FlexMiner: A Pattern-Aware Accelerator for Graph
Pattern Mining

Xuhao Chen*, Tianhao Huang*, Shuotao Xu, Thomas Bourgeat, Chanwoo Chung, Arvind
Massachusetts Institute of Technology
{xchen, tianhaoh, shuotao, bthom, cwchung,arvind}@csail.mit.edu
*Equal contribution

Abstract—Graph pattern mining (GPM) is a class of algorithms
widely used in many real-world applications in bio-medicine, e-
commerce, security, social sciences, etc. GPM is a computationally
intensive problem with an enormous amount of coarse-grain
parallelism and therefore, attractive for hardware acceleration.
Unfortunately, existing GPM accelerators have not used the best
known algorithms and optimizations, and thus offer questionable
benefits over software implementations.

We present FlexMiner, a software/hardware co-designed GPM
accelerator that improves the efficiency without compromising
the generality or productivity of state-of-the-art software GPM
frameworks. FlexMiner exploits massive amount of coarse-grain
parallelism in GPM by deploying a large number of specialized
processing elements. For efficient searches, the FlexMiner hard-
ware accepts pattern-specific execution plans, which are generated
automatically by the FlexMiner compiler from the given pat-
tern(s). To avoid repetitive computation on neighborhood connec-
tivity, we provide dedicated on-chip storage to memoize reusable
connectivity information in a connectivity map (c-map) which is
implemented with low-cost yet high-throughput hardware. The
on-chip memories in FlexMiner are managed dynamically using
heuristics derived by the compiler, and thus are fully utilized. We
have evaluated FlexMiner with 4 GPM applications on a wide
range of real-world graphs. Our cycle-accurate simulation shows
that FlexMiner with 64 PEs achieves 10.6x speedup on average
over the state-of-the-art software system executing 20 threads on
a 10-core Intel CPU.

Index Terms—accelerator, software/hardware co-design, graph
pattern mining, pattern aware

I. INTRODUCTION

Graph pattern mining (GPM) finds subgraphs that match
certain pattern(s) in a given graph (Fig. 1). GPM is a compute-
intensive building block in numerous important applications
in chemical engineering [22,48,71], bioinformatics [7, 19,
60, 61,70,74], web spam detection [9, 26, 30, 36], social sci-
ences [29,31, 34,41], and others [23, 35, 88, 92]. For example,
GPM is used to predict the functionality of a new protein in
a protein-protein interaction network, where vertices represent
proteins labeled with their functionality and edges are interac-
tions between these proteins. The prediction can be preformed
by mining frequent subgraphs with similar interactions to the
new protein [19]. We believe GPM would be used even more
widely in applications if it were cheaper to compute.

Since writing efficient parallel GPM programs by hand is
time-consuming and error-prone, many software GPM sys-
tems, such as, Arabesque [82], RStream [84], Fractal [25],
Kaleido [95], AutoMine [58], Pangolin [16], Peregrine [44]

Input Graph G | Pattern P ;| Matched subgraphs, a.k.a embeddings

& & BB

Fig. 1: Graph pattern mining example. The pattern P is a
triangle, and 3 triangles are found in the data graph G.

have been proposed to improve productivity. In general, to
solve a GPM problem, a solver program takes a data graph
G and a pattern P of size k, enumerates all the possible
subgraphs of size k in G, and checks each subgraph to see
if it is isomorphic to P. This is computationally intensive
even on moderate size graphs because of the massive com-
binatorial search space and the expensive graph isomorphism
test. For example, to mine the 4-cycle pattern (Fig. 3) in
the Friendster [52] graph with 65 million vertices and 1.8
billion edges, AutoMine [58], one of the fastest GPM software
systems, takes 15 hours on a 4-socket 14-core (56-core in total)
Intel CPU machine. Therefore, hardware GPM accelerators
like TrieJax [46] and Gramer [90] have been proposed to
improve GPM’s performance and energy-efficiency.

Subgraph enumeration to match a pattern can be modeled
as building a search tree. The efficiency of any GPM solution,
to the first order, depends upon the size of this search tree.
Pattern-aware solutions exploit the specific properties of a
pattern to drastically prune the search space. Unfortunately,
existing hardware accelerators are inefficient because they use
naive pattern oblivious search strategies, resulting in signif-
icantly larger search space than the state-of-the-art software
solutions. Meanwhile, existing accelerators also have limited
generality. TrieJax, unlike a software GPM system, supports
only a small subset of GPM problems. Gramer supports more
GPM problems but adopts an ad-hoc approach which requires
implementing a specific solver for each specific GPM problem,
significantly hampering its usability. The limited generality
is a consequence of the fact that Gramer and TrieJax lack a
well-defined software/hardware interface to configure/program
the accelerator. Lastly, unlike GPM software systems, existing
accelerators lack the support for memoization and thus repet-
itively check the connectivity of vertices during the search.

We propose FlexMiner, a software-hardware co-designed
GPM system, which strives for both generality and perfor-
mance without sacrificing the ease of programming. Fig. 2

Q &

interested
in
e

analysis Compiler

User Pattern

FlexMiner Software/Hardware Interface

Pattern 3 FlexMiner 3 Execution

plan

(1) DFS tree walker

FlexMiner ~~« R
hardware

~

Fig. 2: An overview of the FlexMiner software/hardware co-designed system.

illustrates an overview of the FlexMiner system which contains
the FlexMiner hardware and a software/hardware interface.
The FlexMiner hardware is a special-purpose architecture to
offload the GPM computations of an application running on
the host. It does a depth-first search (DFS) over the search tree.
The software/hardware interface is established between the
user program and the hardware, to make FlexMiner pattern-
aware. The user program only needs to specify the pattern(s)
of interest, same as state-of-the-art software GPM frameworks.
FlexMiner first does an analysis on the pattern(s), and then
uses a compiler to automatically generate a pattern-specific
execution plan. This execution plan is loaded by the host
CPU to the FlexMiner hardware at the beginning of execution,
and customizes the DFS search process in hardware. In this
way, FlexMiner can flexibly mine any arbitrary pattern with
high algorithmic efficiency. In addition to this flexibility, the
FlexMiner hardware also provides much higher throughput
than general purpose CPUs. The efficiency of the FlexMiner
hardware stems from the following features:
Massive Multithreading: FlexMiner exploits the embarrass-
ing amount of parallelism in GPM which comes from the
fact that the searches starting from different vertices of G
are mutually independent fasks and can be done concurrently.
FlexMiner consists of a collection of processing engines (PEs)
to exploit this massive parallelism to saturate the memory
bandwidth and hide memory latency.
PE Specialization: Each PE contains a specialized unit that
is optimized for efficient set intersection and set difference
operations. These operations frequently compare neighbor list
of vertices, and are the major bottlenecks in state-of-the-art
software GPM frameworks.
Connectivity Memoization: The set operations access neigh-
bor lists in G frequently and repeatedly, which results in a
significant amount of redundant computation. We use a novel
c-map structure (Section VI) to memorize the neighborhood
information and avoid this redundancy with low-cost hard-
ware. Besides, the FlexMiner compiler passes pattern-specific
hints to the hardware to help efficiently manage c-map storage.
We prototype the PE of FlexMiner in RTL using Bluespec
and synthesize the design with Silvaco’s 15nm Open-Cell
Library. Our PE with 32kB private cache and 8kB scratchpad
runs at 1.3GHz and takes an area of 0.18mm?. In comparison,
a single high-end Intel SkyLake core with IMB L2 cache
is clocked around 4GHz and takes an area of 15mm? [46].
Detailed performance simulation shows that with 64 PEs
(which take approximately the same area as a single Intel CPU
core and operate at one third of its clock speed), FlexMiner

3 motifs : 4 motifs
A R
wedge triangle 1 3-star 4-path talled 4.cycle diamond 4-clique
1

triangle

Fig. 3: 3-vertex (left) and 4-vertex (right) motifs.

achieves 10.6x speedup on average over the state-of-the-
art software solution on a 10-core Intel i9-7900X CPU. In
summary, this paper makes the following contributions:

o FlexMiner, the first pattern-aware GPM accelerator which
supports a variety of GPM applications using techniques
from state-of-the-art software algorithms for GPM;

o A programming interface which is the same as the state-of-
the-art software GPM systems. We use a small compiler to
generate the execution plan to configure the hardware;

e Hardware support for memoizing connectivity information
to avoid redundant computation with low cost;

o Evaluation using representative GPM applications and di-
verse graphs to show that FlexMiner significantly improves
performance over state-of-the-art software frameworks.

Paper organization: Section II defines GPM, introduces 4
GPM problems, and describes how a GPM problem is solved
in state-of-the-art software GPM systems. In Section III we
point out the limitations of existing hardware to motivate
our work. Section IV introduces the FlexMiner architecture.
Section V defines the software/hardware interface. We discuss
our hardware support for c-map in Section VI. Section VII
evaluates our design and Section IX concludes.

II. BACKGROUND
A. Graph Pattern Mining Problems

Given a graph G(V, F) and a vertex set V' C V, the vertex-
induced subgraph is the graph G’ whose vertex set is V' and
edge set contains the edges in E whose endpoints are in V.
Given G(V,E) and an edge set E' C E, the edge-induced
subgraph is the graph G’ whose edge set is F’ and vertex set
contains the endpoints in V' of the edges in E’.

Given a data graph G and a set of patterns S, =
{P1,...,Pn}, GPM seeks to find all those subgraphs, i.e.,
embeddings, in G that are isomorphic to P;, VP; € S,. Fig. |
shows an example of triangle embeddings in a graph. A GPM
solution should guarantee completeness, i.e., every match of
P in G should be found, and uniqueness, i.e., every distinct
match should be reported only once. We consider the following
GPM problems in this paper:

Input Graph G
order

Pattern P matching symmetry- i extension that can be pruned by using the
order ! matching order. v shows the matched subgraph.

Level 0

..... @~z @ O3 Level 1
(2) 0 9 Level 2
B e e
x x X X X
S wih ! i Lightly colored subgraphs are removed from |
1 > 1
O o.o ' ®.® “ [8] ZLZ; 1 1 consideration by symmetry breaking using the Level 3
G)—G) L O—® :il]ﬂ up>u3 ! ,symmetry order. X shows the unnecessary '

Fig. 4: A portion of a subgraph search tree with 4 levels (vertex extension used).

Triangle counting (TC) counts the number of triangles in G.
k-clique listing (k-CL) lists all k-cliques in G, where a k-
clique of G is defined as a subgraph G’ of G, such that G’
has k vertices and every pair of vertices in G’ is connected
by an edge in G, i.e., G’ is a complete graph.

Subgraph listing (SL) enumerates all edge-induced sub-
graphs of G isomorphic to a user-defined pattern P.
k-motif counting (k-MC) counts the number of occurrences
of the different patterns that are possible with k vertices.
Each pattern is also called a motif. Fig. 3 shows all 3-motifs
and 4-motifs. k-MC finds vertex-induced subgraphs.

A GPM problem to mine one single pattern is called a
single-pattern problem, e.g., TC, k-CL and SL, whereas a
problem to find multiple patterns simultaneously is called a
multi-pattern problem, e.g., k-MC.

B. GPM Execution Model and Search Strategies

To solve a GPM problem, a solver program enumerates
all the possible subgraphs of size k& in G, and checks each
subgraph to see if it is isomorphic to P. This solving process
can be modeled as building a search tree in which each
vertex represents a subgraph of G. Fig. 4 shows a search tree
with 4 levels. Level [of the tree represents subgraphs with
[+ 1 vertices. Intuitively, subgraph So=(W3, E>) is a child of
subgraph S1=(W71, F1) in this tree if Sy can be obtained by
extending S7 with a single vertex v ¢ Wy which is connected
to some vertex in Wy (v is said to be in the neighborhood of
subgraph S1); this process is called vertex extension. Formally,
this can be expressed as Wo=W; U {v} where v ¢ W, and
there is an edge (v,u) € E for some u € Wj. It is useful to
think of the edge connecting S; and S3 in the tree as being
labeled by v. Similarly, Edge extension extends a subgraph S;
with a single edge (u, v) provided at least one of the endpoints
of the edge is in 5.

Based on the search tree model, we classify existing soft-
ware GPM frameworks into two categories: pattern-oblivious
and pattern-aware. The pattern-oblivious approach builds the
search tree and checks each leaf to determine if it is isomorphic

to P. In contrast, a pattern-aware solution leverages the
properties of P to prune the search tree and avoid isomorphism
tests. The pattern is analyzed to generate a matching order [44]
and a symmetry order [57] which are used to guide the search
and prune the search space. We define connected ancestor and
describe the two orders below. To avoid notational confusion,
we call a vertex in P as a pattern vertex, denoted as u;, and
a vertex in G as a data vertex, denoted as v;.

Connected ancestor: Given a subgraph S and a total order
TO(S) on the vertices in S, a connected ancestor of vertex
u in § under 7O is a vertex w in S such that w < u and
w is connected to u. The connected ancestor set that includes
all the connected ancestors of « in S under 7 O, is denoted
as CAs 7o(u). For example, CAs 1o(us) = {u1,uz} means
uy and uo are usz’s connected ancestors in S under 7 O. For
simplicity, we write CA(u) instead of CAs 7o (u) when S and
T O are obvious from the context.

Matching order: It is a total order among pattern vertices
that defines the order to match each data vertex to a pattern
vertex. For example, in Fig. 4, suppose P is a 4-cycle, and we
generate its matching order MO and represent it as a list of
connected ancestor set of w; in P under MO: {CA(uo)={},
CA(u1)={ug}, CA(uz)={uo}, CA(us)={uy,us}}, meaning (1)
any vertex vg in V' can be mapped to ug; (2) v; mapped to
u1 must be a neighbor of vg; (3) v2 mapped to uy also must
be a neighbor of vg; (4) vs mapped to ug must be a common
neighbor of v and vs. In level 2 of the tree in Fig. 4, subgraphs
marked with x are pruned, because the vertex mapped to us
(i.e., v2) is not a neighbor of the vertex mapped to ug (i.e., vg).
Note that using matching order eliminates the need to apply
isomorphism tests at the leaves of the search tree, because the
leaf subgraphs always match P (see level 3 in Fig. 4).
Symmetry order: A specific subgraph can occur in multiple
places in the search tree. For example, in Fig. 4, the subgraph
containing vertices 1 and 2 occurs in two places at level 1 of
the tree. These identical subgraphs are called automorphisms.
To avoid repetitive enumeration, only one of them, known as
the canonical one, is kept, and extended further. This selection
is known as symmetry breaking [57]. A well established

Fig. 5: Possible matching orders for diamond.

@.@
O—© © OO

(a) Matching Order (c) Step 2: add (d) Step 3: add
partial order partial order
between v{ and vo between v(and v3

(b) Step 1: add
partial order
between v(and v;

Fig. 6: Generating symmetry order for 4-cycle.

approach for symmetry breaking is to define a partial order,
known as a symmetry order, for candidate vertices and add
only those subgraphs that satisfy the symmetry order.

In Fig. 4, suppose we define the symmetry order for the
4-cycle pattern as {vg > vy, v1 > v, Ug > v3z}. Using
this order, the lightly colored subgraphs can all be pruned,
which reduces the search space and guarantees uniqueness.
Specifically, the subgraphs [1, 2] and [2, 1] are automorphisms,
and the former can be pruned because vy > v;.

Given P, pattern-aware solutions use pattern analysis [58]
to generate a matching order [44] and a symmetry order [57],
which, in turn, can be used to generate a program to find
‘P automatically. To generate a matching order, the pattern
analyzer first enumerates all the possible matching orders of P,
and uses a set of rules to pick one that is likely to perform well
in practice [49]. Fig. 5 lists all the possible matching orders for
diamond. The first matching order searches for a triangle first
(ug, w1, ug form a triangle), and the second matching order
searches for a wedge first (ug, u1, us form a wedge). Since the
number of triangles is much fewer than the number of wedges
in a sparse graph, the first matching order is likely to perform
better than the second as it prunes many more candidates at
the early stage. Using the rules in [49], we find that the first
matching order is the best out of the five.

To generate a symmetry order for a pattern P, we first
take one its matching orders, (M) and build a subgraph
incrementally in the order specified by MO. At each step we
also check for the symmetry (Fig. 6). The matching order in
(a) results in the 3 steps shown in (b), (c) and (d). In (b), we
add partial order v; < vy as vy and v; are interchangeable,
meaning that if no order is enforced between vy and v; then
any match of P in G will be found twice by permuting vy and
v1. Similarly, in (c) and (d) we add partial orders vy < vy and
vz < Vg, respectively. In all, the symmetry order generated for
4-cycle is {vg > v1, v1 > va, Vo > V3 }.

C. Memoizing Connectivity Information

A major computation in AutoMine [58], Peregrine [44] and
GraphZero [57] is set intersection/difference on edgelists. This
requires frequent accesses to the edgelists of G during the
search. For example, for pattern 4-cycle in Fig. 6 (a), vs
(match of ug) is from the intersection of v;’s neighbors and
v9’s neighbors. For every different vy, the same v1’s neighbors
are visited. To avoid repeated lookups in G, we can memoize

v1’s neighbors in a connectivity map (c-map) during the search.
Each entry in the c-map is a key-value pair, where the key is a
vertex ID (say v), and the value is a list of depths of vertices
in the current embedding which are connected to v. This list
is implemented as a bitset to save space. For example, assume
that the current embedding has 3 vertices, the entry [w, *001’]
means vertex w is connected to the first vertex, but not to
the second and the third vertices in the current embedding.
Once the c-map is constructed, all the set operations can be
replaced by querying the c-map. For example, for 4-cycle,
the intersection is replaced by querying the c-map to check if
each neighbor of vy is connected with v;.

III. LIMITATIONS OF EXISTING GPM SOFTWARE
SYSTEMS AND ACCELERATORS

Software GPM systems, such as Arabesque [82],
RStream [84], Fractal [25], Kaleido [95], AutoMine [58],
Pangolin [16], Peregrine [44], GraphZero [57] simplify
GPM programming and apply algorithmic optimizations to
improve performance. However, given the irregularity of
the GPM computation, software systems often show poor
performance. To get in-depth understanding of how software
GPM systems behave on general-purpose processors, we
evaluated AutoMine [58], a state-of-the-art software GPM
system, on a 12-core machine with 100GB/s max DRAM
bandwidth and hyper-threading (2 threads per core).

Fig. 7 shows the performance (left) and memory bandwidth
(right) scaling of mining k-cliques in orkut (Table I). The
performance scales linearly until 12-thread, after which hyper-
threading kicks in and the scaling slows down probably
because of cache contention [8]. We observe the same behavior
using a 56-core machine, when we scale from 56-thread to
112-thread. Fig. 7 also shows that the memory bandwidth
scales well beyond 12 threads, indicating there is potential
to improve performance with more physical cores.

In another experiment using Intel VTune, we observe that
37%~49% of pipeline slots are wasted due to branch mis-
prediction. This is caused by the frequent comparison and
branching in set intersection/difference, which account for
a majority of computation in AutoMine. These observations
suggest that an accelerator with a large number of physical
cores with special support for set operations and local memory
should be an effective way to scale GPM performance.

Unfortunately, existing hardware GPM accelerators, TrieJax
[46] and Gramer [90], are not efficient. TrieJax is based on a
variant of the Worst Case Optimal Join (WCOJ) algorithm.
The join operations are used to perform set intersections.
TrieJax introduces a specialized core which works as a co-
processor with the CPU cores. The L1 and L2 caches of
the specialized core are read-only, to avoid cache pollution
by the writes. It also introduces a 4MB dedicated on-chip
scratchpad, called the Partial Join Results (PJR) Cache, to
buffer intermediate results of join operations. However, Trie-
Jax has some limitations. First, it does not perform symmetry
breaking, leading to a much larger search space than necessary.
Second, it suffers from redundant computation on connectivity

K-Clique on Orkut Dataset

IS
o

12{ — 3-clique
—=— 4-clique
—*— 5-clique

—s— 3-clique
—=— 4-clique
—=— 5-clique

o

10

I

Speedup
S

BoRE NN W oW
« «

o

Avg. memory bandwidth utilization (%)

o u

12 4 8 12 16 20 24 12 4 8 12 16 20 24
#threads #threads

Fig. 7: Scalilibity of k-CL on 12 dual-threaded cores with
maximum DRAM bandwidth of 100GB/s.

check. Third, it lacks an interface to configure the hardware
and thus, is limited to solving single, edge-induced problems.

Gramer [90] proposed a data prioritization technique for
GPM, which heuristically prioritizes the hot, i.e., frequently
accessed, data in the cache. This technique improves perfor-
mance over existing pattern-oblivious software systems, such
as RStream [84] and Fractal [25]. However, Gramer employs
a pattern-oblivious search strategy. Although a filter mecha-
nism in Arabesque is leveraged by Gramer to remove irrelevant
subgraphs, it is not sufficient enough [16] to prune the search
space for an arbitrary pattern, and because of a lack of the
matching order, Gramer requires expensive isomorphism tests.
While Gramer supports solving more GPM problems than
TrieJax, it requires re-synthesizing a hardware solver for each
GPM problem due to a lack of programmable interface. Extra
RTL programming efforts are expected from users, which
could be a significant task for one without expertise in both
hardware design and graph pattern mining.

IV. FLEXMINER DESIGN OVERVIEW

The limitations of existing pure software and pure hardware
solutions motivate us to develop a SW/HW co-designed GPM
system which can overcome these limitations.

As shown in Fig. 2, FlexMiner establishes a software/hard-
ware interface (Section V), which takes the user specified pat-
tern as input, does an analysis on the pattern, and invokes the
FlexMiner compiler to generate a pattern-specific execution
plan. The execution plan is fed into the FlexMiner hardware
at the beginning of execution. The FlexMiner hardware can
be considered as a template of DFS walker over the subgraph
search tree, which is implemented as a finite-state machine
(Section IV-B). This template is customized by the pattern-
specific execution plan, and therefore the hardware is pattern
aware. To provide high throughput, the hardware contains a
collection of processing elements (PEs) specialized for GPM
search. This architecture leverages the parallelism that comes
from the fact that each search task starting from a vertex
is independent from other tasks. Inside each PE, FlexMiner
introduces a hardware hashmap (Section VI) to efficiently
perform the major GPM computation. In case of hashmap
overflow, a specialized set operation unit is invoked.

shared
PE PE PE cache | (3 |-
<) =
3 s
0 EANE
(NoC) 8 3
v ANE
5 2
hedul -
PE PE PE scheduler
global reducer

@ f{€<— reducer ancestor stack frontier list

4] table a

=0 : :

i e ® ‘e

c i :

2 H
'g): extender S[i;se exec. plan buffer

- .

5 | private

@ i]

S <5 cache ' c-ma SIU / SDU

9 i . 1 P

= frontier list 6 1

3 i prunner
Fig. 8: The FlexMiner hardware architecture.

— 5 Private $ fwhile (!A.empty() && !B.empty()) {

vid left = A.front();

vid right = B.front (),

if (left <= right) A.deq();

if (right <= left) B.deq():;

if (left == right) C.enqg(left);
} set intersection
while (!A.empty()) {

vid left = A.front();

if (B.empty()) {
A.deq(); C.eng(left);
else {
vid right = B.front();
if (left <= right) A.deq();
if (right <= left) B.deq();

Frontier List if (left < right) C.enqg(left);
FIFOC A !

S set difference

Fig. 9: Hardware SIU/SDU with upper bound pruning. vid is
the vertex upper bound. A and B are input edgelists.

Adj List AdjList | |
FIFO A FIFOB |/

Set Intersection/
Difference Unit

A. FlexMiner Hardware Architecture

Fig. 8 illustrates the FlexMiner architecture. FlexMiner
consists of a scheduler, a shared cache, and a number of
processing elements (PE), all connected with a network
on chip (NoC). The scheduler dynamically assigns fasks to
available idle PEs. The shared-cache buffers the vertex/edge
data for all PEs, and the intermediate data spilled from PEs.
There is no cache coherency in FlexMiner because each task
is independent and there is no updates to shared data. Each
PE is responsible for processing assigned tasks independently
and does not require synchronization with other PEs.

Each PE contains the following components. The extender
is a finite-state machine (detailed in Section I'V-B) responsible
for adding vertices one-by-one in the search tree. The pruner
is used to prune the vertex candidates and is configured
specifically for the pattern prior to the execution. It checks
if the ID of the vertex being added is within the bounds of the
symmetry order and queries c-map to check the connectivity
constraints. Only when the c-map has overflowed, SIU and SDU
are invoked to perform set intersection/difference operations

to compute the qualified vertex candidates. SIU/SDU uses the
well-known merge-based algorithm [39,42] and its hardware
structure is shown in Fig. 9. Our specialized SIU and SDU
perform one loop iteration (the while loop in Fig. 9) per cycle.

The reducer contains a group of counters, one for each
pattern. It uses + as the reduction operation, but can be ex-
tended easily to support user-defined reduction operations. The
ancestor stack is a set of registers to hold the current partial
match during the DFS search. The private cache stores the
edgelist data, and memoizes the frontier list which is a
list of vertices that have already passed the constraint checking
and are going to be reused (detailed in Section V-C). Once
a frontier list is generated, its start address and size are
stored in the frontier list table. The scratchpad accom-
modates a specialized hash map to memoize the neighborhood
connectivity (detailed in Section VI). Next we show details of
the state machine and the FlexMiner execution flow.

B. FlexMiner Execution Flow

Pattern-aware software solutions [44] use recursion, which
is not suitable for direct implementation in hardware. Instead,
FlexMiner uses the iterative execution model shown in Fig. 10
which can be implemented using a simple finite state machine.

A PE can be in one of the three states at runtime: Idle,
Extending and IteratingEdges. d is the the depth counter,
and emb is the ancestor stack in Fig. 8. Whenever the DFS
steps to the next level, a vertex is pushed on to the stack.
When the traversal finishes searching at the current level, the
stack pops the vertex at the top and backtracks to the previous
level. For each depth of the search tree, there are registers to
hold the current vertex being extended and the index of edge
used for extension (i.e., ¢-th neighbor).

The execution starts from a vertex v;,;:, which is a task
assigned by the scheduler. v;,;; is pushed on to the stack, and
the depth is set to 1. The state is switched to Extending. At
this stage, if the depth has reached the size of the pattern (k), a
match has been found in the stack and the matched subgraph
is added to the output. After that the search backtracks to
the previous level by decreasing d and popping emb. If the
maximum depth not reached yet, a vertex v in emb is picked
(according to the matching order order) as the new vertex for
extension and the index is set to 0. Now the state switches
to IteratingEdges. If the index has come to the end of the
neighbor list, the search backtracks to the previous level (if
the previous level is in depth O, indicating the entire subtree is
already traversed, it goes back to idle stage and waits for the
next task from the scheduler). Otherwise, the next neighbor
of the extender w is considered as a candidate vertex to be
checked by the pruner. If u satisfies the constraints (i.e., the
symmetry order and connectivity), u is pushed into emb and
the search goes to the next level by increasing d and switching
to the Extending state.

The overall flow of FlexMiner can be explained in Fig. 8
as follows. At the beginning of execution, the execution plan
is loaded (@). The scheduler then assigns a task (vertex v)
to the PE (®). The extender puts v in the ancestor stack

state == Idle
d =1, emb.push(Vj,;;)]
ﬂtate == Extending
False True
pick a vertex v from output emb
emb according to order;
offset{d] = 0; extender[d] = v d--; emb.pop
I | I
state == IteratingEdge
0 more neighbors of extending vertex[d]?
True
u = offset[d]-th neighbor of
extender([d]; i[d]++
d--; emb.pop
True 0 Fallse
. s d++ |
|emb pus}}(u), d —
|

Fig. 10: The execution flow of FlexMiner (single-pattern).

(®), and configures the pruner (@) according to the execution
plan. The pruner then starts to load v’s edgelist from private
cache (®), checks vertex id bound and queries the c-map
for connectivity constraints (if c-map overflows, SIU/SDU is
invoked). The other intermediate data, frontier list, stays
in the private cache, and is written to the shared cache
when evicted from the private cache. Once a frontier
list is generated, its corresponding information is updated in
the table (®). The frontier list is reused from the private
cache when it is accessed in a deeper level (@). Whenever
the extender finds a match, the reducer increases the local
count (@), which is sent to the global reducer at the end.

V. SOFTWARE/HARDWARE INTERFACE

To efficiently support pattern-awareness, in FlexMiner, we
define an interface to pass a pattern-specific execution plan to
the hardware. We propose an intermediate representation (IR)
to express the (1) matching order, (2) symmetry order and
(3) the hints to manage on-chip storage, for a specific pattern.
Fig. 11 (a) shows the execution plan for the 4-cycle pattern
and its IR is given in Listing 1. We develop a execution plan
generator (referred as a “compiler”) to do the pattern analysis
and generate the IR code automatically. IR code is pre-loaded
to the hardware accelerator before the execution starts. Our
compiler generates matching order and symmetry order using
the same approach in prior software frameworks [44, 57, 58].
We describe how it generates the hints to manage on-chip
storage and how multi-pattern problems are supported.

VOEV

v1 € adj(vp) && v <vq

vp € adj(vp) && vp <v

v3 € adj(vy) N adj(vp) && v3 <
matching order: {{}, {0}, {0}, {1,2}}
symmetry order: {-,v| <vq, v <v{, v3<vg}

(a) 4-cycle

Dald
@°@

voEV

v] € adj(vg) && v1 <vg @‘@
v2 € adi(vp) N adj(vy) o

v3 € adj(vg) N adj(v]) && vz <vp
matching order: {{}, {0}, {0,1}, {0,1}}
symmetry order: {-, vi <vg, -, v3<v3}

(b) diamond

VOEV

v] € adj(vp) && v1 <vg
v2 € adj(vp) N adj(v])
@ v3 € adj(vp)

matching order: {{}, {0}, {0,1}, {2}}
symmetry order: {-, vi <vg, -, -}

(c) tailed-triangle

Fig. 11: Execution plans for finding edge-induced 4-cycle, diamond and tailed-triangle. Errors in this figure fixed.

Listing 1: IR code for 4-cycle

1 || vertex:
2 vg €V pruneBy (oo, {»
3 v1 € vg.N pruneBy (vg.id, {3})
4 vy € vg.N pruneBy (vi.id, {3})
5 vz € v2.N pruneBy (vg.id, {v1})
6 || embedding:
7 emby := vg
3 emby := embg + v1
9 emby := embi + vo
10 embs := embs + v3

A. IR Format

The IR consists of a vertex section and an embedding sec-
tion. The vertex section describes how each vertex is extended
and which vertices can be considered valid candidates for that
extension step. For example, line 3 shows v; is extended from
vo. The candidates are confined by the pruneBy primitive,
which accepts 2 parameters: a vid upper-bound and connected
ancestor set. The vid upper-bound defines the upper bound of
candidate vertex ID. The connected ancestor set contains all
the vertices in the current embedding that must be connected to
the candidate vertex. Only candidate vertices that conform to
both constraints can be added to the embedding. For example,
in line 5 of Listing 1, v3’s ID must be smaller than vy’s ID, and
vs must be connected to v,. The embedding section describes
the dependencies between partially matched embeddings given
by the matching order. For instance, when mining 4-cycle,
we will find the following partial embeddings in order: single-
vertex embedding (emby), edge (emb;), wedge (embs) and 4-
cycle (embs). The embedding at the tail of the chain (embs)
fully matches the pattern. Each link in a dependency chain
is labeled with a + primitive which defines the vertex-adding
action performed to extend the embedding. For example, line
9 shows that emb; is extended from emby by adding v;.

B. Multi-pattern Support

For a single-pattern problem, it is straightforward to use
a compiler to generate the IR code from the matching order
and symmetry order. In case of multiple patterns, each pattern
needs one dependency chain. Since multiple chains may
contain a common part, we merge multiple chains using a
dependency tree whenever possible. This way, the embed-
ding section can express the control flow of mining multiple
patterns simultaneously, with common search paths merged
to avoid repetitive enumeration. Fig. 11 (b) and (c) shows
the execution plans of diamond and tailed-triangle. We
find that for both patterns, vy, v1 and v, are from the same

Listing 2: IR code for finding diamond and tailed-triangle

1 || vertex:

12 vg €V pruneBy (oo, {H

13 v1 € vo.N pruneBy (vp.id, {3})
14 v2 € vg.N pruneBy (oo, {v1})
15 v31 € vo.N pruneBy (v2.id, {v1})
16 v32 € v2.N pruneBy (oo, {H
17 || embedding:

18 emby := wvg

19 emby := embg + v1

20 embs := embi + va

21 embs1 := embs + v31 embss := emba + v3a

candidates set, i.e. the constraints of the first 3 vertices are
the same for both patterns. Therefore, we merge the first three
matching steps, and only the last step will diverge. Listing 2
shows the generated IR code. As illustrated in line 12, 13 and
14, the first three vertices are the same. This chain diverges
when extending vy to v3 where two different branches are
represented by two vertices vs; and wvso in line 15 and 16
respectively. The embedding section shows the dependency
tree. Line 23 shows the two branches embs; and embss, both
stemming from embs. In this way, FlexMiner can efficiently
support any multi-pattern problem including k-MC.

C. Hints for Data Management

Different patterns can be optimized with different frontier
list memoization techniques. For example, in the diamond
pattern in Fig. 11 (b), vy and v3 are from the same candidate
set adj(vo) Nadj(vy), and the only difference is that vz < vs.
If we can memoize the result of adj(vg) N adj(vy) in the
PE-local cache, we can avoid repetitive computation. When
analyzing the pattern, the compiler identifies which results
are reusable and thus should be memoized, and indicates the
hardware using a flag in the IR code. Similarly, the compiler
also embeds information in the IR about how to manage the
c-map. We describe it in Section VI.

In addition, the compiler does special optimization when
detecting k-clique at pattern analysis, since symmetry breaking
can be done by the orientation technique, i.e., converting
the undirected data graph G into a directed acyclic graph
(DAG) [16]. The idea is to establish an order between the
endpoints of every edge in G, which converts the originally
undirected edge into directed. A commonly used approach is
to enforce the vertex with smaller degree points to the vertex
with larger degree. Vertex ID is used when there is a tie. After
giving orientation, no symmetry order checking is needed at
runtime. The preprocessing time is usually less than 1% of the

execution time, and once converted, the graph can be used for
any k-CL.

D. Pattern-Aware Execution Flow

With execution model in Fig. 10, FlexMiner can mine any
pattern of interest by customizing order and constraints at
each level. The customization is achieved simply by download-
ing the IR code to the hardware. In the example of 4-cycle
in Fig. 11 (a), when FlexMiner extends a wedge to a 4-cycle
in depth 3 (executing embs := emby + v3), it refers to the
primitive v3 € wv2.N pruneBy (vo.id, {v1}) in the vertex
section. This defines the extender to be vy (i.e., the third
vertex in the ancestor stack), and the constraints include that
{v3 < v} and v3 must be connected to vy.

For single-pattern mining, the control flow (dependencies
between partial embeddings) is a sequence, so the execution
model can simply use depth d as the index into the vertex
section to retrieve the primitives, without using the embedding
section. For multi-pattern problems, however, the embedding
section will be used to handle the divergence of the control
flow due to different execution plans of the multiple patterns.
For example, in line 23 of Listing 2, two branches (embs; and
embso) are explored sequentially, i.e., the DFS walk steps into
level 3 with embs; first; when search finished in level 3 and
backtracks to level 2, it steps into level 3 again with embsa.

VI. HARDWARE SUPPORT FOR CONNECTIVITY MAP

In this section we explain our proposed hardware support
for c-map optimization in FlexMiner. First, let’s look into the
details about how c-map is updated and queried at runtime.

A c-map can be constructed incrementally each time an
embedding is extended with a new vertex. As shown in Fig. 12,
the current embedding is [] — [1] — [1, 2] — [1, 2, 3]. The
c-map is empty at the beginning. When vertex 1 is added to
the current embedding, all neighbors of vertex 1 are inserted
into the map (@), and the value of these entries are all ‘001°,
indicating they are connected to vertex 1. When vertex 2 is
added to the embedding, all neighbors of vertex 2 are inserted
(®) with value ‘010, indicating they are connected to vertex
2. Since vertex 4 and 5 already exist, their values are updated
to ‘011°, indicating they are connected to both vertex 1 and
2. Since vertex 2 is in the embedding, the entry for vertex
2 in the map become useless (no need to update). Similarly,
when vertex 3 is added to the embedding, the neighbors of
vertex 3 are inserted or updated (®). Note that c-map is self-
cleaned during backtracking, i.e. the connectivity information
is resumed in a stack fashion. Therefore when a task is
completed, all entries in c-map are invalidated.

When extending the current embedding with one more
vertex (e.g., vertex 7), we want to check the connectivity of
vertex 7 with vertex 1, 2, and 3. By querying the map with
the key “7°, we get the bitset ‘101°, indicating vertex 7 is
connected with vertex 1 and vertex 3, but not vertex 2. If the
lookup key does not exist in the map, it means the vertex is
not connected to any of the vertices in the current embedding.

Time
] >
1
Current Embedding: [1, 2, 3] 1 key|value key|value key|value
' [2]001 2 | 001 2| 001
v | 4]001 3 | 010 3010
12,457 |5 001 4|01 4011
21,3,4,56,8 : 7 | 001 5|01 5111
j—‘ 1 c-map@ 6|010 6010
325789 ' 7 | 001 7 (101
neighbor lists 1 8010 8| 110
]
Input Graph ' c-map@® 2|16
' c-map®

Fig. 12: An example of c-map. Green entries are newly inserted.
Orange entries are updated. Grey entries are ones became useless.

Previous work uses a vector [15,21] to implement a c-map
in software. Instead of keeping only visited vertices in the map,
the vector pre-allocates | V| entries, one per vertex in G. In such
implementations, c-map queries are served in constant time,
which leads to an average of 2.3x speedup for k-CL [21].
However, vector c-map only work well in a restricted setting.
First, such implementation is not scalable as the size of the
data graph G. For example when counting the 4-cliques in a
graph of a billion vertices of maximum degree 50, the working
set can be bound by size 50, but the vector implementation
will have to allocate a vector of size one billion (GB) per
thread. Moreover, the L1 cache is particularly inefficient for
such structures: each cache line holding c-map information
may hold only a single byte of useful information.

A. Hardware c-map Design

We propose a hardware c-map which keeps the information
in a compact form and provides fast accesses and low hardware
complexity. We use a simplified linear probing scheme: the
insertions and lookups are the same, but deletion is simpler
than the conventional linear probing. In our c-map, to delete
an entry, we simply find the entry and invalidate it (i.e., set
the value to 0). This is functionally correct due to two key
observations in the GPM algorithms: (1) updates on c-map
work in a bulk fashion (a sequence of neighbors), thus the
deletion of the entries inserted at the same level is done
atomically (no lookups before all removed); (2) we never
delete a key that does not exist in the map, thus the deletion
operation will always find the entry and remove it.

To probe faster, we partition the c-map into m banks,
allowing parallel probes to m successive entries. We prototype
our hardware c-map design in Bluespec and test it with m=4
and a bank size of 512 lines of 5 bytes: 4 bytes of the key, one
byte of the value (for a total of 2K entries). These parameters
led to a design successfully synthesized for FPGA at 200MHz
and ASIC at 1.3GHz. We empirically observe that the map
should be properly sized (>4kB) to keep its occupancy below
75%, thus maintain a low expected access latency. In our
design, most accesses take only a single cycle.

B. Support for c-map Space Management

Different patterns use the connectivity information differ-
ently. For 4-cycle, line 5 in Listing 1 shows that vs is
searched from wvs’s neighbor list, and is checked if it is

Graph Source #V #E d (max degree)
As ca-AstroPh [52] 18,772 0.2M 504
Mi Mico [27] 0.1M 1.1IM 1,359
Pa Patent [37] 27M 14.0M 789
Yo Youtube [17] 7.1M 57.1M 4,017
Lj LiveJournal [52] 4.8M 42.9M 20,333
or Orkut [52] 3.IM 117.2M 33,313

TABLE I: Input graphs (symmetric, no loops or duplicate edges)

connected to v1. The compiler annotates that only v;’s connec-
tivity information is used. Therefore, when mining 4-cycle,
we only need to insert v;’s neighbors to c-map. Besides, in line
5 there is a vertex upper bound vy, thus our compiler prevents
any v1’s neighbor with VID larger than vy from being inserted
into c-map, reducing the number of entries in c-map further.

Finally, we provide a fall-back mechanism to guarantee
correct execution when c-map overflows. To decide when to
fall back, the size of the neighbor list (i.e., the degree) is
obtained before bringing the list, and then we compute how
each vertex extension influence the c-map memory footprint.
Hence, we dynamically estimate the occupancy of the c-map
and keep it below our chosen threshold.

When we detect that estimated c-map footprint is above
the threshold, the fall-back mechanism is activated, i.e., the
pruner switches to invoke SIU/SDU instead of querying c-map.
For example, for 4-cycle, once c-map allocation for v;’s
neighbors failed, at level 2, instead of extending v, and
checking connectivity with vy, the pruner sends requests of
v1’s and vy’s edgelists to the L1 cache, and the two edgelists
are sent to SIU to compute the intersection.

VII. EVALUATION

A. Experimental Setup

Benchmarks and Graph Datasets: We test 4 GPM applica-
tions discussed in Section II-A, i.e., TC, k-CL, SL, £-MC.
As listed in Table I, we use all the input graphs used in
Gramer [90], except the two smallest graphs, which provide
much higher speedups over software baseline and distort the
results. All input graphs are symmetric, have no self-loops,
and have no duplicated edges. We represent the input graphs
in the compressed sparse row (CSR) format. The neighbor list
of each vertex is sorted by ascending vertex ID.
Baseline: We evaluate the efficiency of FlexMiner against
state-of-the-art software GPM systems, AutoMine [58] and
GraphZero [57], as well as the existing hardware GPM ac-
celerator, Gramer [90]. We are unable to compare FlexMiner
with TrieJax because their simulator has not been released
and there are no absolute numbers in the paper [46]. Au-
toMine and GraphZero are run on a 10-core Intel 19-7900X
CPU (3.30GHz, Turbo 4.3GHz, 13.75 MB LLC) with 64GB
DRAM. We report execution time on CPU as an average of
3 runs. Gramer was evaluated on a Xilinx Alveo U250 card
with a XCU250 FPGA chip (1.68M LUTs, 3.37M registers,
and 11.8MB BRAM) and four 16GB DDR4 memories.
Table II lists the running time (seconds) of Gramer (FPGA),
AutoMine (CPU) and GraphZero (CPU). Note that Gramer
results are reported from their paper [90], and the Yo graph

Graph Gramer AutoMine GraphZero

[90] 4x8T [58] 2x10T [57] 2x10T

As 0.028 0.017 0.017

Mi 0.11 0.05 0.03

TC Pa 3.09 0.21 0.21
Yo 13.01 0.99 0.45

Lj 17.81 2.51 0.65

As 0.27 0.05 0.03

Mi 6.86 1.28 0.36

4-CL Pa 3.74 0.24 0.24
Yo 17.30 1.90 1.20

Lj 30.89 2391 6.52

As 1.46 0.22 0.08

Mi 270.41 49.31 11.03

5-CL Pa 4.06 0.27 0.32
Yo 24.27 3.16 222

Lj 52.89 815.66 192.53

As 0.11 0.03 0.02

Mi 0.36 0.13 0.07

3-MC Pa 4.17 0.50 0.36
Yo 16.25 2.89 1.38

Lj 29.68 7.82 2.60

TABLE II: Comparing baseline systems: Gramer (4-thread 8-
PU FPGA), AutoMine (20-thread CPU) and GraphZero (20-
thread CPU). Bold numbers are the fastest of each row.

used in Gramer (|V'|=4.6M, |E|=44.0M) is a subset of ours
(|V|=7.1M, |E|=57.1M). SL is not evaluated because it is not
supported in Gramer. As shown in the table, GraphZero is
almost always faster than Gramer except 5-CL on Lj, with
an average speedup of 8.3x, regardless of all the hardware
specialization that Gramer did. This speedup is mainly due
to the pattern awareness in GraphZero. Note that Gramer
does outperform pattern-oblivious software GPM frameworks
RStream [84] and Fractal [25], as demonstrated in the Gramer
paper [90]. However, the pattern-awareness in AutoMine sig-
nificantly prunes the search space, and makes it orders-of-
magnitude faster [58] than RStream and Fractal. GraphZero
adds symmetry breaking on top of AutoMine, and is thus
faster than AutoMine. Therefore we use GraphZero as our
CPU baseline, and only compare FlexMiner with GraphZero in
the following evaluation. Note that the FlexMiner compilation
time is similar to GraphZero, which is negligible compared to
the mining execution time, since P is much smaller than G.

FlexMiner Simulation and Configurations: For performance
evaluation, we developed a custom cycle-accurate simulator,
which models the microarchitecture behavior of each mod-
ule described in Fig. 8. We conservatively use 1.3GHz PE
frequency (2.38GHz used in TrieJax), 32kB private cache
and 4MB shared cache. When space is not available in
private scratchpad, FlexMiner uses its fallback mechanism
(i.e. with SIU and SDU). We only report simulation results
for benchmarks completed within 2 seconds by GraphZero
in Table II due to the extremely slow cycle-accurate simu-
lation. The simulator is integrated with DRAMsim3 [53] to
simulate the cycle-accurate behavior of accesses to the off-
chip memory, which is simulated as 64GB of DDR4-2666
DRAM with four channels (the same as our CPU baseline). We
also integrated BookSim [63] for NoC, and a standard cycle-

accurate non-inclusive cache model for L2 cache. Note that
the frontier list memoization (described in Section V-C)
is always enabled in FlexMiner for a fair comparison with
GraphZero, which has this technique implemented in software.

We implement our proposed PE using Bluespec, generate
Verilog, and synthesize the logic using Synopsys Design
Compiler and Silvaco’s 15nm Open-Cell Library [1]. We give
the synthesis tool an operating voltage of 0.8V and achieve a
target clock period of 0.75ns, putting our design comfortably
at 1.3GHz. We estimate area numbers of the SRAMs in a PE
using CACTI [2]. We use the 22nm technology node (22nm is
the closest from 15nm available in CACTI). The overall area
of a PE in FlexMiner is only 0.18mm?2, while the area of an
Intel SkyLake CPU core (14nm) is about 15mm? [46].

In the following evaluation, we only focus on ASIC design
of FlexMiner. We first compare FlexMiner without c-map
to the CPU baseline, GraphZero, to show the benefit of PE
specialization and massive multithreading. We then evaluate
FlexMiner with different sizes of c-map, to show the benefit of
c-map and find out the reasonable size to use for the c-map. We
change the number of PEs from 1 to 64 to demonstrate a more
detailed performance scaling. Lastly NoC traffic is measured
to show the impact of c-map on reducing the memory requests,
i.e., memoization reduces accesses to the edgelists of G.

B. Performance (no-cmap) Comparison with the Baseline

Fig. 13 compares FlexMiner (without c-map) performance
with 20-thread GraphZero. As illustrated, FlexMiner with 10-
PE already outperform GraphZero for most cases, although
the clock frequency is much lower than CPU. This is due to
the fact that the specialized execution units (i.e., SIU and SDU)
in the PE are more efficient than general purpose CPU cores
for set operations. There exists other algorithms [59, 64] for
set intersection, but we use the same merge-based algorithm
as that is used in GraphZero to make fair comparison with
the CPU baseline. Note that same as GraphZero, FlexMiner
supports the memoization of the frontier list, which avoids
recomputation of the set intersections for patterns that have
reusable intermediate results (e.g., k-clique and diamond). The
support for this memoization in FlexMiner makes sure that it
has the same algorithmic efficiency as software.

Since the performance improvement mostly comes from
accelerating the set operations, the speedup for a specific case
depends on the portion of memory stalls in the total cycles.
The benchmark benefits most from PE specialization when it
spends most of the time on computation. In contrast, if the
benchmark mostly waits for memory requests, the speedup
would be marginal. For example, TC has the least computation
in all applications, and Pa and Yo are relatively large datasets
than As and Mi, which leads to poor cache behavior (we
observe 65.9% and 36.3% L2 cache miss rates for Pa and Yo
respectively) and likely more time spent on memory accesses.
Both Lj and Yo are large graphs, but Lj contains two times
more triangles than Yo. Therefore, TC for Pa and Yo on
FlexMiner is slower than the baseline.

10

Since each PE has much simpler logic and smaller private
cache than a general purpose core in CPU (CPU has 32kB L1D
and 1MB L2), we can put more PEs within the same area. By
scaling the number of PEs from 10-PE to 40-PE, FlexMiner
achieves even more speedups, thanks to the embarrassing
amount of parallelism in these GPM applications. On average,
FlexMiner with 10-PE, 20-PE and 40-PE outperform the CPU
baseline by 1.56x, 2.93x, and 5.15x, respectively.

C. Performance Impact of the c-map

We evaluate the performance impact of the c-map in
Fig. 14. We use different sizes of c-map from 1kB to 16kB.
cmap-unlimited is the c-map with unlimited size, i.e., it rep-
resents the performance upper bound of c-map design (which
is impractical). As shown, cmap-unlimited achieves signifi-
cant performance improvement (up to 5.3 x) over no-cmap for
4-cycle, with an average speedup of 3.0x. This is expected
as there is no frontier list reuse in 4-cycle while c-map is
reused heavily. As a proof, the read ratios, i.e., the percentage
of reads of all accesses to c-map, are 93%, 98% and 86%
in mining 4-cycle in As, mico and Pa. These high ratios are
translated directly to speedups in 4-cycle. However, for k-CL
and diamond where memoizing the frontier list is already
quite effective, adding c-map on top of it does not bring as
much performance improvement as it does for 4-cycle. For
TC, there is no frontier list reuse, and the c-map reuses
are fewer than those in 4-cycle. The read-write ratios for
TC on As, mico and Pa are 90% and 93% and 74%. This
reduced reuse (compared to 4-cycle), ends up giving a speed
up between 4-cycle and k-CL.

We also observe that Mi constantly obtains good speedups
across different applications. This is mainly due to the fact that
Mi is the most dense graph in Table I (with an average degree
of 21), and therefore there exists abundant c-map reuses (also
demonstrated by the high read ratio of Mi).

Meanwhile, we observe that for most of the benchmarks, a
4kB c-map already captures most of the performance benefit
of cmap-unlimited. This is because (1) the maximum degree
d of G is small (see Table I) compared to the graph size
(e.g., although with 57M edges, Yo has a d of 4,017), and
high-degree vertices are rare due to power-law distribution;
(2) c-map is well utilized with our compiler heuristics in
Section VI-B. In practice, we choose a c-map size of 8kB
for the default FlexMiner design to support larger graphs
and patterns. This configuration achieves average speedups of
2.28x%,4.24x and 7.29x, over the CPU baseline, respectively.

D. Large Graphs and Large Patterns

We evaluate a larger graph Or with TC (3-clique). Our sim-
ulation shows that 20-PE FlexMiner achieves 2.5x speedup
over GraphZero-20T. Due to the simulation speed, we can not
finish running larger graphs using our simulator, but FlexMiner
does support larger graphs as long as they fits in memory. To
support graphs larger than memory capacity, we can add graph
partitioning support [5, 40, 80] in our framework.

Hl GraphZero-20T

I FlexMiner-10PE

[FlexMiner-20PE [FlexMiner-40PE

8 15 24
8121 -]
< =
810-
O 8
S 6]
o
o 41
>
g 2
2 oLl I I I
n As Mi Pa Yo Lj|As Mi Pa Yo|As Pa|As Mi Pa|As Mi Pa Yo|As Mi Pa Yo
TC 4-CL SL-4cycle | SL-diamond 3-MC
Fig. 13: FlexMiner (without c-map) performance compared with 20-thread GraphZero on CPU.
Il no-cmap B 1kB-cmap I 4kB-cmap 3 8kB-cmap 1 16kB-cmap 1 unlimited-cmap
g6 -
s
24
g3
o
22
81
& I
As Mi Pa Yo Lj|As Mi Pa Yo|As Pa|As Mi Pa|As Mi Pa Yo|As Mi Pa
TC 4-CL 5-CL | SL-4cycle SL-diamond 3-MC

Fig. 14: FlexMiner performance using c-map with different sizes. All with 20-PE and normalized to FlexMiner without c-map.

64
W —e— TC-As
a 37 7 TC-Mi
1
k) -x- TC-Pa
@ 164 ™ 4-CL-As
n —o— 4-CL-Mi
o 8 -4 4-CL-Pa
8 4-Cycle-As
4-Cycle-Mi
o]
g 4
D
o 27
o
w0
14

4 8 16 32 64

Number of PEs

Fig. 15: FlexMiner with 8kB c-map performance scaling as the
number of PEs increases from 1 to 64 (normalized to one-PE).

We evaluate large patterns on Pa using k-CL with k € [5,9].
20-PE FlexMiner outperforms GraphZero by 1.7x to 1.9x.
For a pattern of size k, c-map needs 32 bits for the key and
k — 2 bits for the value in each entry. We currently use 8-
bit for the c-map value, and thus FlexMiner can fully benefit
from c-map for patterns within 10-vertex. For patterns beyond
size 10, c-map is partially used, i.e. for n-bit c-map value,
FlexMiner uses SIU/SDU when DFS level above n — 2 unless
there is an early c-map overflow.

E. Scalability and NoC Traffic

Fig. 15 illustrates the FlexMiner with 8kB c-map perfor-
mance as the number of PE increases from 1 to 64. Generally

11

we observe linear scaling with more PEs, although different
applications and datasets have different impact on the scaling
factor. TC is the simplest and least irregular application among
all. Therefore, TC performance scaling is almost perfect.
However, As is the smallest dataset, and TC on As scales worse
than the other two datasets because of much fewer tasks (i.e.
parallelism). 4-CL on As scales better than TC on As likely
due to more computation existed in 4-CL. On average, 64-PE
FlexMiner achieves 10.60x speedup over GraphZero-20T.

In Fig. 16 we measure NoC traffic, i.e., the number of
memory requests sent from the PEs to the NoC, to show the
impact of c-map on memory subsystem. For the benchmarks
which benefit from c-map, i.e. TC, 4-cycle and diamond,
the NoC traffic is significantly reduced by introducing the
c-map. For example, 4kB c-map reduces nearly half of the
NoC traffic for 4-cycle on As. For k-CL, the NoC traffic
stays the same, because the frontier list already cut down
the same amount of memory requests for both no-cmap and
c-map cases. As a result, the performance gain for 4-CL is less
impressive by increasing the c-map size. However, we observe
that Mi achieves close to 2x speedup in Fig. 14, which is
purely achieved by c-map reducing set operations.

In summary, we demonstrate that FlexMiner achieves signif-
icant speedup over the CPU baseline, thanks to the PE special-
ization, massive multithreaing, and the support for memoiza-
tion using c-map. More specifically, the performance speedup
of 40-PE without c-map over CPU baseline is attributed to
PE specialization (3.04x) and multithreading (1.76x). The
adoption of c-map with a tiny 8kB scratchpad further improves

HEl no-cmap I 1kB-cmap [4kB-cmap [8kB-cmap
o
£ 1.00
@©
=]
%0'75
=4
T0.50
N
©
§0.25
(=}
Z 0.00 n n : Y
TC-Mi TC-Pa 4-CL-Mi 4-CL-Pa SL-cy-As SL-cy-Mi SL-di-Mi

Fig. 16: Total number of NoC traffic (i.e., L2 accesses) and
DRAM accesses. cy: 4-cycle, di: diamond

the performance by 1.36x (up to 4.82x for some patterns),
which is a reasonable tradeoff for the hardware design.

VIII. RELATED WORK

Software GPM Systems: Arabesque [82], Fractal [25] and G-
Miner [13] are distributed GPM systems, while RStream [84],
Kaleido [95], Pangolin [16], AutoMine [58], GraphZero [57]
and Sandslash [15] are GPM systems targeting single-machine.
There are also graph querying systems like Graphflow [47, 59]
and EmptyHeaded [4] which only solve single-pattern edge-
induced GPM problems. Software GPM systems improve
programmability, but achieves limited performance as we
explained in Section III.

Hand-written Software GPM Applications: There are nu-
merous hand-optimized GPM applications targeting vari-
ous platforms, for TC [24,32,40,42,67,68,75,79,85,91], k-
CL [18,21], k-MC [6,69], SL [10,11,45,49,50,51,55,72,
73,77,78,83], and FSM [3,27,43,80,81,86]. They employ
sophisticated optimizations to improve algorithmic or/and ar-
chitectural efficiency. However, they lack generality and thus
require a lot more programming efforts than GPM systems.
Meanwhile, our accelerator can achieve better performance
than these hand-written applications on CPU or GPU.
Software Systems and Hardware Accelerators for Graph
Analytics: Lots of graph processing frameworks have been
proposed [33,54,56,65,94] to improve programmability for
large-scale graph processing but have limited support for sub-
graph mining tasks. Many graph analytics accelerators [12, 14,
20,28, 38, 62,66, 76,87, 89,93,96] have been proposed. They
can improve performance over software systems when solving
graph analytics problems. However, it has been demonstrated
that graph analytics accelerators yield poor performance for
GPM applications [46].

IX. CONCLUSION

GPM has been used widely in many real-world, compute-
intensive applications. We present a pattern-aware hardware
accelerator for GPM, which provides much higher perfor-
mance than existing software and hardware accelerated so-
lutions. Scalability of our design allows us to exploit massive
parallelism in GPM by increasing the number of process-
ing elements specifically designed for pattern-aware GPM.
FlexMiner compiler automates the generation of execution
plan for the hardware, which achieves pattern-awareness with-
out any more programming effort than software GPM frame-
works. It also provides hardware support for the memoization

techniques, making a tradeoff between work efficiency and
parallelism. Our evaluation demonstrates significant speedups
over the state-of-the art software framework on CPU.

X. ACKNOWLEDGEMENTS

The research is funded by Samsung Semiconductor (GRO
grants), NSF grant CCF-1725303, and NSFC grant 61802416.

REFERENCES

[1] (2021) 15nm Open-Cell 45nm FreePDK.
https://si2.org/open-cell-library/.

[2] (2021) CACTIL: An integrated cache and memory access
time, cycle time, area, leakage, and dynamic power model.
https://github.com/HewlettPackard/cacti.

[3] E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat, and F. Jamour,
“Scalemine: Scalable parallel frequent subgraph mining in a single
large graph,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’16. Piscataway, NJ, USA: IEEE Press, 2016, pp. 61:1-61:12.

[4] C. R. Aberger, A. Lamb, S. Tu, A. Notzli, K. Olukotun, and C. Ré,
“Emptyheaded: A relational engine for graph processing,” ACM Trans.
Database Syst., vol. 42, no. 4, Oct. 2017.

[5] F. N. Afrati, D. Fotakis, and J. D. Ullman, “Enumerating subgraph in-
stances using map-reduce,” in 2013 IEEE 29th International Conference
on Data Engineering (ICDE), 2013, pp. 62-73.

[6] N.K.Ahmed,J. Neville, R. A. Rossi, and N. Duffield, “Efficient graphlet
counting for large networks,” in /CDM, 2015, pp. 1-10.

[71 N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. Sahinalp,
“Biomolecular network motif counting and discovery by color coding,”
Bioinformatics, vol. 24, no. 13, pp. 241-249, 2008.

[8] S. Beamer, K. Asanovic, and D. Patterson, “Locality exists in graph
processing: Workload characterization on an ivy bridge server,” in
Proceedings of the 2015 IEEE International Symposium on Workload
Characterization, ser. IISWC ’15. USA: IEEE Computer Society,
2015, p. 56-65.

[9] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient semi-

streaming algorithms for local triangle counting in massive graphs,”

in Proceedings of the 14th ACM SIGKDD international conference on

Knowledge discovery and data mining, 2008, pp. 16-24.

B. Bhattarai, H. Liu, and H. H. Huang, “CECI: Compact Embedding

Cluster Index for Scalable Subgraph Matching,” in Proceedings of the

2019 International Conference on Management of Data, ser. SIGMOD

’19. New York, NY, USA: ACM, 2019, pp. 1447-1462.

F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient subgraph

matching by postponing cartesian products,” in Proceedings of the

2016 International Conference on Management of Data, ser. SIGMOD

’16. New York, NY, USA: Association for Computing Machinery,

2016, p. 1199-1214.

N. Challapalle, S. Rampalli, L. Song, N. Chandramoorthy, K. Swami-

nathan, J. Sampson, Y. Chen, and V. Narayanan, “Gaas-x: Graph

analytics accelerator supporting sparse data representation using crossbar
architectures,” in 2020 ACM/IEEE 47th Annual International Symposium

on Computer Architecture (ISCA). 1EEE, 2020, pp. 433-445.

H. Chen, M. Liu, Y. Zhao, X. Yan, D. Yan, and J. Cheng, “G-miner:

An efficient task-oriented graph mining system,” in Proceedings of the

Thirteenth EuroSys Conference, ser. EuroSys ’18. New York, NY,

USA: Association for Computing Machinery, 2018.

X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W.-M. Hwu,

“Adaptive Cache Management for Energy-Efficient GPU Computing,”

in Proceedings of the 47th Annual IEEE/ACM International Symposium

on Microarchitecture, ser. MICRO-47. Washington, DC, USA: IEEE

Computer Society, 2014, pp. 343-355.

X. Chen, R. Dathathri, G. Gill, L. Hoang, and K. Pingali, “Sandslash: A

Two-Level Framework for Efficient Graph Pattern Mining,” in Proceed-

ings of the 35th ACM International Conference on Supercomputing, ser.

ICS 21, 2021.

X. Chen, R. Dathathri, G. Gill, and K. Pingali, “Pangolin: An Efficient

and Flexible Graph Mining System on CPU and GPU,” Proc. VLDB

Endow., vol. 13, no. 8, Aug. 2020.

X. Cheng, C. Dale, and J. Liu, “Dataset for statistics and social network

of youtube videos,” http://netsg.cs.sfu.ca/youtubedata/.

Library and

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

12

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algorithms,”
SIAM J. Comput., vol. 14, no. 1, pp. 210-223, Feb. 1985.

Y.-R. Cho and A. Zhang, “Predicting protein function by frequent
functional association pattern mining in protein interaction networks,”
IEEE Transactions on Information Technology in Biomedicine, vol. 14,
no. 1, pp. 30-36, Jan. 2010.

G. Dai, T. Huang, Y. Chi, N. Xu, Y. Wang, and H. Yang, “Foregraph:
Exploring large-scale graph processing on multi-fpga architecture,” in
Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2017, pp. 217-226.

M. Danisch, O. Balalau, and M. Sozio, “Listing k-cliques in sparse
real-world graphs®,” in Proceedings of the 2018 World Wide Web
Conference, ser. WWW °18. Republic and Canton of Geneva,
Switzerland: International World Wide Web Conferences Steering
Committee, 2018, pp. 589-598.

M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis, “Frequent
substructure-based approaches for classifying chemical compounds,”
IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 8,
pp. 1036-1050, Aug 2005.

A. Deutsch, M. Fernandez, and D. Suciu, “Storing semistructured data
with stored,” in Proceedings of the 1999 ACM SIGMOD international
conference on Management of data, 1999, pp. 431-442.

L. Dhulipala, G. E. Blelloch, and J. Shun, “Theoretically efficient
parallel graph algorithms can be fast and scalable,” in Proceedings of
the 30th on Symposium on Parallelism in Algorithms and Architectures,
ser. SPAA ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 393-404.

V. Dias, C. H. C. Teixeira, D. Guedes, W. Meira, and S. Parthasarathy,
“Fractal: A general-purpose graph pattern mining system,” in
Proceedings of the 2019 International Conference on Management of
Data, ser. SIGMOD ’19. New York, NY, USA: ACM, 2019, pp.
1357-1374.

C. Domshlak, S. Genaim, and R. Brafman, “Preference-based configu-
ration of web page content,” in /4th European Conference on Artificial
Intelligence (ECAI 2000), Configuration Workshop, Berlin, Germany,
2000, pp. 19-22.

M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “Grami:
Frequent subgraph and pattern mining in a single large graph,” Proc.
VLDB Endow., vol. 7, no. 7, pp. 517-528, Mar. 2014.

P. Faldu, J. Diamond, and B. Grot, “Domain-specialized cache manage-
ment for graph analytics,” in 2020 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 1EEE, 2020, pp.
234-248.

K. Faust, “A puzzle concerning triads in social networks: Graph
constraints and the triad census,” Social Networks, vol. 32, no. 3, pp.
221 — 233, 2010.

D. Feldman and Y. Shavitt, “Automatic large scale generation of
internet pop level maps,” in IEEE GLOBECOM 2008-2008 IEEE Global
Telecommunications Conference. 1EEE, 2008, pp. 1-6.

O. Frank, “Triad count statistics,” in Annals of Discrete Mathematics.
Elsevier, 1988, vol. 38, pp. 141-149.

I. Giechaskiel, G. Panagopoulos, and E. Yoneki, “PDTL: Parallel and
distributed triangle listing for massive graphs,” in 2015 44th Interna-
tional Conference on Parallel Processing, Sep. 2015, pp. 370-379.

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“PowerGraph: Distributed Graph-parallel Computation on Natural
Graphs,” in Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 17-30.

M. Granovetter, “The strength of weak ties: A network theory revisited,”
Sociological theory, pp. 201-233, 1983.

V. Guralnik and G. Karypis, “A scalable algorithm for clustering
sequential data,” in Proceedings 2001 IEEE International Conference
on Data Mining. IEEE, 2001, pp. 179-186.

D. Hales and S. Arteconi, “Motifs in evolving cooperative networks
look like protein structure networks,” Networks & Heterogeneous Media,
vol. 3, no. 2, p. 239, 2008.

B. H. Hall, J. A. B, and T. M., “The NBER patent ci-
tation data file: Lessons, insights and methodological tools,”
http://www.nber.org/patents/, 2001.

T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1EEE, 2016, pp. 1-13.

13

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “ExTensor: An Accelerator
for Sparse Tensor Algebra,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’52. New York, NY, USA: Association for Computing Machinery,
2019, p. 319-333.

L. Hoang, V. Jatala, X. Chen, U. Agarwal, R. Dathathri, G. Gill, and
K. Pingali, “DistTC: High performance distributed triangle counting,” in
HPEC 2019 23rd IEEE High Performance Extreme Computing, Graph
Challenge, September 2019.

P. W. Holland and S. Leinhardt, “Local structure in social networks,”
Sociological methodology, vol. 7, pp. 1-45, 1976.

Y. Hu, H. Liu, and H. H. Huang, “Tricore: Parallel triangle counting
on gpus,” in SCI8: International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov 2018, pp. 171-182.
J. Huan, W. Wang, and J. Prins, “Efficient mining of frequent subgraphs
in the presence of isomorphism,” in Third IEEE International Confer-
ence on Data Mining, Nov 2003, pp. 549-552.

K. Jamshidi, R. Mahadasa, and K. Vora, ‘“Peregrine: A pattern-aware
graph mining system,” in Proceedings of the Fifteenth EuroSys Confer-
ence, ser. EuroSys ’20, 2020.

M. Jha, C. Seshadhri, and A. Pinar, “Path sampling: A fast and provable
method for estimating 4-vertex subgraph counts,” in Proceedings of the
24th International Conference on World Wide Web, ser. WWW ’15.
Republic and Canton of Geneva, Switzerland: International World Wide
Web Conferences Steering Committee, 2015, pp. 495-505.

O. Kalinsky, B. Kimelfeld, and Y. Etsion, “The triejax architecture:
Accelerating graph operations through relational joins,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
1217-1231.

C. Kankanamge, S. Sahu, A. Mhedbhi, J. Chen, and S. Salihoglu,
“Graphflow: An active graph database,” in Proceedings of the 2017
ACM International Conference on Management of Data, ser. SIGMOD
’17. New York, NY, USA: Association for Computing Machinery,
2017, p. 1695-1698.

H. Kashima, H. Saigo, M. Hattori, and K. Tsuda, “Graph kernels for
chemoinformatics,” in Chemoinformatics and advanced machine learn-
ing perspectives: complex computational methods and collaborative
techniques. 1GI Global, 2011, pp. 1-15.

H. Kim, J. Lee, S. S. Bhowmick, W.-S. Han, J. Lee, S. Ko, and
M. H. Jarrah, “DUALSIM: Parallel subgraph enumeration in a massive
graph on a single machine,” in Proceedings of the 2016 International
Conference on Management of Data, ser. SIGMOD ’16. New York,
NY, USA: ACM, 2016, pp. 1231-1245.

K. Kim, I. Seo, W.-S. Han, J.-H. Lee, S. Hong, H. Chafi, H. Shin, and
G. Jeong, “Turboflux: A fast continuous subgraph matching system
for streaming graph data,” in Proceedings of the 2018 International
Conference on Management of Data, ser. SIGMOD ’18. New York,
NY, USA: ACM, 2018, pp. 411-426.

L. Lai, L. Qin, X. Lin, and L. Chang, “Scalable subgraph enumeration
in mapreduce,” Proc. VLDB Endow., vol. 8, no. 10, pp. 974-985, Jun.
2015.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “Dramsim3:
a cycle-accurate, thermal-capable dram simulator,” IEEE Computer
Architecture Letters, 2020.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “GraphLab: A New Parallel Framework for Machine Learn-
ing,” in Proceedings Conf. Uncertainty in Artificial Intelligence, ser. UAIL
’10, July 2010.

S. Ma, Y. Cao, J. Huai, and T. Wo, “Distributed graph pattern
matching,” in Proceedings of the 2Ist International Conference on
World Wide Web, ser. WWW ’12. New York, NY, USA: ACM, 2012,
pp. 949-958.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, 1. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale
graph processing,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’10. New York,
NY, USA: ACM, 2010, pp. 135-146.

D. Mawhirter, S. Reinehr, C. Holmes, T. Liu, and B. Wu, “Graphzero:
Breaking symmetry for efficient graph mining,” 2019.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

(74

[75]

[76]

D. Mawhirter and B. Wu, “Automine: Harmonizing high-level
abstraction and high performance for graph mining,” in Proceedings of
the 27th ACM Symposium on Operating Systems Principles, ser. SOSP
’19. New York, NY, USA: ACM, 2019, pp. 509-523.

A. Mhedhbi and S. Salihoglu, “Optimizing subgraph queries by
combining binary and worst-case optimal joins,” Proc. VLDB Endow.,
vol. 12, no. 11, p. 1692-1704, Jul. 2019.

T. Milenkovi¢, W. L. Ng, W. Hayes, and N. Przulj, “Optimal network
alignment with graphlet degree vectors,” Cancer informatics, vol. 9, pp.
CIN-S4744, 2010.

T. Milenkovi¢ and N. Przulj, “Uncovering biological network function
via graphlet degree signatures,” Cancer informatics, vol. 6, pp. CIN-
S680, 2008.

A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,
“Exploiting locality in graph analytics through hardware-accelerated
traversal scheduling,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2018, pp. 1-14.
Nan Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
D. E. Shaw, J. Kim, and W. J. Dally, “A detailed and flexible cycle-
accurate network-on-chip simulator,” in 2013 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS),
2013, pp. 86-96.

H. Q. Ngo, D. T. Nguyen, C. Re, and A. Rudra, “Beyond worst-case
analysis for joins with minesweeper,” in Proceedings of the 33rd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, ser. PODS ’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 234-245.

D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” in Proceedings of the 24th ACM Symposium on
Operating Systems Principles (SOSP), ser. SOSP °13. New York, NY,
USA: ACM, 2013, pp. 456-471.

M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns, and
0. Ozturk, “Energy efficient architecture for graph analytics accelera-
tors,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp.
166-177, 2016.

S. Pandey, X. S. Li, A. Buluc, J. Xu, and H. Liu, “H-index: Hash-
indexing for parallel triangle counting on gpus,” in 2019 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, Sep.
2019, pp. 1-7.

R. Pearce, T. Steil, B. W. Priest, and G. Sanders, “One quadrillion
triangles queried on one million processors,” in 2019 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 2019,
pp- 1-5.

A. Pinar, C. Seshadhri, and V. Vishal, “Escape: Efficiently counting
all 5-vertex subgraphs,” in Proceedings of the 26th International
Conference on World Wide Web, ser. WWW ’17. Republic and Canton
of Geneva, Switzerland: International World Wide Web Conferences
Steering Committee, 2017, pp. 1431-1440.

N. Przulj, D. G. Corneil, and I. Jurisica, “Modeling interactome: scale-
free or geometric?” Bioinformatics, vol. 20, no. 18, pp. 3508-3515,
2004.

L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi, “Graph kernels for
chemical informatics,” Neural networks, vol. 18, no. 8, pp. 1093-1110,
2005.

X. Ren, J. Wang, W.-S. Han, and J. X. Yu, “Fast and robust distributed
subgraph enumeration,” Proceedings of the VLDB Endowment, vol. 12,
no. 11, pp. 1344-1356, 2019.

Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu, ‘“Parallel
subgraph listing in a large-scale graph,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’14. New York, NY, USA: ACM, 2014, pp. 625-636.

N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borg-
wardt, “Efficient graphlet kernels for large graph comparison,” in Arti-
ficial Intelligence and Statistics, 2009, pp. 488-495.

J. Shun and K. Tangwongsan, “Multicore triangle computations without
tuning,” in 2015 IEEE 31st International Conference on Data Engineer-
ing, April 2015, pp. 149-160.

L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Graphr: Accelerating
graph processing using reram,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). 1EEE, 2018, pp.
531-543.

14

(771

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

S. Sun, Y. Che, L. Wang, and Q. Luo, “Efficient parallel subgraph
enumeration on a single machine,” in 2019 IEEE 35th International

Conference on Data Engineering (ICDE). 1EEE, 2019, pp. 232-243.
S. Sun and Q. Luo, “Scaling up subgraph query processing with efficient

subgraph matching,” in 2019 IEEE 35th International Conference on
Data Engineering (ICDE). 1EEE, 2019, pp. 220-231.

S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the
last reducer,” in Proceedings of the 20th International Conference on
World Wide Web, ser. WWW *11. New York, NY, USA: ACM, 2011,
pp. 607-614.

N. Talukder and M. J. Zaki, “A distributed approach for graph mining
in massive networks,” Data Min. Knowl. Discov., vol. 30, no. 5, pp.
1024-1052, Sep. 2016.

N. Talukder and M. J. Zaki, “Parallel graph mining with dynamic load
balancing,” in 2016 IEEE International Conference on Big Data (Big
Data), Dec 2016, pp. 3352-3359.

C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J.
Zaki, and A. Aboulnaga, “Arabesque: A system for distributed graph
mining,” in Proceedings of the 25th Symposium on Operating Systems
Principles, ser. SOSP ’15. New York, NY, USA: ACM, 2015, pp.
425-440.

J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM,
vol. 23, no. 1, p. 3142, Jan. 1976.

K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H. Xu, “Rstream:
Marrying relational algebra with streaming for efficient graph mining
on a single machine,” in Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’18.
Berkeley, CA, USA: USENIX Association, 2018, pp. 763-782.

M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S. Raja-
manickam, “Fast linear algebra-based triangle counting with kokkosker-
nels,” in 2017 IEEE High Performance Extreme Computing Conference
(HPEC). 1IEEE, 2017, pp. 1-7.

Xifeng Yan and Jiawei Han, “gspan: graph-based substructure pattern
mining,” in Proceedings of the 2002 IEEE International Conference on
Data Mining, Dec 2002, pp. 721-724.

M. Yan, X. Hu, S. Li, A. Basak, H. Li, X. Ma, I. Akgun, Y. Feng, P. Gu,
L. Deng et al., “Alleviating irregularity in graph analytics acceleration: A
hardware/software co-design approach,” in Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture, 2019,
pp. 615-628.

X. Yan, P. S. Yu, and J. Han, “Graph indexing: a frequent structure-based
approach,” in Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, 2004, pp. 335-346.

Y. Yang, Z. Li, Y. Deng, Z. Liu, S. Yin, S. Wei, and L. Liu, “Graphabcd:
Scaling out graph analytics with asynchronous block coordinate de-
scent,” in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). 1EEE, 2020, pp. 419-432.

P. Yao, L. Zheng, Z. Zeng, Y. Huang, C. Gui, X. Liao, H. Jin, and
J. Xue, “A locality-aware energy-efficient accelerator for graph mining
applications,” ser. MICRO ’20, 2020, pp. 1-13.

A. Yagsar, S. Rajamanickam, M. Wolf, J. Berry, and U. V. Catalyiirek,
“Fast triangle counting using cilk,” in 2018 IEEE High Performance
extreme Computing Conference (HPEC). IEEE, 2018, pp. 1-7.

L. Zhang, Y. Han, Y. Yang, M. Song, S. Yan, and Q. Tian, “Discovering
discriminative graphlets for aerial image categories recognition,” /[EEE
Transactions on Image Processing, vol. 22, no. 12, pp. 5071-5084, 2013.
M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “Graphp: Reducing communication for pim-based graph
processing with efficient data partition,” in 20/8 IEEE International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2018, pp. 544-557.

Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and
S. Amarasinghe, “Graphlt: A High-performance Graph DSL,” Proc.
ACM Program. Lang., vol. 2, no. OOPSLA, pp. 121:1-121:30, Oct.
2018.

C. Zhao, Z. Zhang, P. Xu, T. Zheng, and J. Guo, “Kaleido: An
Efficient Out-of-core Graph Mining System on A Single Machine,”
in Proceedings of the 2020 IEEE International Conference on Data
Engineering (ICDE 2020), ser. ICDE ’20, 2020.

Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,
“Graphq: Scalable pim-based graph processing,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 712-725.

	Introduction
	Background
	Graph Pattern Mining Problems
	GPM Execution Model and Search Strategies
	Memoizing Connectivity Information

	Limitations of Existing GPM Software Systems and Accelerators
	FlexMiner Design Overview
	FlexMiner Hardware Architecture
	FlexMiner Execution Flow

	Software/Hardware Interface
	IR Format
	Multi-pattern Support
	Hints for Data Management
	Pattern-Aware Execution Flow

	Hardware Support for Connectivity Map
	Hardware c-map Design
	Support for c-map Space Management

	Evaluation
	Experimental Setup
	Performance (no-cmap) Comparison with the Baseline
	Performance Impact of the c-map
	Large Graphs and Large Patterns
	Scalability and NoC Traffic

	Related Work
	Conclusion
	Acknowledgements
	References

