
High Performance Detection of Strongly Connected
Components in Sparse Graphs on GPUs

Pingfan Li

College of Computer, National

University of Defense Technology

Changsha 410073, China

Xuhao Chen
∗

College of Computer, National

University of Defense Technology

Changsha 410073, China

Jie Shen

College of Computer, National

University of Defense Technology

Changsha 410073, China

Jianbin Fang

College of Computer, National

University of Defense Technology

Changsha 410073, China

Tao Tang

College of Computer, National

University of Defense Technology

Changsha 410073, China

Canqun Yang

College of Computer, National

University of Defense Technology

Changsha 410073, China

ABSTRACT
Detecting strongly connected components (SCC) has been broadly

used in many real-world applications. To speedup SCC detection

for large-scale graphs, parallel algorithms have been proposed to

leverage modern GPUs. Existing GPU implementations are able to

get speedup on synthetic graph instances, but show limited perfor-

mance when applied to large-scale real-world datasets. In this paper,

we present a parallel SCC detection implementation on GPUs that

achieves high performance on both synthetic and real-world graphs.

We use a hybrid method that divides the algorithm into two phases.

Our method is able to dynamically change parallelism strategies

to maximize performance for each algorithm phase. We then or-

chestrates the graph traversal kernel with customized strategy for

each phase, and employ algorithm extensions to handle the serial-

ization problem caused by irregular graph properties. Our design

is carefully implemented to take advantage of the GPU hardware.

Evaluation with diverse graphs on the NVIDIA K20c GPU shows

that our proposed implementation achieves an average speedup

of 5.0× over the serial Tarjan’s algorithm. It also outperforms the

existing OpenMP implementation with a speedup of 1.4×.

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms;

KEYWORDS
Strongly Connected Components; GPU; Real-world Graphs

ACM Reference format:
Pingfan Li, Xuhao Chen, Jie Shen, Jianbin Fang, Tao Tang, and Canqun Yang.

2017. High Performance Detection of Strongly Connected Components in

Sparse Graphs on GPUs. In Proceedings of the International Workshop on
Programming Models and Applications for Multicores and Manycores, Austin,
TX, USA, February 04-08, 2017 (PMAM’17), 10 pages.

∗
Corresponding author: cxh@illinois.edu

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

PMAM’17, February 04-08, 2017, Austin, TX, USA
© 2017 ACM. ISBN 978-1-4503-4883-6/17/02. . .$15.00

DOI: h�p://dx.doi.org/10.1145/3026937.3026941

1 INTRODUCTION
Strongly connected component (SCC) detection is a fundamental

graph analysis problem that is pervasively present in many applica-

tion domains. Tarjan’s algorithm is an e�cient sequential method

to solve SCC detection. However, parallelizing this algorithm is

challenging since it uses the inherently sequential depth-�rst search

(DFS) traversal of the graph. To speedup SCC detection for large-

scale graphs, parallel algorithms have been proposed. �e Forward-

Backward (FB) algorithm [10] and its enhancement FB-Trim [22]

are practical algorithms that bring in performance improvement.

Barnat et al. [4] implemented the FB-Trim algorithm using CUDA

on the GPU. Although they achieve signi�cant speedups for syn-

thetic graphs, their implementation works poorly when applied to

real-world graphs [6, 24]. �is is because many real-world graphs

exhibit the power-law property which complicates the problem.

Speci�cally, small-world graphs in social networks usually include a

single giant SCC and a lot of small-sized nontrivial SCCs. When the

giant SCC is detected and removed, the remaining graph contains a

large amount of disconnected subgraphs. �e conventional FB-Trim

algorithm becomes almost serialized when processing the remain-

ing graph. Besides, since the giant SCC is full of data parallelism

while the remaining graph mostly bene�ts from task parallelism,

they might need di�erent parallelism strategies to fully take advan-

tage of the underlying GPU hardware. �ese problems which do

not exist in randomly generated graphs are not speci�cally handled

in previously proposed GPU implementations.

In this work, we present a high performance SCC detection

method on the GPU that e�ciently processes both synthetic and

real-world graphs. Our implementation is based on the FB-Trim

algorithm, and extends it to handle the irregularity of real-world

graphs. More speci�cally, we propose a hybrid method to enable

the adoption of di�erent parallelism strategies to handle di�erent

graph properties that appear in di�erent algorithm phases. �e par-

allelism strategies of graph traversal are customized in each phase

to maximize performance. We also apply the optimization tech-

niques proposed in CPU SCC detection to deal with the serialization

problem by �nding weakly connected components. We implement

our proposed method using CUDA on the NVIDIA GPU. Evaluation

on diverse synthetic as well as real-world graphs shows that our

method signi�cantly outperforms existing GPU implementations.

�e main contributions are:

PMAM’17, February 04-08, 2017, Austin, TX, USA P. Li et. al.

1) We present a hybrid method that enables adoption of di�erent

parallelism strategies for di�erent graph properties.

2) We examine the state-of-the-art graph traversal optimizations

and apply the best-performing strategy for each algorithm phase.

3) We extend optimization techniques proposed in CPU SCC

detection to our GPU implementation to exploit more parallelism.

4) We demonstrate the e�ectiveness and e�ciency of the hybrid

method by implementing and evaluating the proposed algorithm

and optimizations on the NVIDIA GPU.

�e rest of the paper is organized as follows: the existing parallel

algorithms as well as the state-of-the-art GPU implementations

are introduced in Section 2. Our proposed design is described

in Section 3. We present the experimental results in Section 4.

Section 5 discusses related work, and Section 6 concludes.

2 BACKGROUND AND MOTIVATION
A strongly connected component in a directed graph refers to a

maximal subgraph where there exists a path between any two

vertices in the subgraph. SCC detection which decomposes a given

directed graph into a set of disjoint SCCs is widely used in many

graph alanytics applications, including web and social network

analysis [16], formal veri�cation [12], reinforcement learning [15],

mesh re�nement [22], computer-aided design [34] and scienti�c

computing [27].

�e classic sequential algorithm for SCC detection, a.k.a Tarjan’s

algorithm [33], is di�cult to parallelize because it is based on DFS

graph traversal which is known to be inherently sequential [28].

�us, parallel algorithms have been investigated to speedup SCC de-

tection on parallel machines. In this section, we �rst introduce the

widely used parallel algorithms, and then discuss existing GPU im-

plementations and their performance limitations when processing

real-world graph instances.

2.1 Parallel SCC Detection
Fleischer et al. proposed a practical algorithm, i.e. Forward-Backward

(FB) algorithm [10], which achieves parallelism by recursively par-

titioning the given graph into three disjoint subgraphs that can

be processed independently. McLendon et al. [22] extends FB al-

gorithm with a Trim step which detects size-1 SCCs to improve

performance. �e FB-Trim algorithm is shown in Algorithm 1. �is

algorithm includes two parts: FB and Trim.

�e FB algorithm proceeds as follows. A vertex called pivot p
is selected (line 4) and the strongly connected component S that

this pivot belongs to is computed (line 7) as the intersection of the

forward reachable set FW (line 5) and backward reachable sets BW
(line 6) of the pivot. Computation of the reachable sets divides the

graph into four subgraphs: (1) the strongly connected component

S with the pivot, (2) the subgraph FW \ S given by vertices in the

forward reachable set but not in the backward reachable set (line

10), (3) the subgraph BW \ S given by vertices in the backward

reachable set but not in the forward reachable set (line 11), and (4)

the subgraph G \ (FW ∪ BW) given by vertices that are neither in

the forward nor in the backward reachable set (line 12). Since an

SCC cannot belong to more than one partition, each partition can

be processed independently. �e subgraphs that do not contain

the pivot form three independent instances of the same problem,

Algorithm 1 FB-Trim Algorithm [22]

1: procedure FB-Trim(G (V ,E), SCC)

2: Trim(G, SCC)

3: if V , ∅ then
4: p ← pick any vertex in G

5: FW ← Fwd-Reach(G, p)

6: BW ← Bwd-Reach(G, p)

7: S ← FW ∩ BW

8: SCC ← SCC ∪ S

9: in parallel do
10: FB-Trim(FW \ S , SCC)

11: FB-Trim(BW \ S , SCC)

12: FB-Trim(G \ (FW ∪ BW), SCC)

13: end in parallel
14: end if
15: end procedure

Algorithm 2 Trim Procedure

1: procedure Trim(G (V ,E), SCC)

2: repeat
3: for each vertex v ∈ V in parallel do
4: if deдreein (v) = 0 or deдreeout (v) = 0 then
5: SCC ← SCC ∪ {{v}}

6: G ← G \ {v}

7: end if
8: end for
9: until G not changed

10: end procedure

and therefore, they are recursively processed in parallel with the

same algorithm. Furthermore, since each subgraph produces three

additional subgraphs, it is expected that quickly, there would be suf-

�cient independent tasks to consume all of the parallel processing

elements in a system [14].

Based on the FB algorithm, the FB-Trim algorithm adds a Trim

step (line 2) to preprocess the trivial SCCs (i.e., SCC of size one)

before picking the pivot. Since a trivial SCC has either zero incom-

ing edges or zero outgoing edges, it can be easily identi�ed only

by looking at the number of neighbors, rather than by computing

two reachable sets (which is computationally more expensive). �e

Trim step is described in Algorithm 2.

2.2 GPU SCC Detection
Barnat et al. [4] implemented the FB-Trim algorithm using CUDA [26]

on the GPU. Stuhl [32] improved this work with advanced graph

traversal implementations. �eir methods work e�ciently with

randomly generated graph instances, but show very limited perfor-

mance when applied to real-world graphs with many small sized

nontrivial SCCs. Fig. 1 shows the performance of their CUDA

implementation normalized to the sequential Tarjan’s algorithm.

For the three synthetic graphs (rmat-er, rmat-g and rmat-b),

it achieves signi�cant speedup (6× ∼ 12×), but when applied to

real-world graphs (the other bars on the right) the performance is

High Performance Detection of Strongly Connected Components in Sparse Graphs on GPUsPMAM’17, February 04-08, 2017, Austin, TX, USA

unsatisfactory. �e only one real-world graph that is accelerated

by this GPU implementation is cage14 which has only one gi-

ant nontrivial SCCs. For the other ten real-world graphs, Barnat’s

method is much slower than the sequential Tarjan’s algorithm.

�e poor performance is due to the fact that many real-world

graphs exhibit irregular structural properties such as skewed com-

ponent sizes. Typically, a small-world graph in social networks

contains a single giant SCC and many small-sized nontrivial SCCs.

When the giant SCC is detected and removed, the remaining graph

consists of a large number of disconnected subgraphs. In this case,

the conventional FB-Trim algorithm becomes almost sequential be-

cause only a few pivots can be selected in each iteration due to the

fact that subgraphs are disconnected. �is irregular characteristic is

not properly handled by existing GPU implementations, resulting

in extreme ine�ciency. Note that this problem also exists in CPU

parallel implementations, but it leads to even worse performance

in GPU environment, due to the weaker single-thread computation

capability of GPUs.

On the other hand, processing a graph with skewed component

sizes requires di�erent parallelism strategies to deal with di�erent-

sized subgraphs. For example, when detecting the single giant SCC,

the entire GPU is dedicated to compute it, exploiting data-level

parallelism. In this algorithm phase, we can apply sophisticated

graph traversal strategies. However, when processing the remain-

ing graph with many small-sized subgraphs, straightforward strate-

gies would be be�er since data parallelism is very limited and task

parallelism dominates in this phase. �erefore, existing GPU im-

plementations with �xed parallelism strategy can not fully take

advantage of the underlying GPU hardware. �e unsatisfactory

performance of existing GPU implementations motivates us to ap-

ply algorithm enhancements and optimization techniques to handle

graph irregularity and be�er leverage the GPU architecture.

3 DESIGN AND IMPLEMENTATION
Graph algorithms are considered to be di�cult to parallelize on

GPUs due to their irregularity [7]. However, recent works [9, 18,

21, 23, 31] demonstrate that GPUs are capable to substantially ac-

celerate graph algorithms if the algorithms are carefully designed

 0

 2

 4

 6

 8

 10

 12

 14

rm
at-b

rm
at-er

rm
at-g

cage14

Freescale

W
ikiTalk

Flickr

Google

W
ikiGrowth

Youtube

Baidu

LiveJ
Pokec

W
ikipedia

geom
ean

S
p

e
e
d

u
p

Tarjan
Barnat

Figure 1: Performance of Barnat’s CUDASCCdetection, nor-
malized to the sequential Tarjan’s algorithm.

and optimized for the GPU architecture. In this section we �rst

present the baseline design and basic data structures. We then

propose the hybrid method with a 2-phase algorithm structure that

enables dynamic changing of parallelism strategies according to

the graph property. Next we apply the algorithm extensions to

increase the parallelism in Phase-2. We also discuss the e�ect of

di�erent strategies to implement the graph traversal, i.e. breadth

�rst search (BFS). Finally, we discuss some implementation details

that a�ect the performance of GPU SCC detection. We conduct the

following analyses using the NVIDIA Tesla K20c GPU.

3.1 Baseline Design
Our baseline GPU implementation of the FB-Trim algorithm is

similar to Barnat’s implementation, but adds a Trim step before the

main loop. Algorithm 3 illustrates the algorithm skeleton. At line

2, the Trim procedure (see details in Algorithm 2) is launched to

remove trivial SCCs, thus reducing the workload for the following

steps. Note that a data structure mark is added and passed to

Trim. Pivot-Gen (line 3&8) is responsible for generating pivots. A

status bit is used to indicate whether the corresponding vertex is

marked as a pivot. �en the main loop is launched. Fw-Reach (line

5) and Bw-reach (line 6) are procedures to calculate the forward and

backward reachable sets of the pivots respectively. Update (line 9)

is responsible for calculating the SCC (i.e. the intersection of the

forward and backward reachable sets) and updating vertex status.

Details of Fw-Reach and Bw-reach are explained in Section 3.4.

Similar to Hong’s CPU implementation [14], two auxiliary data

structures are used: mark and color. When the SCC of a vertex is

identi�ed, instead of detaching the vertex from the rest of the graph,

we simply set the mark value of the vertex to true, and the vertex

is considered detached therea�er. Similarly, when we partition the

graph, we assign the same color value to vertices belonging to the

same subgraph; each subgraph is assigned a unique color value.

�erefore, two vertices of di�erent color values are considered

disconnected, even when there exists an edge between them in

the original graph. Another data structure visited is used to

0 1 2 3

4 5 6 7

C:

R:

1 2, 4, 5 6 2, 7 0, 5 6 3, 7

0 1 4 5 7 9 10 12 12

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8

Figure 2: An example of the compressed sparse row (CSR)
format. �is graph has 4 SCCs (red, green, blue, purple).
Note that the blue and purple SCCs are trvial SCCs consist-
ing of only one vertex.

PMAM’17, February 04-08, 2017, Austin, TX, USA P. Li et. al.

Algorithm 3 Baseline GPU FB-Trim Algorithm

1: procedure FB-Trim(G (V ,E), SCC)

2: Trim(G, SCC ,mark)

3: Pivot-Gen(G, SCC , color ,mark)

4: repeat
5: Fwd-Reach(G, SCC , visited , color ,mark)

6: Bwd-Reach(G, SCC , visited , color ,mark)

7: Trim(G, SCC ,mark)

8: Pivot-Gen(G, SCC , visited , color ,mark)

9: Update(G, SCC , visited , color ,mark)

10: until no pivot generated

11: end procedure

indicate whether the corresponding vertex has been visited during

the forward and backward traversal. If a vertex is both marked as

forward and backward visited, it is identi�ed as an element of the

SCC that the pivot belongs to.

Note that we use the well-known compressed sparse row (CSR)

sparse matrix format to store the graph in memory consisting of

two arrays. Fig. 2 provides a simple example. �e column-indices

array C is formed from the set of the adjacency lists concatenated

into a single array of m (m is the number of edges) integers. �e

row-o�sets array R contains n + 1 (n is the number of vertices)

integers, and entry R[i] is the index inC of the adjacency list of the

vertex vi .

3.2 Hybrid Method
As mentioned, real-world graphs with a power-law distribution

have fundamentally di�erent characteristics compared to tradi-

tional arti�cial graphs, making the existing FW-Trim method ex-

tremely ine�cient. Previous studies [4, 14, 29] revealed the major

characteristic of real-world graphs that mostly a�ects the perfor-

mance of SCC detection: the existence of a single giant SCC and

a lot of small sized SCCs. Fig. 10 (1) illustrates this characteristic

in a real-world graph instance which is the link relationship of a

blog sphere named LiveJournal [17]. �is characteristic causes load

imbalance and serialization problems [14] in the FB-Trim algorithm.

To handle the irregular characteristic, we propose a hybrid

method. In this algorithm structure, the SCC detection problem is

solved in two phases with di�erent parallelism strategies. During

the �rst phase (Phase-1) the algorithm processes the single giant

SCC with all threads, exploiting data-level parallelism. In the second

phase (Phase-2), the remaining small sized subgraphs are processed

in parallel, exploiting task-level parallelism. We utilize di�erent

parallelism strategies customized to the workload characteristics

of each phase, maximizing performance for both phases.

Fig. 3 illustrates the execution time distribution of Barnat’s

CUDA SCC detection. For rmat graphs and cage14 (not shown

in the �gure), there is only one nontrivial SCC (i.e. the single giant

SCC), and thus no Phase-2 is needed for these graphs. For the other

graphs, we observe that most of the time is spent on Phase-2 to pro-

cess the large amount of small sized SCCs. �is is because Phase-2

is scarcely parallelized even when a large number of SCCs are iden-

ti�ed in this phase. �is serialization is due to the fact that the large
amount of remaining small sized subgraphs are disconnected to each

Algorithm 4 FB-Trim-Hybrid Algorithm

1: procedure FB-Trim-Hybrid(G (V ,E), SCC)

2: /* Phase 1*/

3: Trim(G, SCC ,mark)

4: Pivot-Gen(G, SCC , color ,mark)

5: repeat
6: Fwd-Reach(G, SCC , color ,mark)

7: Bwd-Reach(G, SCC , color ,mark)

8: Trim(G, SCC ,mark)

9: Pivot-Gen(G, SCC , color ,mark)

10: Update(G, SCC , visited , color ,mark)

11: until more than 1% vertices removed

12: Trim(G, SCC ,mark)

13: Trim2(G, SCC ,mark)

14: FWCC(G, color ,mark)

15: Pivot-Gen(G, SCC , color ,mark)

16: /* Phase 2 */

17: repeat
18: Fwd-Reach(G, SCC , color ,mark)

19: Bwd-Reach(G, SCC , color ,mark)

20: Trim(G, SCC ,mark)

21: Pivot-Gen(G, SCC , color ,mark)

22: Update(G, SCC , visited , color ,mark)

23: until no pivot generated

24: end procedure

other, and recursively applying the FB algorithm to each subgraph

will only identify one SCC to which the pivot belongs, but does

not provide further partitioning [14]. Consequently, processing the

disconnected subgraphs is almost serialized. With this serialization

problem, the FB-Trim algorithm needs thousands of iterations to

complete for most of the small-world graphs in our benchmarks

(since these graphs have thousands of small sized nontrivial SCCs).

Note that although BFS within each subgraph is still parallelized, it

can o�er very limited parallelism since these subgraphs are small.

3.3 Exploiting Parallelism in Phase-2
To handle the serialization problem in Phase-2, we apply the exten-

sions that Hong et al. [14] proposed in their parallel CPU implemen-

tation to our GPU implementation. We refer this implementation

as FW-Trim-Hybrid. �e extensions that FW-Trim-Hybrid applies

to FW-Trim are: 1) �nding weakly connected components (FWCC),

and 2) detecting size-2 SCCs (Trim2).

As mentioned in 3.2, a�er the giant SCC is identi�ed and re-

moved in Phase-1, Phase-2 is mostly serialized because the small

sized SCCs are disconnected to each other. To exploit more paral-

lelism in Phase-2, FWCC is utilized to identify weakly connected

components (WCCs) before Phase-2 begins. Since one pivot is se-

lected for each WCC, we have many pivots selected at once and

substantially improve the degree of task-level parallelism. Addi-

tionally, to reduce the execution time of FWCC, we add a Trim2
step to identify and remove size-2 SCCs before FWCC. �e GPU

High Performance Detection of Strongly Connected Components in Sparse Graphs on GPUsPMAM’17, February 04-08, 2017, Austin, TX, USA

 0

 0.2

 0.4

 0.6

 0.8

 1

Freescale

W
ikiTalk

Flickr

Google

W
ikiGrowth

Youtube

Baidu

LiveJ
Pokec

W
ikipedia

T
im

e
 P

e
rc

e
n
ta

g
e

Giant_SCC Others

Figure 3: Exection time distribution of Barnat’s CUDA im-
plementation. Time spent on processing the giant SCC takes
only a small portion of the total time. Most of the time is
taken to process the rest small sized SCCs since this phase
is scarcely parallelized.

implementations of FWCC and Trim2 are quite straightforward

and thus not shown here.

Algorithm 4 shows the algorithm skeleton of FB-Trim-Hybrid.

In Phase-1 (line 3∼11), the single giant SCC is decomposed. �e

transition between Phase-1 and Phase-2 occurs when an SCC con-

taining more than 1% of the nodes of the original graph is identi�ed

(this condition o�en leads to the giant SCC since the rest SCCs

are small ones). Next Trim2 is done to remove size-2 SCCs (line

13). A�er that WCC is calculated (line 14) to exploit parallelism.

In Phase-2 (line 17∼23), a large amount of small sized SCCs are

detected. Our experiments in Section 4 show that the FWCC exten-

sion can dramatically increase the parallelism of Phase-2, leading

to signi�cant execution time reduction. Fig. 7 illustrates the exe-

cution time distribution of FB-Trim-Hybrid. Compared to Fig. 3,

we observe that the portion of time spent on Phase-1 increase a

lot due to the execution time reduction of Phase-2. Next, we try to

optimize the major operations in each phase.

3.4 Customizing Graph Traversal
As listed in Algorithm 3, the major SCC detection workload is

the graph traversal (in Fwd-Reach and Bwd-Reach) which is

implemented as parallel BFS on GPUs. �erefore it is essential to

pick an e�cient BFS implementation for high performance SCC

detection. Parallel BFS is a well-explored �eld [3, 5]. Basically

two parallelism strategies are utilized on GPUs: topology-driven or

data-driven implementations [25].

For graph algorithms, the naive topology-driven implementation

simply maps each vertex to a thread, and in each iteration, the

thread stays idle or is responsible to process the vertex depending

on whether the corresponding vertex has been processed or not.

It is straightforward to map the topology-driven implementation

onto the GPU with no extra data structure. Harish et al. [11] �rst

developed topology-driven BFS on GPUs. Hong et al. [13] improved

it by mapping warps rather than threads to vertices.

By contrast, the data-driven implementation maintains a work-

list which holds the remaining vertices to be processed. In each

Algorithm 5 Forward-Reach Procedure (topology-driven)

1: procedure Fwd-Reach(G (V ,E), visited , color ,mark)

2: repeat
3: chanдed ← f alse

4: for each vertex v ∈ V in parallel do
5: if !mark (v) and visitied (v). f w = true then
6: Fw-Step(G, v , visited , color ,mark , chanдed)

7: end if
8: end for
9: until chanдed = f alse

10: end procedure

Algorithm 6 Forward-Step Kernel (topology-driven)

1: procedure Fw-Step(G, v , visited , color ,mark , chanдed)

2: for each vertex w ∈ adj (v) do
3: if !mark (w) and color (w) = color (v) then
4: visited (w). f w ← true

5: chanдed ← true

6: end if
7: end for
8: end procedure

iteration, threads are created in proportion to the size of the worklist

(i.e. the number of vertices in the worklist). Each thread is respon-

sible for processing a certain amount of vertices in the worklist,

and no thread is idle. �erefore, the data-driven implementation is

generally more work-e�cient than the topology-driven one, but

it needs extra overhead to maintain the worklist. Note that the

data-driven implementation still su�ers from the load imbalance

problem, since vertices may have di�erent amount of edges to be

processed by the corresponding threads. Merrill et al. [23] proposed

a hierarchical load balancing strategy to deal with the problem.

We implement four versions of BFS in our SCC detection: naive

topology-driven (topo), topology-driven with load balancing (topo-lb),

 0

 1

 2

 3

 4

rm
at-b

rm
at-er

rm
at-g

cage14

Freescale

W
ikiTalk

Flickr

Google

W
ikiGrowth

Youtube

Baidu

LiveJ
Pokec

W
ikipedia

geom
ean

S
p

e
e
d

u
p

Topo
Topo-lb

Data
Data-lb

Figure 4: Performance of topology-driven v.s. data-driven
implementations when processing the single giant SCC in
Phase-1, all normalized to the topo implementation.

PMAM’17, February 04-08, 2017, Austin, TX, USA P. Li et. al.

Algorithm 7 Backward-Reach Procedure (data-driven)

1: procedure Bwd-Reach(GT (V ,E), visited , color ,mark)

2: Win ← pivots

3: whileWin , ∅ do
4: for each vertex v ∈Win in parallel do
5: if !mark (v) and visitied (v).bw = true then
6: Bw-Step(G, v , visited , color ,mark)

7: end if
8: end for
9: swap (Win ,Wout) . Swap the worklists

10: end while
11: end procedure

Algorithm 8 Backward-Step Kernel (data-driven)

1: procedure Bw-Step(G, v , visited , color ,mark)

2: for each vertex w ∈ adj (v) do
3: if !mark (w) and color (w) = color (v) then
4: visited (w).bw ← true

5: Wout ←Wout ∪ {w } . Atomic push

6: end if
7: end for
8: end procedure

naive data-driven (data) and data-driven with load balancing

(data-lb). For topo-lb and data-lb, we use the same load

balancing strategy proposed by Merrill et al. Algorithm 5 illustrates

the naive topology-driven implementation of the Fw-Reach proce-

dure. A �ag chanдed is used to indicate whether all the vertices are

colored or not. �is �ag is cleared at the beginning of each iteration,

and set by one or more threads if any vertex is updated. Once all the

vertices have been visited, the �ag remains f alse and the algorithm

�nally terminates. Algorithm 6 illustrates the Fw-Step kernel

operations. In real implementation, a data structure expanded
is used to indicate whether the corresponding vertex has been ex-

panded or not during the traversal, so as to �lter expanded vertices

and remove unnecessary work.

Algorithm 7 shows the naive data-driven implementation of

the Bw-Reach procedure. It is implemented through worklists.

At the beginning (line 2), generated pivots are pushed into the

shared worklistWin . Every worker thread in the system grabs a

vertex from the worklist and starts performing BFS concurrently

with respect to other worker threads. �e program is �nished

when all the workers become idle and no work items remain in

the worklist. Double bu�ering [25] is used to avoid copying the

worklist. Algorithm 8 illustrates the Bw-Step kernel operations.

Fig. 4 and Fig. 5 compare the performance of Phase-1 and Phase-

2 using these four BFS implementations respectively. In Fig. 4,

we observe that without load balancing, topo consistently outper-

forms data, since data has extra overhead caused by maintaining

the worklist. A�er applying load balancing, both version get sub-

stantial speedup. For some graphs, e.g. Baidu and Wikipedia,

data-lb shows signi�cant speedups (even be�er than topo-lb)

due to its work-e�ciency. On average topo-lb achieves the best

performance among the four, with a geomean speedup of 1.45×

over topo.

Fig. 4 demonstrates that load balancing can accelerate BFS when

processing the largest SCC in Phase-1. However, for Phase-2 where

many small disconnected subgraphs exists, Fig. 5 illustrates that

load balancing is not e�ective since its overhead exceeds its perfor-

mance bene�ts, although Wiki-growth and Wiki-pages can

still bene�t from load balancing and get speedup with data-lb.

According to this observation, we decide to �rst apply topo-lb
in Phase-1 and then switch to topo in Phase-2.

3.5 Implementation Details
Pivot Generation. Typically, pivots are generated by a pseudo

random number generator. However, since multiple subgraphs are

processed simultaneously in the same CUDA kernel, we need to

choose a number of pivots, one for each subgraph. Barnat et al. pro-

posed to let all vertices of a subgraph concurrently write their own

unique identi�ers to a single memory location [4]. �e vertex that

wins the competition will be selected as the pivot of its subgraph.

In this paper, we use this method to generate pivots.

Read-only Data Caching. In CUDA devices of compute capa-

bility 3.5 and higher, data that is read-only for the entire lifetime

of the kernel can be kept in the read-only data (uni�ed L1/texture)

cache by reading it using the intrinsic ldg() [26]. We use the

read-only cache to hold theC array and the R array. In this way, we

capture temporal locality and improve the performance by reducing

the total number of DRAM accesses.

4 EVALUATION
We use the R-MAT [8] graph generator GTGraph [20] to create

synthetic graphs. �e generator determines the degree distribution

by using four non-negative parameters (a; b; c; d) whose sum equals

one. We generate three graphs (rmat-er, rmat-g and rmat-b)

with 1M vertices size but varying structures by using the following

set of parameters: (0:25; 0:25; 0:25; 0:25); (0:45; 0:15; 0:15; 0:25); (0:55;

0:15; 0:15; 0:15). We also pick real-world graphs from the University

of Florida Sparse Matrix Collection [1], the SNAP database [17] and

 0

 1

 2

 3

 4

Freescale

W
ikiTalk

Flickr

Google

W
ikiGrowth

Youtube

Baidu

LiveJ
Pokec

W
ikipedia

geom
ean

S
p

e
e
d

u
p

Topo
Topo-lb

Data
Data-lb

Figure 5: Performance of topology-driven v.s. data-driven
implementations when processing the small sized SCCs in
Phase-2, all normalized to the topo implementation.

High Performance Detection of Strongly Connected Components in Sparse Graphs on GPUsPMAM’17, February 04-08, 2017, Austin, TX, USA

 0

 2

 4

 6

 8

 10

 12

 14

 16

rm
at-b

rm
at-er

rm
at-g

cage14

Freescale

W
ikiTalk

Flickr

Google

W
ikiGrowth

Youtube

Baidu

LiveJ
Pokec

W
ikipedia

geom
ean

S
p

e
e
d

u
p

Tarjan
OpenMP

Barnat
Hybrid

Figure 6: Performance of the SCC detection implementa-
tions, all normalized to the sequential Tarjan’s algorithm.

the Koblenz Network Collection [2]. �ese benchmarks are also

used in previous work [14, 29, 30]. �e matrices with the respective

number of vertices and edges are shown in Table 1. In summary, we

use 3 synthetic graphs and 11 real-world graphs for our evaluation.

�e graphs vary widely in size, degree distribution, density of local

subgraphs and application domain.

4.1 Experiment Setup
We compare 4 implementations including (1) Tarjan: Tarjan’s

serial algorithm implemented in [4], (2) OpenMP: Hong’s OpenMP

implementation [14], (3) Barnat: Barnat’s CUDA implementa-

tion [4], (4) Hybrid: our proposed GPU implementation FB-Trim-

Hybrid. We conduct the experiments on the NVIDIA K20c GPU

with CUDA Toolkit 7.5 release. Tarjan and OpenMP is executed

on Intel Xeon E5 2670 2.60 GHz CPU with 8 cores. We launch 16

threads for OpenMP since this is the best performing con�guration

as we evaluated. We use gcc and nvcc with the -O3 optimization

option for compilation along with -arch=sm 35 when compiling

for the GPU. We execute all the benchmarks 10 times and collect

the average execution time to avoid system noise. Timing is only

performed on the computation part of each program. For all the

GPU implementations, the input/output data transfer time (usually

takes 10%-15% of the entire program execution time) is excluded.

4.2 Performance
Fig. 6 compares the performance of our proposed FB-Trim-Hybrid

method with Tarjan, OpenMP and Barnat. On average, our

implementation achieves the best performance among the four

methods. Hybrid obtains a geomean speedup of 5.0× compared

to the Tarjan’s serial one, while OpenMP gets 3.5× performance

improvement. Compared toOpenMP, our method is 40% faster. �is

speedup over OpenMP is reasonable because the CPU has a much

larger last level cache which can be�er capture locality than that

on the GPU, although the GPU has higher throughput and memory

bandwidth. For Wikipedia and WikiGrowth, OpenMP is much

faster than our method, and we �nd that this is due to the fact

that BFS on these two graph instances works be�er on the CPU

than on the GPU. It is most likely that the topology of these two

 0

 100

 200

 300

 400

 500

 600

Freescale

W
ikiTalk

Flickr

Google

W
ikiGrowth

Youtube

Baidu

LiveJ
Pokec

W
ikipedia

E
x
e
cu

ti
o
n
 t

im
e
 (

m
s)

Phase1 Phase2 WCC

Figure 7: Execution time breakdown of our proposed FB-
Trim-Hybrid implementation.

graphs a�ects BFS performance. Note that our BFS implementation

uses generic optimization techniques that is portable to various

GPU architectures. If extremely optimized for Kepler architecture,

graph traversal can be further accelerated with more aggressive

optimization techniques. �is will be our future work.

As mentioned, Barnat get speedup for the �rst four graphs

(because these graphs have only one non-trivial SCC), but it is

much slower than Tarjan on average. Our method, however,

consistently works be�er than Tarjan and Barnat, although for

some benchmarks, e.g. Google, the speedup is very limited due

to the graph topology. For rmat graphs and cage14, Hybrid is

faster than Barnat thanks to the optimized BFS implementation

(see details in Section 3.4), while for the rest real-world graphs, our

method outperforms Tarjan and Barnat mainly because of the

much higher parallelism exploited by the WCC method. Table 2

shows that WCC substantially reduces the number of iterations

required to complete SCC detection. For many real-world graphs,

without WCC, Barnat needs thousands of iterations to �nish

since its Phase-2 is almost sequential. By contrast, our method

terminates within several or a dozen iterations. In general, our

GPU method is more practical and e�cient than the existing one.

To be�er understand the performance e�ect of our optimization

techniques, we breakdown the execution time into three parts:

Phase-1, WCC and Phase-2, shown in Fig. 7. As expected, since

WCC can exploit parallelism, execution time spent in Phase-2 is

signi�cantly reduced so that it doesn’t dominate the total execution

time any more. Meanwhile, with re�ned BFS implementation, the

Phase-1 performance is also improved. Besides, we parallelize our

WCC implementation on the GPU and ensure its low overhead.

Orchestrating all the three parts with customized optimization

techniques transforms into the �nal performance speedup.

4.3 Sensitivity to Input Scale
We evaluate the sensitivity of our method when changing the size

of the input datasets, shown in Fig. 8. In this experiment, we change

the graph size from 1M to 16M vertices, with a �xed density (aver-

age degree) of 10. �e �gure shows the execution time speedup over

Tarjan’s sequential method. It is clear that our method consistently

PMAM’17, February 04-08, 2017, Austin, TX, USA P. Li et. al.

Graph # Vertices # Edges Largest SCC Size Max. deg. Avg. deg. Description
rmat-er 1048576 10485760 1047016 49 10.0 Synthetic random graph

rmat-g 1048576 10485760 969560 692 10.0 Synthetic random graph

rmat-b 1048576 10485760 614556 10114 10.0 Synthetic random graph

cage14 1505785 27130349 1505785 41 18.0 DNA electrophoresis

Freescale 2999349 23042677 2888522 30478 7.7 Circuit simulation

WikiTalk 2394385 5021410 111881 3311 2.1 Wikipedia talk (communication) network

Flickr 2302925 33140017 1605184 18022 14.4 Connection of Flickr users

Google 875713 5105039 434818 6326 5.8 Web graph from Google

WikiGrowth 1870709 39953145 1629321 225883 21.4 English Wikipedia with edge arrival times

Youtube 1138499 4942297 509245 25487 4.3 Youtube users and their connections

Baidu 2141300 17794839 609905 97848 8.3 Chinese online encyclopedia Baidu

LiveJ 4847571 68993773 3828682 13906 14.2 LiveJournal online social network

Pokec 1632803 30622564 1304537 13733 18.8 Pokec online social network

Wikipedia 3148440 39383235 2104115 168685 12.5 Links in Wikipedia pages

Table 1: Suite of benchmark graphs

 0

 5

 10

 15

 20

 25

 1 2 4 8 16

E
x
e
cu

ti
o
n
 T

im
e
 S

p
e
e
d
u
p

Number of Vertices(1M)

rmat-er (avg_degree=10)

OpenMP
Barnat
Hybrid

Figure 8: Performance of the SCC detection with varied
dataset size (1M to 16M vertices), all normalized to the se-
quential Tarjan’s algorithm.

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60

E
x
e
cu

ti
o
n
 T

im
e
 S

p
e
e
d
u
p

Average Degree

rmat-er (number_vertices=1M)

OpenMP
Barnat
Hybrid

Figure 9: Performance of the SCC detection with varied
graph density, all normalized to the sequential Tarjan’s al-
gorithm.

outperforms the existing CPU and GPU implementations as the

input scale increases. For OpenMP and Hybrid, the performance

speedup increases as the size increase from 1M to 8M. �is is as

expected since larger datasets would bene�t more from parallel im-

plementations. �e speedup drops a li�le bit when the size goes to

16M, possibly due to the graph topology, but Hybrid still achieves

a signi�cant speedup of 20× over the Tarjan’s algorithm. By con-

trast, Barnat shows limited performance superiority compared to

OpenMP. Note that we currently focus on single-GPU implemen-

tation, and thus processing even larger graphs with multi-GPU or

multi-node machine will be our future work.

4.4 Sensitivity to Density
To understand the e�ect of graph density on performance, we

conduct another sensitivity study. Fig. 9 illustrates how the perfor-

mance changes as the graph density increases. In this experiment,

we change the graph density from 10 to 60, with a �xed graph

size of 1M vertices. We observe that Hybrid still consistently

outperforms Barnat. �is performance gap is almost unchanged

as the graph becomes denser. However, OpenMP exhibits higher

performance speedup with denser input graphs, while the speedups

of the two GPU implementations drop as the density increases. �is

is possibly due to the much larger cache size of the CPU. Since the

Graphs Barnat Hybrid # nontriv.

rmat-er 1 1 1

rmat-g 1 1 1

rmat-b 1 1 1

cage14 1 1 1

Freescale 55084 2 55084

WikiTalk 456 3 568

Flickr 28804 6 58636

Google 5347 14 12874

WikiGrowth 2702 4 2835

Youtube 10752 6 11370

Baidu 9371 5 22282

LiveJ 12226 5 23456

Pokec 1080 3 2094

Wikipedia 2559 5 2666

Table 2: �e number of iterations required to complete SCC
detection for each graph. �e third column lists the number
of non-trivial SCCs in each graph.

High Performance Detection of Strongly Connected Components in Sparse Graphs on GPUsPMAM’17, February 04-08, 2017, Austin, TX, USA

100
101
102
103
104
105
106
107

100 101 102 103 104 105 106 107

S
C
C

C
o
u
n
t

SCC Size

(1) LiveJ

100
101
102
103
104
105
106
107

100 101 102 103 104 105 106 107

S
C
C

C
o
u
n
t

SCC Size

(2) Flickr

100
101
102
103
104
105
106
107

100 101 102 103 104 105 106 107

S
C
C

C
o
u
n
t

SCC Size

(3) Baidu

100
101
102
103
104
105
106
107

100 101 102 103 104 105 106 107

S
C
C

C
o
u
n
t

SCC Size

(4) Google

100
101
102
103
104
105
106
107

100 101 102 103 104 105 106 107

S
C
C

C
o
u
n
t

SCC Size

(5) Pokec

100
101
102
103
104
105
106
107

100 101 102 103 104 105 106 107

S
C
C

C
o
u
n
t

SCC Size

(6) cage14

Figure 10: Distribution of SCC sizes of some graph instances that are used in our experiments.

working set size is proportional to the graph density, GPUs may

su�er higher degree of memory divergence and cache thrashing

with limited on-chip cache size. �is observation suggests us to

optimize cache behavior to further improve the performance of

GPU SCC detection. Note that real-world graphs are usually sparse

graphs, e.g., the largest density of the real-world graph instances

used in our experiments is 21, and therefore our GPU method can

achieve be�er performance than the CPU parallel implementation.

4.5 SCC Distribution
Fig. 10 shows the SCC structure of some graphs used in the exper-

iments. As mentioned, for the small-world graph instances, e.g.,

the �rst �ve graphs in Fig. 10, there is usually a single giant SCC

and many small-sized non-trivial SCCs. Although trivial SCCs are

the most frequent, they can be e�ciently handled by the Trim step.

For non-small-world graphs, e.g., cage14, the SCC related prop-

erty is quite di�erent. cage14 has only a single giant SCC, which

means its vertices are all strongly connected. In this case, GPU

implementations can easily exploit parallelism and achieve good

performance as shown in the previous GPU BFS work. �erefore

the major part that hurts performance is the large amount of small-

sized non-trivial SCCs. Our proposed implementation imports the

WCC method to e�ciently deal with this case.

5 RELATEDWORK
Parallel SCC detection is an important graph analysis algorithm

that has been intensively studied previously. Hong et al. [14] pro-

posed an e�cient parallel CPU SCC detection method speci�cally

for processing real-world graphs. �ey were the �rst to use WCC

method to handle power-law graphs, and got good speedup and

scalability on multicore CPUs. Our work employs the WCC method

on GPUs, and further optimizes the algorithm to leverage GPU’s

compute capability. Slota et al. [29] used another strategy to deal

with power-law graphs. �eir Multistep method combines BFS

and coloring-based methods and uses them in di�erent algorithm

steps. Barnat et al. [4] were the �rst to implement FB-Trim algo-

rithm on GPUs. �ey used synthetic graph instances as benchmarks,

and got dramatic performance speedup. However, their work did

not pay speci�c a�ention on dealing with the irregularity in real-

world graphs. Slota et al. [30] implemented their Multistep
method on GPUs to handle the large amount of small-sized SCCs

in real-world graph. Instead of using coloring algorithm, our GPU

implementation imports Hong’s WCC method to handle this prob-

lem. More importantly, our method enables adoption of di�erent

graph traversal strategies for di�erent algorithm phases.

Many other graph algorithms have been developed on GPUs.

Harish et al. [11] are the pioneers to implement GPU graph al-

gorithms. �ey developed topology-driven Breadth-�rst Search

(BFS) and shortest path algorithms. Hong et al. [13] proposed an-

other topology-driven BFS to map warps rather than threads to

vertices. Luo et al. [19] developed the �rst data-driven BFS on

GPUs. Merrill et al. [23] improved Luo’s work. �ey employed 1)

pre�x sum to reduce atomic operations and 2) dynamic load balanc-

ing to deal with scale-free graphs. �is implementation achieves

high throughput and good scalability. �e two major techniques

of their work are also applicable to our implementation, while

our work focuses more on the algorithm-speci�c re�nement, e.g.,

the speci�c strategies to alleviate side e�ects of GPU’s massive

PMAM’17, February 04-08, 2017, Austin, TX, USA P. Li et. al.

parallelism. Davidson et al. [9] developed a work-e�cient Single-

Source Shortest Path (SSSP) algorithm on GPUs. �ey improve

load balance by partitioning the work into chunks and assigns each

chunk to a thread block. �ese work demonstrated that with careful

mapping and optimizations graph algorithms can get substantial

performance boost on the GPU. Our work further enhances the

conclusion of previous practices, while we show the importance of

both algorithm-speci�c and architecture-speci�c optimizations for

graph analytics problems.

6 CONCLUSION
SCC detection is an important graph algorithm that has been ap-

plied in many application domains. To process large-scale graphs,

parallel SCC detection has been intensively studied in the past.

Meanwhile, GPUs have been broadly utilized to speed up com-

pute intensive kernels of HPC applications in the last decade. In

this paper, we explore the e�cient implementation of parallel SCC

detection on the GPU. Existing implementations achieve good per-

formance for synthetic graphs but work poorly when applied to

real-world graphs. We present a GPU SCC detection implementa-

tion that o�ers high performance for both synthetic and real-world

graphs. We propose a hybrid method and customize parallelism

strategies for di�erent algorithm phases. We also employ algo-

rithm extensions to handle the irregularity of real-world graphs.

Experimental results show that our proposed implementation sub-

stantially outperforms existing GPU implementations. �is work

helps us further understand graph algorithms on modern massively

parallel processors, and gives insight on the importance of both

algorithm adaptation and architecture-speci�c optimizations to

handle the data irregularity of real-world graphs and fully take

advantage of the underlying GPU hardware.

7 ACKNOWLEDGMENT
We thank the anonymous reviewers for the insightful comments and

suggestions. �is work is partly supported by the National Natural

Science Foundation of China (NSFC) No.61502514, No.61402488,

and No.61602501, and the National Key Research and Development

Program of China under grant No.2016YFB0200400.

REFERENCES
[1] 2011. �e University of Florida Sparse Matrix Collection. (2011). h�p://www.

cise.u�.edu/research/sparse/matrices/

[2] 2013. Koblenz network collection. (2013). h�p://konect.uni-koblenz.de

[3] Virat Agarwal, Fabrizio Petrini, Davide Pase�o, and David A. Bader. 2010. Scal-

able Graph Exploration on Multicore Processors. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 1–11.

[4] Jiri Barnat, Petr Bauch, Lubos Brim, and Milan Ceska. 2011. Computing Strongly

Connected Components in Parallel on CUDA. In Proceedings of the 25th IEEE
International Parallel & Distributed Processing Symposium (IPDPS), 544–555.

[5] Sco� Beamer, Krste Asanović, and David Pa�erson. 2012. Direction-optimizing

Breadth-�rst Search. In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis (SC), Article 12, 10 pages.

[6] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-

jagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. 2000. Graph

Structure in the Web. Computer Networks 33, 1-6 (June 2000), 309–320.

[7] M. Burtscher, R. Nasre, and K. Pingali. 2012. A quantitative study of irregular pro-

grams on GPUs. In Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC), 141–151.

[8] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A

recursive model for graph mining. In SDM.

[9] A. Davidson, S. Baxter, M. Garland, and J. D. Owens. 2014. Work-E�cient Parallel

GPU Methods for Single-Source Shortest Paths. In Proceedings of the IEEE 28th
International Parallel and Distributed Processing Symposium (IPDPS), 349–359.

[10] Lisa Fleischer, Bruce Hendrickson, and Ali Pinar. 2000. On Identifying Strongly

Connected Components in Parallel. In Proceedings of the 15th IPDPS Workshops,
505–511.

[11] Pawan Harish and P. J. Narayanan. 2007. Proceedings of the 14th International
Conference High Performance Computing (HiPC). Springer Berlin Heidelberg,

Berlin, Heidelberg, Chapter Accelerating Large Graph Algorithms on the GPU

Using CUDA, 197–208.

[12] Ramin Hojati, Robert K. Brayton, and Robert P. Kurshan. 1993. BDD-Based

Debugging Of Design Using Language Containment and Fair CTL. In Proceedings
of the 5th International Conference on Computer Aided Veri�cation, 41–58.

[13] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. 2011.

Accelerating CUDA Graph Algorithms at Maximum Warp. In Proceedings of the
16th ACM Symposium on Principles and Practice of Parallel Programming (PPoPP),
267–276.

[14] Sungpack Hong, Nicole C. Rodia, and Kunle Olukotun. 2013. On Fast Parallel

Detection of Strongly Connected Components (SCC) in Small-world Graphs.

In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), Article 92, 11 pages.

[15] Seyed Jalal Kazemitabar and Hamid Beigy. 2009. Automatic Discovery of Sub-

goals in Reinforcement Learning Using Strongly Connected Components. In

Proceedings of the 15th International Conference on Advances in Neuro-information
Processing - Volume Part I, 829–834.

[16] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. 2006. Structure and Evolution

of Online Social Networks. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), 611–617.

[17] J. Leskovec. 2013. SNAP: Stanford Network Analysis Platform. (2013). h�p:

//snap.stanford.edu/data/index.html

[18] Pingfan Li, Xuhao Chen, Zhe �an, Jianbin Fang, Huayou Su, Tao Tang, and

Canqun Yang. 2016. High Performance Parallel Graph Coloring on GPGPUs. In

Proceedings of the 30th IPDPS Workshop, 1–10.

[19] Lijuan Luo, Martin Wong, and Wen-mei Hwu. 2010. An E�ective GPU Imple-

mentation of Breadth-�rst Search. In Proceedings of the 47th Design Automation
Conference (DAC), 52–55.

[20] K. Madduri and D. A. Bader. 2006. GTgraph: A suite of synthetic graph generators.

(2006). h�p://www.cse.psu.edu/�madduri/so�ware/GTgraph/

[21] Adam McLaughlin and David A. Bader. 2014. Scalable and High Performance

Betweenness Centrality on the GPU. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), 572–583.

[22] William McLendon III, Bruce Hendrickson, Steven J. Plimpton, and Lawrence

Rauchwerger. 2005. Finding Strongly Connected Components in Distributed

Graphs. Journal of Parallel and Distributed Computing (JPDC) 65, 8 (Aug. 2005),

901–910.

[23] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU

Graph Traversal. In Proceedings of the 17th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP), 117–128.

[24] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and

Bobby Bha�acharjee. 2007. Measurement and Analysis of Online Social Networks.

In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement,
29–42.

[25] R. Nasre, M. Burtscher, and K. Pingali. 2013. Data-Driven Versus Topology-driven

Irregular Computations on GPUs. In Proceedings of the 27th IEEE International
Parallel Distributed Processing Symposium (IPDPS), 463–474.

[26] NVIDIA 2015. CUDA C Programming Guide v7.0. NVIDIA.

[27] Alex Pothen and Chin-Ju Fan. 1990. Computing the Block Triangular Form of

a Sparse Matrix. ACM Transactions Mathematical So�ware (TOMS) 16, 4 (Dec.

1990), 303–324.

[28] John H. Reif. 1985. Depth-�rst search is inherently sequential. Inform. Process.
Le�. 20, 5 (1985), 229 – 234.

[29] G. M. Slota, S. Rajamanickam, and K. Madduri. 2014. BFS and Coloring-Based

Parallel Algorithms for Strongly Connected Components and Related Problems.

In Proceedings of IEEE 28th International Parallel and Distributed Processing Sym-
posium (IPDPS), 550–559.

[30] G. M. Slota, S. Rajamanickam, and K. Madduri. 2015. High-Performance Graph

Analytics on Manycore Processors. In Proceedings of the IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 17–27.

[31] G. M. Slota, S. Rajamanickam, and K. Madduri. 2016. Parallel Graph Coloring

for Manycore Architectures. In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 1–10.

[32] Bc Miroslav Stuhl. 2013. Computing Strongly Connected Components with

CUDA. (2013).

[33] Robert Tarjan. 1972. Depth-First Search and Linear Graph Algorithms. SIAM J.
Comput. 1, 2 (1972), 146–160.

[34] Aiguo Xie and P. A. Beerel. 2006. Implicit Enumeration of Strongly Connected

Components and an Application to Formal Veri�cation. Trans. Comp.-Aided Des.
Integ. Cir. Sys. 19, 10 (Nov. 2006), 1225–1230.

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
http://konect.uni-koblenz.de
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html
http://www.cse.psu.edu/∼madduri/software/GTgraph/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Parallel SCC Detection
	2.2 GPU SCC Detection

	3 Design and Implementation
	3.1 Baseline Design
	3.2 Hybrid Method
	3.3 Exploiting Parallelism in Phase-2
	3.4 Customizing Graph Traversal
	3.5 Implementation Details

	4 Evaluation
	4.1 Experiment Setup
	4.2 Performance
	4.3 Sensitivity to Input Scale
	4.4 Sensitivity to Density
	4.5 SCC Distribution

	5 Related Work
	6 Conclusion
	7 Acknowledgment
	References

