likely to be limited by memory operations.

For sparse graphs, not much temporal locality exists, and thus, the ker-

nel becomes extremely memory bound with large-scale datasets, which

could not be mitigated by the optimizations that we use. We suggest

system software or hardware support for efficient memory access to

overcome this performance bottleneck.

4.4 Scalability

To evaluate the scalability of our design on the input size, we vary

the graph size (number of vertices) of Rmat-er from 500K to 16M

with fixed average degree (d̄ = 10). Figure 10 illustrates that

Proposed-opt could achieve even more performance speedup given

larger input datasets. Our proposed implementation can consistently

gain more than 2.5 × speedup as the graph size changes and always

outperforms csrcolor. After 4M vertices, the speedup increases sig-

inificantly as the graph size increases, while OpenMP changes mod-

erately and even drops at the extremely large size. There is also a

slight drop around 3M size for GPU impelementaions. This drop is

related to the graph characteristics on which the performance highly

depends on as mentioned. Here the cause is most likely the graph

topology and degree distribution. Even so, Proposed-opt is still

9.3% faster than OpenMP at the 4M size, while it gets 2.66 speedup

over OpenMP at the 16M size. For Rmat-g (not illustrated), we see a

similar trend.

4.5 Sensitivity to density

As mentioned, graph algorithms are highly sensitive to the characteris-

tics of the input datasets. We evaluate sensitivity to the graph density of

our proposed graph coloring implementation. In Figure 11, we vary the

average degree d̄ of Rmat-er with fixed graph size (1M vertices). We

compareOpenMP,csrcolor,Proposed-base, andProposed-opt,

all normalized toSerial. As shown,Proposed-opt significantly out-

performs the others when d̄ is small. This means our proposal can effi-

ciently handle sparse graphs. However, as the average degree increases,

the performance improvement over Serial decreases for csr-

color and our proposals. Their curves drop blow OpenMP when d̄ is

larger than 20.



CHEN ET AL. 11 of 13

FIGURE 11 Execution time speedup of Rmat-erwith various average degrees, all normalized to Serial

In contrast, OpenMP is more stable than GPU implementations.

The drop of GPU ones results from the conflicts between neigh-

bors, which is not an issue in CPUs. As the graph becomes denser,

the conflicts happen more frequently. In this case, the GPU imple-

mentations need much more iterations to complete than OpenMP.

For dense graphs, thanks to the techniques that alleviate conflicts,

Proposed-opt still achieves comparable performance to csrcolor,

while Proposed-base becomes worse than another 2 GPU ones

and finally becomes slower than the serial implementation (blow

1). Remeber that our proposals still consistently yield much bet-

ter coloring quality than csrcolor. Although GPU implementations

achieves high performance for sparse graphs, for dense graphs we

suggest to use CPUs instead of GPUs to solve the graph coloring

problem.

5 RELATED WORK

Many graph algorithms have been developed on GPUs. Harish et al41

are the pioneers to implement GPU graph algorithms. They developed

topology-driven breadth-first search (BFS) and shortest path algo-

rithms. Hong et al42 proposed another topology-driven BFS to map

warps rather than threads to vertices. Luo et al43 developed the first

work-efficient BFS on GPUs. Merrill et al26 improved Luo’s work. They

used prefix sum to reduce atomic operations and used dynamic load

balancing to deal with scale-free graphs. This implementation thus

achieves high throughput and good scalability. The 2 major techniques

of their work are also applicable to our implementation, while our work

focuses more on the algorithm-specific refinement, eg, the specific

strategies to alleviate side effects of GPU’s massive parallelism.

Davidson et al31 developed a work-efficient single-source shortest

path algorithm on the GPU. They used another load balancing strat-

egy, which partitions the work into chunks and assigns each chunk to

a block. Reserchers also proposed GPU implementations of between-

ness centrality,27 minimum spanning tree,30,44 strongly connected

components,28 and so on. These work together demonstrated that with

careful mapping and optimizations graph algorithms can get substantial

performance boost on the GPU. Our work further enhances the conclu-

sion of previous practices, while we show the importance of algorithm

refinement and architecture-specific optimizations for the problem of

graph coloring.

Researchers have proposed many optimization techniques for graph

algorithms, or more generally, for irregular algorithms on GPUs. The

LAVER45 is a locality-aware vertex scheduling scheme, which reorders

the vertex queue to improve temporal locality of vertex data stored

in on-chip caches. Nasre46 proposed high-level methods to eliminate

atomics in irregular programs, eg, BFS and single-source shortest

path, on GPUs. Gunrock37 absorbs previous knowledge and provides a

library solution for GPU graph processing. It provides a load balancing

framework on the basis of Merrill and Davidson strategies and inte-

grates a set of common optimization techniques. A huge amount of

efforts47–54 have been made by researchers to generalize graph pro-

cessing computation and reduce programmer’s burden.

Although generalized method can improve programmability, we

argue that optimizations customized for the specific algorithm (which

is difficult to generalize) is also important.

Che et al55 characterize a suite of GPU graph applications and sug-

gest architectural support. Xu et al56 evaluate existing GPU graph

algorithms on both a GPU simulator and a real GPU card and also

suggest GPU hardware support. Wu et al57 characterize 3 GPU graph

frameworks and suggest to focus on constructing efficient opera-

tors. Beamer et al58 also measure 3 graph libraries and propose pro-

cessor architecture change. Green-Marl59 is a domain specific lan-

guage for graph processing. Chen et al60 proposed compiler opti-

mization methodology for graph and other irregular applications on

Intel Xeon Phi coprocessors. Ahn et al61 developed a customized

processing-in-memory (PIM) accelerator for large-scale graph process-

ing. We believe that language, compiler, runtime, and architecture sup-

port is necessary for large-scale graph processing.

6 CONCLUSION AND FUTURE WORK

Graph coloring is an important graph algorithm that has been applied

in many application domains. To process large-scale graphs, parallel

graph coloring has been intensively studied in the past. Meanwhile,

GPUs have been broadly used to speedup compute intensive ker-

nels of HPC applications in the past decade. In this paper, we explore



12 of 13 CHEN ET AL.

parallel graph coloring on the GPU. Existing implementations either

achieve limited performance or yield unsatisfatory coloring quality. We

present a high performance graph coloring implementation for GPUs

with good coloring quality. We use the SGR scheme that guarantees

coloring quality and improve performance with algorithm refinement

and common optimization techniques. Experimental results show that

our proposed implementation outperforms existing GPU implemen-

tations in both performance and coloring quality. This work helps us

further understand graph algorithms on modern massively parallel pro-

cessors and gives insight on the importance of both algorithm-specific

and nonalgorithm-specific (common) optimizations. We also show the

necessity of lower level support from system software and architec-

ture.

In the future, we will further investigate the effect of

conflict-resolution heuristics on performance and coloring quality and

possibly propose even better heuristic. We will also try to implement

our proposal on Intel Xeon Phi coprocessors and try to optimize it for

the MIC architecture. Besides, it would be interesting to implement it

on a GPU or MIC cluster to evaluate the scalability of our work.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful comments and

suggestions, and A.V. Pascal Grosset from University of Utah for gen-

erously sharing his source code. This work is partly supported by the

National Natural Science Foundation of China (NSFC) under grant

numbers 61502514, 61602501, 61402488, and 61502509, and the

National Key Research and Development Program of China under grant

number 2016YFB0200400.

REFERENCES

1. Welsh DJA, Powell MB. An upper bound for the chromatic num-
ber of a graph and its application to timetabling problems. Comput J.
1967;10(1):85–86.

2. Lotfi V, Sarin S. A graph coloring algorithm for large scale scheduling
problems. Comput Oper Res. January 1986;13(1):27–32.

3. Kaler T, Hasenplaugh W, Schardl TB, Leiserson CE. Executing dynamic
data-graph computations deterministically using chromatic schedul-
ing. Proceedings of the 26th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’14. ACM, New York, NY, USA; 2014:154–165.

4. Chaitin GJ. Register allocation & spilling via graph coloring. Pro-
ceeding of the SIGPLAN Symposium on Compiler Construction, Boston,
Massachusetts; 1982 June:98–101.

5. Berchtold S, Böhm C, Braunmüller B, Keim DA. Fast parallel simi-
larity search in multimedia databases. Proceedings of the acm sigmod
international conference on management of data, Tucson, Arizona; June
1997:1–12.

6. Phillips E, Fatica M. A cuda implementation of the high performance
conjugate gradient benchmark. In: Jarvis SA, Wright SA, Hammond SD,
eds. High Performance Computing Systems. Performance Modeling, Bench-
marking, and Simulation, Lecture Notes in Computer Science, vol. 8966:
Springer International Publishing, Cham, Switzerland; 2015:68–84.

7. Naumov PCM, Cohen J. Parallel graph coloring with applications to
the incomplete-lu factorization on the GPU. Technical Report, NVIDIA
Research, Santa Clara, CA; 2015.

8. Allwright JR, Bordawekar R, Coddington PD, Dincer K, Martin CL.
A comparison of parallel graph coloring algorithms. Technical Report,
Syracuse University, Northeast Parallel Architecture Center, Syracuse,
NY, USA; 1995.

9. Gebremedhin AH, Manne F. Scalable parallel graph coloring algo-
rithms. Concurrency-Pract Ex. 2000:1131–1146.

10. Çatalyürek ÜV, Feo J, Gebremedhin AH, Halappanavar M, Pothen
A. Graph coloring algorithms for multi-core and massively multi-
threaded architectures. Parallel Comput. October 2012;38(10-11):
576–594.

11. Luby M. A simple parallel algorithm for the maximal independent set
problem. Proceedings of the 17th Annual ACM Symposium on Theory of
Computing, STOC ’85. ACM, New York, NY, USA; 1985:1–10.

12. Grosset AVP, Zhu P, Liu S, Venkatasubramanian S, Hall M. Evaluating
graph coloring on GPUs. Proceedings of the 16th ACM Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP ’11. ACM, New York,
NY, USA; 2011:297–298.

13. Riihijarvi J, Petrova M, Mahonen P. Frequency allocation for WLANs
using graph colouring techniques. Second Annual Conference on Wireless
on-Demand Network Systems and Services, St. Moritz, Switzerland; 2005
January:216–222.

14. Zuckerman D. Linear degree extractors and the inapproximability of
max clique and chromatic number. Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, STOC ’06. ACM, New York, NY, USA;
2006:681–690.

15. Dalton S, Bell N, Olson L, Garland M. Cusp: generic parallel algorithms
for sparse matrix and graph computations. Version 0.5.0. Available:
http://cusplibrary.github.io/; 2014. Accessed [September 2015].

16. Rokos G, Gorman G, Kelly P. A fast and scalable graph coloring
algorithm for multi-core and many-core architectures.. In: Trff JL,
Hunold S, Versaci F, eds. Euro-Par 2015: Parallel processing, Lecture
Notes in Computer Science, vol. 9233. Berlin Heidelberg: Springer;
2015:414–425.

17. Jones MT, Plassmann PE. A parallel graph coloring heuristic. SIAM J Sci
Comput. May 1993;14(3):654–669.

18. Gjertsen RK, Jr., Jones MT, Plassmann PE. Parallel heuristics
for improved, balanced graph colorings. J Parallel Distr Com.
1996;37:171–186.

19. Hasenplaugh W, Kaler T, Schardl TB, Leiserson CE. Ordering heuristics
for parallel graph coloring. Proceedings of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’14. ACM, New York, NY,
USA; 2014:166–177.

20. CUDA C Programming Guide v7.0. NVIDIA; March 2015.

21. Keckler SW, Dally WJ, Khailany B, Garland M, Glasco D. GPUs and the
future of parallel computing. IEEE Micro. 2011 Sept;31(5):7–17.

22. Nvidia’s next generation cuda™compute architecture: Kepler™gk110.
NVIDIA; 2012.

23. NVIDIA. CUSPARSE Library. Available: http://docs.nvidia.com/cuda/
cusparse/; 2015. Accessed [September 2015].

24. Dongarra J. Compressed row storage. Available: http://web.eecs.
utk.edu/dongarra/etemplates/node373.html. Accessed [September
2015].

25. Burtscher M, Nasre R, Pingali K. A quantitative study of irregular
programs on GPUs. Proceedings of the IEEE International Symposium
on Workload Characterization, IISWC ’12, La Jolla, CA, USA; 2012
Nov:141–151.

26. Merrill D, Garland M, Grimshaw A. Scalable GPU graph traversal. Pro-
ceedings of the 17th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP ’12. ACM, New York, NY, USA;
2012:117–128.

27. McLaughlin A, Bader DA. Scalable and high performance betweenness
centrality on the GPU. Proceedings of the International Conference for
High performance computing, networking, storage and analysis, SC ’14.
IEEE Press, Piscataway, NJ, USA; 2014:572–583.

28. Barnat J, Bauch P, Brim L, Ceska M. Computing strongly connected
components in parallel on CUDA. Proceedings of the 25th IEEE Interna-
tional Parallel Distributed Processing Symposium, IPDPS ’11, Anchorage
(Alaska) USA; 2011 May:544–555.

29. Nasre R, Burtscher M, Pingali K. Morph algorithms on GPUs. Proceed-
ings of the 18th ACM SIGPLAN Symposium on Principles and Practice

http://cusplibrary.github.io/
http://docs.nvidia.com/cuda/cusparse/
http://docs.nvidia.com/cuda/cusparse/
http://web.eecs.utk.edu/dongarra/etemplates/node373.html
http://web.eecs.utk.edu/dongarra/etemplates/node373.html


CHEN ET AL. 13 of 13

of Parallel Programming, PPoPP ’13. ACM, New York, NY, USA;
2013:147–156.

30. Nobari S, Cao T-T, Karras P, Bressan S. Scalable parallel minimum
spanning forest computation. Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’12.
ACM, New York, NY, USA; 2012:205–214.

31. Davidson A, Baxter S, Garland M, Owens JD. Work-efficient paral-
lel GPU methods for single-source shortest paths. Proceedings of the
IEEE 28th International Parallel and Distributed Processing Symposium,
Phoenix, AZ, USA; 2014 May:349–359.

32. Nasre R, Burtscher M, Pingali K. Data-driven versus topology-driven
irregular computations on GPUs. Proceedings of the 27th IEEE Inter-
national Parallel Distributed Processing Symposium, IPDPS ’13, Boston,
Massachusetts, USA; 2013 May:463–474.

33. Blelloch GE. Scans as primitive parallel operations. IEEE T Comput. 1989
Nov;38(11):1526–1538.

34. Sengupta S, Harris M, Garland M. Efficient parallel scan algorithms
for GPUs. Technical Report NVR-2008-003, NVIDIA, Santa Clara, CA;
2008.

35. Yan S, Long G, Zhang Y. Streamscan: fast scan algorithms for GPUs
without global barrier synchronization. Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP-18. ACM, New York, NY, USA; 2013:229–238.

36. Merrill D. CUB. NVIDIA Research. Available: http://nvlabs.github.io/
cub/; 2015. Accessed [September 2015].

37. Wang Y, Davidson A, Pan Y, Wu Y, Riffel A, Owens JD. Gunrock: a
high-performance graph processing library on the GPU. Proceedings of
the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2016, Barcelona, Spain; March 2016.

38. Xiao S, Feng W. Inter-block gpu communication via fast barrier syn-
chronization. Proceedings of the IEEE 24th International Parallel and Dis-
tributed Processing Symposium, Atlanta, GA, USA; 2010 May:1–12.

39. Chakrabarti D, Zhan Y, Faloutsos C. R-MAT: a recursive model for graph
mining. SDM. SIAM, Lake Buena Vista, Florida; 2004.

40. The university of florida sparse matrix collection. Available: http://
www.cise.ufl.edu/research/sparse/matrices/. Accessed [September
2015].

41. Harish P, Narayanan PJ. . In: Aluru S, Parashar M, Badrinath R, Prasanna
VK, eds. Proceedings of the 14th international conference high performance
computing (HIPC), ch. Accelerating Large Graph Algorithms on the GPU
Using CUDA. Berlin, Heidelberg: Springer Berlin Heidelberg; Decem-
ber 2007:197–208.

42. Hong S, Kim SK, Oguntebi T, Olukotun K. Accelerating CUDA graph
algorithms at maximum warp. Proceedings of the 16th ACM Symposium
on Principles and Practice of Parallel Programming, PPoPP ’11. ACM, New
York, NY, USA; 2011:267–276.

43. Luo L, Wong M, Hwu W-m. An effective gpu implementation of
breadth-first search. Proceedings of the 47th Design Automation Confer-
ence, DAC ’10. ACM, New York, NY, USA; 2010:52–55.

44. Vineet V, Harish P, Patidar S, Narayanan PJ. Fast minimum spanning
tree for large graphs on the GPU. Proceedings of the Conference on High
Performance Graphics, ACM, New Orleans, Louisiana; 2009:167–171.

45. Park H, Ahn J, Park E, Yoo S. Locality-aware vertex scheduling for
GPU-based graph computation. Proceedings of the IFIP/IEEE Interna-
tional Conference on Very Large Scale Integration (VLSI-SOC), Daejeon,
Korea; 2015Oct:195–200.

46. Nasre R, Burtscher M, Pingali K. Atomic-free irregular computations
on GPUs. Proceedings of the 6th Workshop on General Purpose Processor
using Graphics Processing Units, GPGPU-6. ACM, New York, NY, USA;
2013:96–107.

47. Malewicz G, Austern MH, Bik AJC, et al. Pregel: a system for large-scale
graph processing. Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’10. ACM, New York, NY, USA;
2010:135–146.

48. Nguyen D, Lenharth A, Pingali K. A lightweight infrastructure for graph
analytics. Proceedings of the 24th ACM Symposium on Operating Systems
Principles, SOSP ’13. ACM, New York, NY, USA; 2013:456–471.

49. Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein JM.
Graphlab: a new parallel framework for machine learning. Proceedings
of the UAI, Catalina Island, California; 2010:340–349.

50. Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C. Powergraph: dis-
tributed graph-parallel computation on natural graphs. Proceedings of
the 10th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’12. USENIX Association, Berkeley, CA, USA; 2012:17–30.

51. Shun J, Blelloch GE. Ligra: a lightweight graph processing framework
for shared memory. Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’13. ACM, New
York, NY, USA; 2013:135–146.

52. Zhong J, He B. Medusa: simplified graph processing on GPUs. IEEE T
Parall Distr. 2014 June;25(6):1543–1552.

53. Khorasani F, Vora K, Gupta R, Bhuyan LN. Cusha: vertex-centric graph
processing on GPUs. Proceedings of the 23rd International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’14. ACM,
New York, NY, USA; 2014:239–252.

54. Fu Z, Personick M, Thompson B. Mapgraph: a high level api for fast
development of high performance graph analytics on GPUs. Proceed-
ings of Workshop on Graph Data Management Experiences and Systems,
GRADES’14. ACM, New York, NY, USA; 2014:2:1–2:6.

55. Che S, Beckmann BM, Reinhardt SK, Skadron K. Pannotia: under-
standing irregular GPGPU graph applications. Proceedings of the IEEE
International Symposium on Workload Characterization (IISWC), Portland,
Oregon; 2013Sept:185–195.

56. Xu Q, Jeon H, Annavaram M. Graph processing on GPUs: Where are
the bottlenecks?. Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC), Raleigh, North Carolina, USA; 2014
Oct:140–149.

57. Wu Y, Wang Y, Pan Y, Yang C, Owens JD. Performance characterization
of high-level programming models for GPU graph analytics. Proceed-
ings of the IEEE International Symposium on Workload Characterization
(IISWC), Atlanta, Georgia; 2015Oct:66–75.

58. Beamer S, Asanovic K, Patterson D. Locality exists in graph process-
ing: workload characterization on an ivy bridge server. Proceedings of
the IEEE International Symposium on Workload Characterization (IISWC),
Atlanta, Georgia; 2015Oct:56–65.

59. Hong S, Chafi H, Sedlar E, Olukotun K. Green-marl: a DSL for easy
and efficient graph analysis. Proceedings of the 17th International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVII. ACM, New York, NY, USA; 2012:349–362.

60. Chen L, Jiang P, Agrawal G. Exploiting recent SIMD architectural
advances for irregular applications. Proceedings of the International Sym-
posium on Code Generation and Optimization, CGO 2016. ACM, New
York, NY, USA; 2016:47–58.

61. Ahn J, Hong S, Yoo S, Mutlu O, Choi K. A scalable processing-in-memory
accelerator for parallel graph processing. Proceedings of the 42nd Annual
International Symposium on Computer Architecture, ISCA ’15. ACM, New
York, NY, USA; 2015:105–117.

How to cite this article: Chen X, Li P, Fang J, Tang T,

Wang Z, Yang C. Efficient and high-quality sparse graph

coloring on GPUs. Concurrency Computat: Pract Exper.

2017;29:e4064. https://doi.org/10.1002/cpe.4064

http://nvlabs.github.io/cub/
http://nvlabs.github.io/cub/
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
https://doi.org/10.1002/cpe.4064

	Efficient and high-quality sparse graph coloring on GPUs
	Abstract
	INTRODUCTION
	BACKGROUND AND MOTIVATION
	Sequential graph coloring
	Parallel graph coloring
	CUDA programming andxmltex	?> GPU graph coloring

	DESIGN
	The baseline design
	Algorithm-specific optimizations
	Heuristicxmltex	AUTHOR: Please check all section headings if these are presented in their appropriate section levels.?> conflict resolve
	Thread coarsening
	Bitset operation

	Common optimization techniques
	Kernel fusion
	Read-only data caching
	Load balancing


	EVALUATION
	Experiment setup
	Coloring quality
	Performance
	Scalability
	Sensitivity toxmltex	?> density

	RELATED WORK
	CONCLUSION AND FUTURE WORK
	References


