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Work

Definition.
The work of a program (on a given input) is the sum 
total of all the operations executed by the program.
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Reducing Work

● Less work ≈ faster code.

● Reducing the work of a program does not automatically reduce its 
running time, however, due to the complex nature of computer hardware:
 instruction-level parallelism (ILP),
 caching,
 vectorization,
 speculation and branch prediction,
 etc.

● Nevertheless, reducing the work serves as a good heuristic for reducing 
overall running time.

● Algorithm design can produce dramatic reductions in the work to solve a 
problem, as when a Θ(n lg n)-time sort replaces a Θ(n2)-time sort.
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Jon Louis Bentley

1982
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New Bentley Rules

Data structures 
● Packing and encoding
● Augmentation
● Caching 
● Precomputation
● Compile-time initialization
● Sparsity

 Loops
● Loop unrolling
● Hoisting
● Sentinels
● Loop fusion
● Eliminating wasted iterations

Logic
● Constant folding and propagation
● Common-subexpression elimination
● Algebraic identities
● Creating a fast path
● Short-circuiting
● Ordering tests
● Combining tests

Functions 
● Inlining
● Tail-recursion elimination
● Coarsening recursion

6
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Packing and Encoding
The idea of packing is to store more than one data value in a 
machine word.  The related idea of encoding is to convert 
data values into a representation that requires fewer bits.

Example: Encoding dates
● The string “September 3, 2020” can be stored in 17 bytes — 

more than two 64-bit words — which must must move 
whenever the date is manipulated.

● Assuming that we only store dates between 4096 B.C.E. and 4096 
C.E., there are about 365.25 × 8192 ≈ 3 M dates, which can be 
encoded in ⎡lg(3×106)⎤ = 22 bits, easily fitting in a 32-bit word.

● Problem: How can we represent dates compactly so that 
determining the year, month, and day is fast?

8
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Packing and Encoding (2)

Example: Packing dates
● Let us pack the three fields into a word:

typedef struct {
  int year: 13;
  int month: 4;
  int day: 5;
} date_t;

● This packed representation still only takes 22 bits, but the 
individual fields can be extracted much more quickly than 
if we had encoded the 3 M dates as sequential integers.
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Augmentation

The idea of data-structure augmentation is to add 
information to a data structure to make common operations 
do less work.

Example: Appending singly linked lists.

head

head tail

●Appending one list to 
another requires walking 
the length of the first list to 
set its null pointer to the 
start of the second.

●Augmenting the list with a 
tail pointer allows 
appending to operate in 
constant time.

10
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Caching

The idea of caching is to store results that have been accessed 
recently so that the program need not compute them again.

double hypotenuse(double A, double B) {
  return sqrt(A*A + B*B);
} double cached_A = 0.0;

double cached_B = 0.0;
double cached_h = 0.0;

double hypotenuse(double A, double B) {
  if (A == cached_A && B == cached_B) {
    return cached_h;
  }
  cached_A = A;
  cached_B = B;
  cached_h = sqrt(A*A + B*B);
  return cached_h;
}

About 30% faster 
if cache is hit 2/3 
of the time.

11
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Precomputation

The idea of precomputation is to perform calculations in 
advance so as to avoid doing them at “mission-critical” times.

Example: Binomial coefficients

Note: Computing the “choose” function by implementing this 
formula can be expensive (lots of multiplications), and watch 
out for integer overflow for even modest values of n and k.

Idea: Precompute the table of coefficients when initializing, 
and perform table look-up at runtime.

12
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Step 1: Pascal’s Triangle

int choose(int n, int k) {
  if (n < k)  return 0; 
  if (k == 0) return 1; 
  return choose(n-1, k-1) + choose(n-1, k); 
}

1   0   0   0   0   0   0   0   0

    1   1   0   0   0   0   0   0   0

    1   2   1   0   0   0   0   0   0

    1   3   3   1   0   0   0   0   0

    1   4   6   4   1   0   0   0   0

    1   5  10  10   5   1   0   0   0 

    1   6  15  20  15   6   1   0   0

    1   7  21  35  35  21   7   1   0

    1   8  28  56  70  56  28   8   1

13
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Step 2: Precomputing Pascal

#define CHOOSE_SIZE 100
int choose[CHOOSE_SIZE][CHOOSE_SIZE];

void init_choose() {
  for (int n = 0; n < CHOOSE_SIZE; ++n) {
    choose[n][0] = 1;
    choose[n][n] = 1;
  }
  for (int n = 1; n < CHOOSE_SIZE; ++n) {
    choose[0][n] = 0;
    for (int k = 1; k < n; ++k) {
      choose[n][k] = choose[n-1][k-1] + choose[n-1][k];
      choose[k][n] = 0;
    }
  }
}

Now, whenever we need a binomial coefficient (less than 
100), we can simply index the choose array.

14
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Compile-Time Initialization

The idea of compile-time initialization is to store the values of 
constants during compilation, saving work at execution time.

int choose[10][10] = {
  {  1,   0,   0,   0,   0,   0,   0,   0,   0,   0, },
  {  1,   1,   0,   0,   0,   0,   0,   0,   0,   0, },
  {  1,   2,   1,   0,   0,   0,   0,   0,   0,   0, },
  {  1,   3,   3,   1,   0,   0,   0,   0,   0,   0, },
  {  1,   4,   6,   4,   1,   0,   0,   0,   0,   0, },
  {  1,   5,  10,  10,   5,   1,   0,   0,   0,   0, },
  {  1,   6,  15,  20,  15,   6,   1,   0,   0,   0, },
  {  1,   7,  21,  35,  35,  21,   7,   1,   0,   0, },
  {  1,   8,  28,  56,  70,  56,  28,   8,   1,   0, },
  {  1,   9,  36,  84, 126, 126,  84,  36,   9,   1, },
};

Example

15
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Compile-Time Initialization (2)

#define N 100
int main(int argc, const char *argv[]) {
  init_choose();
  printf("#define N %3d\n”, N);
  printf("int choose[N][N] = {\n");
  for (int a = 0; a < N; ++a) {
    printf("  {");
    for (int b = 0; b < N; ++b) {
      printf("%3d, ", choose[a][b]);
    }
    printf("},\n");
  }
  printf("};\n");
}

Idea: Create large static tables by metaprogramming.

16
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Compile-Time Initialization (3)

static dyn_var<int> choose(dyn_var<int> n, dyn_var<int> k, const int MAX_N) {
        int comp[MAX_N][MAX_N];
        for (int i = 0; i < MAX_N; i++) {
                comp[i][0] = 1;
                comp[i][i] = 1;
        }
        for (int i = 1; i < MAX_N; ++i) {
                comp[0][i] = 0;
                for (int j = 1; j < i; ++j) {
                        comp[i][j] = comp[i-1][j-1] + comp[i-1][j];
                        comp[j][i] = 0;
                }
        }
        dyn_var<int[]> comp_r;
        resize(comp_r, MAX_N * MAX_N);
        for (static_var<int> i = 0; i < MAX_N * MAX_N; i++) {
                comp_r[i] = comp[i / MAX_N][i % MAX_N];
        }
        return comp_r[n * MAX_N + k];
}

Idea: Multi-stage Programming

17
See the BuildIt research project if you are interested (https://buildit.so/)

int choose (int arg0, int arg1) {
  int var0 = arg1;
  int var1 = arg0;
  int var2[100];
  var2[0] = 1;
  var2[1] = 0;
  var2[2] = 0;
  …
  var2[94] = 126;
  var2[95] = 126;
  var2[96] = 84;
  var2[97] = 36;
  var2[98] = 9;
  var2[99] = 1;
  int var3 = var2[(var1*10)+ var0];
  return var3;
}

https://buildit.so/
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Sparsity

The idea of exploiting sparsity is to avoid storing and computing 
on zeroes. “The fastest way to compute is not to compute at all.”

Example: Matrix-vector multiplication

Dense matrix-vector multiplication performs n2 = 36 scalar 
multiplies, but only 14 entries are nonzero.

18
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Sparsity

The idea of exploiting sparsity is to avoid storing and computing 
on zeroes. “The fastest way to compute is not to compute at all.”

Example: Matrix-vector multiplication

Dense matrix-vector multiplication performs n2 = 36 scalar 
multiplies, but only 14 entries are nonzero.
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1

Sparsity (2)

Compressed Sparse Rows (CSR)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 

rows: [0 2 6 8 10 11 14]

cols:[0 4 1 2 4 5 3 5 0 3 0 4 3 4] 
vals:[3 1 4 1 5 9 2 6 5 3 5 8 9 7] 

0 1 2 3 4 5

0

2
3
4
5

n = 6
nnz = 14

Storage is O(n+nnz) instead of n2

20
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Sparsity (3)

typedef struct {
  int n, nnz;
  int *rows;     // length n
  int *cols;     // length nnz
  double *vals;  // length nnz
} sparse_matrix_t;

void spmv(sparse_matrix_t *A, double *x, double *y) {
  for (int i = 0; i < A->n; i++) { 
    y[i] = 0;
    for (int k = A->rows[i]; k < A->rows[i+1]; k++) { 
      int j = A->cols[k];
      y[i] += A->vals[k] * x[j];
    }
  }
}

CSR matrix-vector multiplication

Number of scalar multiplications = nnz, which is 
potentially much less than n2.

21

See the TACO research project if you are interested (https://tensor-compiler.org/)

https://tensor-compiler.org/
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Sparsity (3)

typedef struct {
  int n, nnz;
  int *rows;     // length n
  int *cols;     // length nnz
  double *vals;  // length nnz
} sparse_matrix_t;

void spmv(sparse_matrix_t *A, double *x, double *y) {
  for (int i = 0; i < A->n; i++) { 
    y[i] = 0;
    for (int k = A->rows[i]; k < A->rows[i+1]; k++) { 
      int j = A->cols[k];
      y[i] += A->vals[k] * x[j];
    }
  }
}

CSR matrix-vector multiplication

Number of scalar multiplications = nnz, which is 
potentially much less than n2.
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See the TACO research project if you are interested (https://tensor-compiler.org/)

8k x 8k double precision matrix

https://tensor-compiler.org/
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Sparsity (4)

Storing a static sparse graph 0

1

2

3

4

0 2 5 5 6 7

1 3 2 3 4 2 2

offsets

edges

Vertex ID   0     1     2     3     4

 Many graph algorithms run efficiently on this 
representation, e.g., breadth-first search, PageRank.

 Edge weights can be stored in an additional array or by 
making each edges element a record containing the both 
the edge index and the edge weight.

23

See the GraphIt research project if you are interested (https://graphit-lang.org/)

https://graphit-lang.org/
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Constant Folding and Propagation

The idea of constant folding and propagation is to evaluate 
constant expressions and substitute the result into further 
expressions, all during compilation.
#include <math.h>

void orrery() {
  const double radius = 6371000.0;
  const double diameter = 2 * radius;
  const double circumference = M_PI * diameter;
  const double cross_area = M_PI * radius * radius;
  const double surface_area =
      circumference * diameter;
  const double volume =
      4 * M_PI * radius * radius * radius / 3;
  // ...
}

With a sufficiently high optimization level, all the expressions 
are evaluated at compile-time.

25

1https://en.wikipedia.org/wiki/Orrery#/media/File:Thinktank_Birmingham_-_object_1956S00682.00001(1).jpg

mechanical orrery 1

https://en.wikipedia.org/wiki/Orrery#/media/File:Thinktank_Birmingham_-_object_1956S00682.00001(1).jpg


© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Common-Subexpression Elimination
The idea of common-subexpression elimination is to avoid 
computing the same expression multiple times by evaluating the 
expression once and reusing the result when you later need it.

a = b + c;
b = a - d;
c = b + c;
d = a - d;

a = b + c;
b = a - d;
c = b + c;
d = b;

26
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Common-Subexpression Elimination
The idea of common-subexpression elimination is to avoid 
computing the same expression multiple times by evaluating the 
expression once and storing the result for later use.

a = b + c;
b = a - d;
c = b + c;
d = a - d;

a = b + c;
b = a - d;
c = b + c;
d = b;

The third line cannot be replaced by c = a, because the 
value of b changes in the second line. 

27
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Algebraic Identities

The idea of exploiting algebraic identities is to replace
expensive algebraic expressions with algebraic equivalents 
that require less work.
#include <stdbool.h>
#include <math.h>

typedef struct {
  double x, y, z; // spatial coordinates
  double r;        // radius of ball
} ball_t;

double square(double x) {
  return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {
  double d = sqrt(square(b1->x - b2->x)
                  + square(b1->y - b2->y) 
                  + square(b1->z - b2->z));
  return d <= b1->r + b2->r;  
}

28

Expensive 
routine!
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Algebraic Identities

The idea of exploiting algebraic identities is to replace
expensive algebraic expressions with algebraic equivalents 
that require less work.

29

#include <stdbool.h>
#include <math.h>

typedef struct {
  double x, y, z; // spatial coordinates
  double r;        // radius of ball
} ball_t;

double square(double x) {
  return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {
  double d = sqrt(square(b1->x - b2->x)
                  + square(b1->y - b2->y) 
                  + square(b1->z - b2->z));
  return d <= b1->r + b2->r;  
}

bool collides(ball_t *b1, ball_t *b2) {
  double dsquared = square(b1->x - b2->x) 
                    + square(b1->y - b2->y) 
                    + square(b1->z - b2->z);
  return dsquared <= square(b1->r + b2->r);
}

exactly when
.

Caution: Be careful 
with floating point!
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#include <stdbool.h>
#include <math.h>

typedef struct {
  double x, y, z;  // spatial coordinates
  double r;        // radius of ball
} ball_t;

double square(double x) {
  return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {
  double dsquared = square(b1->x - b2->x) 
                    + square(b1->y - b2->y) 
                    + square(b1->z - b2->z);
  return dsquared <= square(b1->r + b2->r);
}

Creating a Fast Path

30



© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Creating a Fast Path

double dsquared = square(b1->x - b2->x) 
                    + square(b1->y - b2->y) 
                    + square(b1->z - b2->z);
  return dsquared <= square(b1->r + b2->r);
}

#include <stdbool.h>
#include <math.h>

typedef struct {
  double x, y, z;  // spatial coordinates
  double r;        // radius of ball
} ball_t;

double square(double x) {
  return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {

31
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Creating a Fast Path

double dsquared = square(b1->x - b2->x) 
                    + square(b1->y - b2->y) 
                    + square(b1->z - b2->z);
  return dsquared <= square(b1->r + b2->r);
}

#include <stdbool.h>
#include <math.h>

typedef struct {
  double x, y, z;  // spatial coordinates
  double r;        // radius of ball
} ball_t;

double square(double x) {
  return x*x;
}

bool collides(ball_t *b1, ball_t *b2) {
if ((abs(b1->x – b2->x) > (b1->r + b2->r)) ||

      (abs(b1->y – b2->y) > (b1->r + b2->r)) ||
      (abs(b1->z – b2->z) > (b1->r + b2->r)))
    return false;

32
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Short-Circuiting

When performing a series of tests, the idea of short-circuiting 
is to stop evaluating as soon as you know the answer.

#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
  int sum = 0;
  for (int i = 0; i < n; i++) {
    sum += A[i];
  }
  return sum > limit;
}

33
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Short-Circuiting

When performing a series of tests, the idea of short-circuiting 
is to stop evaluating as soon as you know the answer.

#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
  int sum = 0;
  for (int i = 0; i < n; i++) {
    sum += A[i];
  }
  return sum > limit;
}

#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
  int sum = 0;
  for (int i = 0; i < n; i++) {
    sum += A[i];
    if (sum > limit) {
      return true;
    }
  }
  return false;
}

34
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Ordering Tests

Consider code that executes a sequence of logical tests.  The 
idea of ordering tests is to perform those that are more often 
“successful” — a particular alternative is selected by the test 
— before tests that are rarely successful.

#include <stdbool.h>
bool is_whitespace(char c) {
  return (c == '\r' || c == '\t' || c == ' ' || c == '\n');
}

#include <stdbool.h>
bool is_whitespace(char c) {
  return (c == ' ' || c == '\n' || c == '\t' || c == '\r');
}

35

Note that && and || are short-circuiting logical operators, 
whereas & and | are not.
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After
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Combining Tests

The idea of combining tests is to replace a sequence of tests 
with one test or switch.

void full_add(int a, 
              int b, 
              int c, 
              int *sum, 
              int *carry) {
  if (a == 0) {
    if (b == 0) {
      if (c == 0) {
        *sum = 0;
        *carry = 0;
      } else {
        *sum = 1;
        *carry = 0;
      } 
    } else {
      if (c == 0) {
        *sum = 1;
        *carry = 0;
      } else {
        *sum = 0;
        *carry = 1;
      } 
    }

 } else {
    if (b == 0) {
      if (c == 0) {
        *sum = 1;
        *carry = 0;
      } else {
        *sum = 0;
        *carry = 1;
      } 
    } else {
      if (c == 0) {
        *sum = 0;
        *carry = 1;
      } else {
        *sum = 1;
        *carry = 1;
      } 
    }
  }
}

a b c carry sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full adder

36
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Combining Tests (2)

The idea of combining tests is to replace a sequence of tests 
with one test or switch.

void full_add(int a, 
              int b, 
              int c, 
              int *sum, 
              int *carry) {
  int test = ((a == 1) << 2) 
             | ((b == 1) << 1) 
             | (c == 1);
  switch(test) {
    case 0:
      *sum = 0;
      *carry = 0;
      break;
    case 1:
      *sum = 1;
      *carry = 0;
      break;
    case 2:
      *sum = 1;
      *carry = 0;
      break;

   case 3:
      *sum = 0;
      *carry = 1;
      break;
    case 4:
      *sum = 1;
      *carry = 0;
      break;
    case 5:
      *sum = 0;
      *carry = 1;
      break;
    case 6:
      *sum = 0;
      *carry = 1;
      break;
    case 7:
      *sum = 1;
      *carry = 1;
      break;
  } 
}

a b c carry sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full adder

In this case, the 
outputs can be 
computed 
mathematically.

37
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Why Loops?

Loops are often the focus of performance optimization.  Why?

Consider this thought experiment:
● Suppose that a 2 GHz processor can execute 1 instruction 

per clock cycle.
● Suppose that a program contains 16 GB of instructions, but 

it is all simple straight-line code, i.e., no backwards branches.
● Question: How long does the code take to run?

Answer: at most 8 seconds!

Loops account for a lot of work!

39
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What Happens When a Loop Runs?

int sum = 0;
for (int i = 0; i < N; i++) {
  sum += A[i];
} 

int sum = 0;
int i = 0;
if (i >= N)
  goto loop_exit;
sum += A[i];
i++;
if (i >= N)
  goto loop_exit;
sum += A[i];
i++;
if (i >= N)
  goto loop_exit;
sum += A[i];
i++;
if (i >= N)
  goto loop_exit;
sum += A[i];
i++;
if (i >= N)
  goto loop_exit;
// ...

40

A simple loop

Pseudocode for 
loop execution

Loop 
control
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Loop Unrolling

Loop unrolling attempts to save work by combining
several consecutive iterations of a loop into a single iteration, 
thereby reducing the total number of iterations of the loop 
and, consequently, the number of times that the instructions 
that control the loop must be executed.

● Full loop unrolling: All iterations are unrolled.

●Partial loop unrolling: Several, but not all, of the iterations 
are unrolled.

41
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Full Loop Unrolling

int sum = 0;
for (int i = 0; i < 10; i++) {
  sum += A[i];
} 

int sum = 0;
sum += A[0];
sum += A[1];
sum += A[2];
sum += A[3];
sum += A[4];
sum += A[5];
sum += A[6];
sum += A[7];
sum += A[8];
sum += A[9];

42
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Partial Loop Unrolling

int sum = 0;
for (int i = 0; i < n; ++i) { 
  sum += A[i];
}

int sum = 0;
int j;
for (j = 0; j < n-3; j += 4) {
  sum += A[j];
  sum += A[j+1];
  sum += A[j+2];
  sum += A[j+3];
}
for (int i = j; i < n; ++i) {
  sum += A[i];
}

Benefits of loop unrolling
• Fewer instructions devoted to loop control.
• Enables more compiler optimizations.
Caution: Unrolling too much can cause poor use of the 
instruction cache, because the code is bigger.
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Hoisting

The goal of hoisting — also called loop-invariant code motion 
— is to avoid recomputing loop-invariant code each time 
through the body of a loop.

#include <math.h>

void scale(double *X, double *Y, int N) {
  for (int i = 0; i < N; i++) { 
    Y[i] = X[i] * exp(sqrt(M_PI/2));
  }
} #include <math.h>

void scale(double *X, double *Y, int N) {
  double factor = exp(sqrt(M_PI/2));
  for (int i = 0; i < N; i++) { 
    Y[i] = X[i] * factor;
  }
}
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Hoisting

The goal of hoisting — also called loop-invariant code motion 
— is to avoid recomputing loop-invariant code each time 
through the body of a loop.

#include <math.h>

void scale(double *X, double *Y, int N) {
  for (int i = 0; i < N; i++) { 
    Y[i] = X[i] * exp(sqrt(M_PI/N));
  }
}
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Sentinels

Sentinels are special dummy values placed in a data structure 
to simplify the logic of boundary conditions, and in particular, 
the handling of loop-exit tests.

#include <stdint.h>
#include <stdbool.h>

bool overflow(uint64_t *A, size_t n) {
  // All elements of A are nonnegative
  uint64_t sum = 0;
  for (size_t i = 0; i < n; ++i) {
    sum += A[i];
    if (sum < A[i]) return true;
  }                          
  return false;
}
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Sentinels

Sentinels are special dummy values placed in a data structure 
to simplify the logic of boundary conditions, and in particular, 
the handling of loop-exit tests.

#include <stdint.h>
#include <stdbool.h>

bool overflow(uint64_t *A, size_t n) {
  // All elements of A are nonnegative
  uint64_t sum = 0;
  for (size_t i = 0; i < n; ++i) {
    sum += A[i];
    if (sum < A[i]) return true;
  }                          
  return false;
}
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#include <stdint.h>
#include <stdbool.h>

// Assumes that A[n] and A[n+1] exist and 
// can be clobbered
bool overflow(uint64_t *A, size_t n) {
  // All elements of A are nonnegative
  A[n] = UINT64_MAX;
  A[n+1] = 1;   // or any positive number
  size_t i = 0;
  uint64_t sum = A[0];
  while (sum >= A[i]) {
    sum += A[++i];
  }
  return (i < n);
}

After

Sentinel



© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Loop Fusion

The idea of loop fusion — also called jamming — is to 
combine multiple loops over the same index range into a 
single loop body, thereby saving the overhead of loop 
control.

for (int i = 0; i < n; ++i) { 
  C[i] = (A[i] <= B[i]) ? A[i] : B[i];
}

for (int i = 0; i < n; ++i) { 
  D[i] = (A[i] <= B[i]) ? B[i] : A[i];
}

for (int i = 0; i < n; ++i) { 
  C[i] = (A[i] <= B[i]) ? A[i] : B[i];
  D[i] = (A[i] <= B[i]) ? B[i] : A[i];
}
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Eliminating Wasted Iterations

The idea of eliminating wasted iterations is to modify loop 
bounds to avoid executing loop iterations over essentially 
empty loop bodies.

for (int i = 0; i < n; ++i) { 
  for (int j = 0; j < n; ++j) {
    if (i > j) {
      int temp = A[i][j];
      A[i][j] = A[j][i];
      A[j][i] = temp;
    }
  }
}

for (int i = 1; i < n; ++i) { 
  for (int j = 0; j < i; ++j) {
      int temp = A[i][j];
      A[i][j] = A[j][i];
      A[j][i] = temp;
  }
}
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Inlining

The idea of inlining is to avoid the overhead of a function call by 
replacing a call to the function with the body of the function itself.

double square(double x) {
  return x*x;
}

double sum_of_squares(double *A, int n) {
  double sum = 0.0;
  for (int i = 0; i < n; ++i) {
    sum += square(A[i]);
  }
  return sum;
}

double sum_of_squares(double *A, int n) {
  double sum = 0.0;
  for (int i = 0; i < n; ++i) {
    double temp = A[i];
    sum += temp*temp;
  }
  return sum;
}
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Inlining (2)

inline double square(double x) {
  return x*x;
}

double sum_of_squares(double *A, int n) {
  double sum = 0.0;
  for (int i = 0; i < n; ++i)
    sum += square(A[i]);
  return sum;
}

Inlined functions can be just as efficient as macros, and they 
are safer to use and better structured.
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Ask the compiler 
to inline for you.

The idea of inlining is to avoid the overhead of a function call by 
replacing a call to the function with the body of the function itself.
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Tail-Recursion Elimination
Tail-recursion elimination removes the overhead of a recursive call 
that occurs as the last step of a function.  The call is replaced with 
a branch to the top of the function, and the storage for the local 
variables of the function is reused by the erstwhile recursive call.

void quicksort(int *A, int n) {
  if (n > 1) {
    int r = partition(A, n);
    quicksort (A, r);
    quicksort (A + r + 1, n - r - 1);
  }
} void quicksort(int *A, int n) {

  while (n > 1) {
    int r = partition(A, n);
    quicksort (A, r);
    A += r + 1;
    n -= r + 1;
  }
}
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Coarsening Recursion

The idea of coarsening recursion is to increase the size of the 
base case and handle it with more efficient code that avoids 
function-call overhead.
void quicksort(int *A, int n) {
  while (n > 1) {
    int r = partition(A, n);
    quicksort (A, r);
    A += r + 1;
    n -= r + 1;
  }
}

#define THRESHOLD 64
void quicksort(int *A, int n) {
  while (n > THRESHOLD) {
    int r = partition(A, n);
    quicksort (A, r);
    A += r + 1;
    n -= r + 1;
  }
  // insertion sort for small arrays
  for (int j = 1; j < n; ++j) {
    int key = A[j];
    int i = j - 1;
    while (i >= 0 && A[i] > key) {
      A[i+1] = A[i];
      --i;
    }
    A[i+1] = key;
  }
}
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New Bentley Rules

Data structures 
● Packing and encoding
● Augmentation 
● Caching 
● Precomputation
● Compile-time initialization
● Sparsity

Loops
● Loop unrolling
● Hoisting
● Sentinels
● Loop fusion
● Eliminating wasted iterations

Logic
● Constant folding and propagation
● Common-subexpression elimination
● Algebraic identities
● Creating a fast path
● Short-circuiting
● Ordering tests
● Combining tests

Functions 
● Inlining
● Tail-recursion elimination
● Coarsening recursion
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Closing Advice

● Avoid premature optimization.  First, get correct working code.  
Then optimize, preserving correctness by regression testing.

● Reducing the work of a program does not necessarily decrease its 
running time, but it is a good heuristic.

● Many optimizations involve tradeoffs.  Use a profiler to see what 
code needs to be optimized.  (See Homework 2.)

● The compiler automates many low-level optimizations, but not all.  
We will see how to look at the compiler output in upcoming lectures.

If you find interesting examples of work 
optimization, please let us know!
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