Performance Engineering of Software Systems

LECTURE 2 Bentley Rules for Optimizing Work Saman Amarasinghe September 13, 2022

SPEED

LIMIT

PER ORDER OF 6.106

 $\ensuremath{\mathbb{C}}$ 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Work

Definition.

The **work** of a program (on a given input) is the sum total of all the operations executed by the program.

Reducing Work

- Less work \approx faster code.
- Reducing the work of a program does not automatically reduce its running time, however, due to the complex nature of computer hardware:
 - instruction-level parallelism (ILP),
 - caching,
 - vectorization,
 - speculation and branch prediction,
 - etc.
- Nevertheless, reducing the work serves as a good heuristic for reducing overall running time.
- Algorithm design can produce dramatic reductions in the work to solve a problem, as when a $\Theta(n \lg n)$ -time sort replaces a $\Theta(n^2)$ -time sort.

BENTLEY RULES FOR OPTIMIZING WORK

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED

LIMIT

PER ORDER OF 6.106

Jon Louis Bentley

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

New Bentley Rules

Data structures

- Packing and encoding
- Augmentation
- Caching
- Precomputation
- Compile-time initialization
- Sparsity

Loops

- Loop unrolling
- Hoisting
- Sentinels
- Loop fusion
- Eliminating wasted iterations

Logic

- Functions folding and propagation
 - Common-subexpression elimination
 - Algebraic identities
 - Creating a fast path
 - Short-circuiting
 - Ordering tests
 - Combining tests

Functions

- Inlining
- Tail-recursion elimination
- Coarsening recursion

DATA STRUCTURES

 $\ensuremath{\textcircled{}}$ 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED

LIMIT

PER ORDER OF 6.106

Packing and Encoding

The idea of packing is to store more than one data value in a machine word. The related idea of encoding is to convert data values into a representation that requires fewer bits.

Example: Encoding dates

- The string "September 3, 2020" can be stored in 17 bytes more than two 64-bit words which must must move whenever the date is manipulated.
- Assuming that we only store dates between 4096 B.C.E. and 4096 C.E., there are about $365.25 \times 8192 \approx 3 \text{ M}$ dates, which can be encoded in $[\lg(3 \times 10^6)] = 22$ bits, easily fitting in a 32-bit word.
- **Problem:** How can we represent dates compactly so that determining the year, month, and day is fast?

Packing and Encoding (2)

Example: Packing dates

• Let us pack the three fields into a word:

• This packed representation still only takes 22 bits, but the individual fields can be extracted much more quickly than if we had encoded the 3 M dates as sequential integers.

Augmentation

The idea of data-structure augmentation is to add information to a data structure to make common operations do less work.

Example: Appending singly linked lists.

- Appending one list to another requires walking the length of the first list to set its null pointer to the start of the second.
- Augmenting the list with a tail pointer allows appending to operate in constant time.

Caching

The idea of caching is to store results that have been accessed recently so that the program need not compute them again.

Precomputation

The idea of precomputation is to perform calculations in advance so as to avoid doing them at "mission-critical" times.

Example: Binomial coefficients

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

Idea: Precompute the table of coefficients when initializing, and perform table look-up at runtime.

Note: Computing the "choose" function by implementing this formula can be expensive (lots of multiplications), and watch out for integer overflow for even modest values of n and k.

Step 1: Pascal's Triangle

Step 2: Precomputing Pascal

```
#define CHOOSE SIZE 100
int choose[CHOOSE_SIZE][CHOOSE_SIZE];
void init_choose() {
  for (int n = 0; n < CHOOSE_SIZE; ++n) {</pre>
    choose[n][0] = 1;
    choose[n][n] = 1;
  }
  for (int n = 1; n < CHOOSE_SIZE; ++n) {</pre>
    choose[0][n] = 0;
    for (int k = 1; k < n; ++k) {</pre>
      choose[n][k] = choose[n-1][k-1] + choose[n-1][k];
      choose[k][n] = 0;
```

Now, whenever we need a binomial coefficient (less than 100), we can simply index the choose array.

 $\ensuremath{\mathbb{C}}$ 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Compile-Time Initialization

The idea of compile-time initialization is to store the values of constants during compilation, saving work at execution time.

Example

<pre>int choose[10][10] = {</pre>										
{	1,	0,	0,	0,	0,	0,	0,	0,	0,	0, },
{	1,	1,	0,	0,	0,	0,	0,	0,	0,	0, },
{	1,	2,	1,	0,	0,	0,	0,	0,	0,	0, },
{	1,	3,	3,	1,	0,	0,	0,	0,	0,	0, },
{	1,	4,	6,	4,	1,	0,	0,	0,	0,	0, },
{	1,	5,	10,	10,	5,	1,	0,	0,	0,	0, },
{	1,	6,	15,	20,	15,	6,	1,	0,	0,	0, },
{	1,	7,	21,	35,	35,	21,	7,	1,	0,	0, },
{	1,	8,	28,	56,	70,	56,	28,	8,	1,	0, },
{	1,	9,	36,	84,	126,	126,	84,	36,	9,	1, },
};										

Compile-Time Initialization (2)

Idea: Create large static tables by metaprogramming.

```
#define N 100
int main(int argc, const char *argv[]) {
  init choose();
  printf("#define N %3d\n", N);
  printf("int choose[N][N] = {\n");
  for (int a = 0; a < N; ++a) {</pre>
    printf(" {");
    for (int b = 0; b < N; ++b) {</pre>
      printf("%3d, ", choose[a][b]);
    printf("},\n");
  printf("};\n");
```

Compile-Time Initialization (3)

Idea: Multi-stage Programming

```
static dyn_var<int> choose(dyn_var<int> n, dyn var<int> k, const int MAX N) {
       int comp[MAX_N][MAX_N];
                                           int choose (int arg0, int arg1) {
       for (int i = 0; i < MAX_N; i++) {</pre>
                                             int var0 = arg1;
                comp[i][0] = 1;
                                             int var1 = arg0;
                comp[i][i] = 1;
                                             int var2[100];
                                            var2[0] = 1;
       for (int i = 1; i < MAX_N; ++i) {</pre>
                                            var2[1] = 0;
                comp[0][i] = 0;
                                            var2[2] = 0;
                for (int j = 1; j < i; ++j</pre>
                        comp[i][j] = comp[ var2[94] = 126;
                        comp[j][i] = 0;
                                            var2[95] = 126;
                }
                                             var2[96] = 84;
                                             var2[97] = 36;
        dyn_var<int[]> comp_r;
                                             var2[98] = 9;
        resize(comp_r, MAX_N * MAX_N);
                                            var2[99] = 1;
        for (static_var<int> i = 0; i < MA</pre>
                                             int var3 = var2[(var1*10)+ var0];
                comp_r[i] = comp[i / MAX_N
                                             return var3;
        return comp r[n * MAX N + k];
```

See the **BuildIt** research project if you are interested (<u>https://buildit.so/</u>) © 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Sparsity

The idea of exploiting sparsity is to avoid storing and computing on zeroes. "The fastest way to compute is not to compute at all."

Example: Matrix-vector multiplication

$$y = \begin{pmatrix} 3 & 0 & 0 & 0 & 1 & 0 \\ 0 & 4 & 1 & 0 & 5 & 9 \\ 0 & 0 & 0 & 2 & 0 & 6 \\ 5 & 0 & 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 9 & 7 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ 2 \\ 8 \\ 5 \\ 7 \end{pmatrix}$$

Dense matrix-vector multiplication performs $n^2 = 36$ scalar multiplies, but only 14 entries are nonzero.

Sparsity

The idea of exploiting sparsity is to avoid storing and computing on zeroes. "The fastest way to compute is not to compute at all."

Example: Matrix-vector multiplication

$$y = \begin{pmatrix} 3 & & & 1 & \\ & 4 & 1 & 5 & 9 \\ & & & 2 & 6 \\ 5 & & & 3 & & \\ 5 & & & 8 & \\ & & & 9 & 7 & \end{pmatrix} \begin{pmatrix} 1 & \\ 4 & \\ 2 & \\ 8 & \\ 5 & \\ 7 \end{pmatrix}$$

Dense matrix-vector multiplication performs $n^2 = 36$ scalar multiplies, but only 14 entries are nonzero.

Sparsity (2)

Storage is O(n+nnz) instead of n^2

Sparsity (3)

CSR matrix-vector multiplication

```
typedef struct {
 int n, nnz;
 int *rows; // length n
 int *cols; // length nnz
 double *vals; // length nnz
} sparse_matrix_t;
void spmv(sparse matrix t *A, double *x, double *y) {
 for (int i = 0; i < A->n; i++) {
   y[i] = 0;
   for (int k = A->rows[i]; k < A->rows[i+1]; k++) {
     int j = A->cols[k];
     y[i] += A->vals[k] * x[j];
```

Number of scalar multiplications = nnz, which is potentially much less than n^2 .

See the TACO research project if you are interested (https://tensor-compiler.org/)

Sparsity (3)

See the TACO research project if you are interested (https://tensor-compiler.org/)

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Sparsity (4)

- Many graph algorithms run efficiently on this representation, e.g., breadth-first search, PageRank.
- Edge weights can be stored in an additional array or by making each edges element a record containing the both the edge index and the edge weight.

See the GraphIt research project if you are interested (<u>https://graphit-lang.org/</u>)

LOGIC

SPEED

LIMIT

PER ORDER OF 6.106

Constant Folding and Propagation

The idea of constant folding and propagation is to evaluate constant expressions and substitute the result into further expressions, all during compilation.

#include <math.h>

```
void orrery() {
  const double radius = 6371000.0;
  const double diameter = 2 * radius;
  const double circumference = M_PI * diameter;
  const double cross_area = M_PI * radius * radius;
  const double surface_area =
     circumference * diameter;
  const double volume =
        4 * M_PI * radius * radius * radius / 3;
  // ...
```


mechanical orrery¹

With a sufficiently high optimization level, all the expressions are evaluated at compile-time.

¹<u>https://en.wikipedia.org/wiki/Orrery#/media/File:Thinktank_Birmingham_-_object_1956S00682.00001(1).jpg</u>

Common-Subexpression Elimination

The idea of common-subexpression elimination is to avoid computing the same expression multiple times by evaluating the expression once and reusing the result when you later need it.

Common-Subexpression Elimination

The idea of common-subexpression elimination is to avoid computing the same expression multiple times by evaluating the expression once and storing the result for later use.

The third line cannot be replaced by c = a, because the value of **b** changes in the second line.

Algebraic Identities

The idea of exploiting algebraic identities is to replace expensive algebraic expressions with algebraic equivalents that require less work.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Algebraic Identities

The idea of exploiting algebraic identities is to replace expensive algebraic expressions with algebraic equivalents that require less work.

Creating a Fast Path

Creating a Fast Path

Creating a Fast Path

Short-Circuiting

When performing a series of tests, the idea of short-circuiting is to stop evaluating as soon as you know the answer.

```
#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
    int sum = 0;
    for (int i = 0; i < n; i++) {
        sum += A[i];
    }
    return sum > limit;
}
```

Short-Circuiting

When performing a series of tests, the idea of short-circuiting is to stop evaluating as soon as you know the answer.

<pre>#include <stdbool.h></stdbool.h></pre>	Before
<pre>// All elements of A are no</pre>	nnegative
<pre>bool sum_exceeds(int *A, in int sum = 0; for (int i = 0; i < n; i+</pre>	t n, int limit) { +) {
Sum += A[I],	<pre>#include <stdbool.h> After</stdbool.h></pre>
<pre>} return sum > limit; }</pre>	<pre>// All elements of A are nonnegative bool sum_exceeds(int *A, int n, int limit) { int sum = 0:</pre>
	for (int $i = 0$, $i < n$; $i \neq 1$)
	<pre>if (int i = 0, i < n, i++) { sum += A[i]; if (sum > limit) { return true; } return false; }</pre>
70 104001	

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Ordering Tests

Consider code that executes a sequence of logical tests. The idea of ordering tests is to perform those that are more often "successful" — a particular alternative is selected by the test — before tests that are rarely successful.

Note that && and || are short-circuiting logical operators, whereas & and | are not.

 $\ensuremath{\textcircled{}}$ 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Combining Tests

The idea of combining tests is to replace a sequence of tests with one test or switch.

*carry = 1;

	F	ull	adde	r	<pre>void full_add(int a,</pre>
а	b	С	carry	sum	int *sum,
0	0	0	0	0	if (a == 0) {
0	0	1	0	1	$if(b == 0) \{$
0	1	0	0	1	$1+(C == 0) \{$ *sum = 0;
0	1	1	1	0	<pre>*carry = 0; } else {</pre>
1	0	0	0	1	*sum = 1;
1	0	1	1	0	*carry = 0;
1	1	0	1	0	<pre>} else {</pre>
1	1	1	1	1	if (c == 0) { *sum = 1;
					<pre>*carry = 0; } else { *sum = 0;</pre>

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Combining Tests (2)

The idea of combining tests is to replace a sequence of tests with one test or switch.

	F	ull	adde	r
а	b	С	carry	sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
la this same the				

In this case, the outputs can be computed mathematically. void full_add(int a, int b, int c, int *sum, int *carry) { int test = ((a == 1) << 2) | ((b == 1) << 1) (c == 1);switch(test) { case 0: *sum = 0; *carry = 0; break; case 1: *sum = 1; *carry = 0; break; case 2: *sum = 1; *carry = 0; break;

case 3:	
*sum =	0;
*carry	= 1;
break;	
case 4:	
*sum =	1;
*carry	= 0;
break;	
case 5:	
*sum =	0;
*carry	= 1;
break;	
case 6:	
*sum =	0;
*carry	= 1;
break;	
case 7:	
*sum =	1;
*carry	= 1;
break;	

LOOPS

SPEED

LIMIT

PER ORDER OF 6.106

()

Why Loops?

Loops are often the focus of performance optimization. Why?

Loops account for a lot of work!

Consider this thought experiment:

- Suppose that a 2 GHz processor can execute 1 instruction per clock cycle.
- Suppose that a program contains 16 GB of instructions, but it is all simple straight-line code, i.e., no backwards branches.
- **Question:** How long does the code take to run?

Answer: at most 8 seconds!

What Happens When a Loop Runs?

// ...

Loop Unrolling

Loop unrolling attempts to save work by combining several consecutive iterations of a loop into a single iteration, thereby reducing the total number of iterations of the loop and, consequently, the number of times that the instructions that control the loop must be executed.

• Full loop unrolling: All iterations are unrolled.

• Partial loop unrolling: Several, but not all, of the iterations are unrolled.

Full Loop Unrolling

Before int sum = 0; for (int i = 0; i < 10; i++) {</pre> sum += A[i]; }

int	sum	= 0;	After
sum	+= A	[0];	
sum	+= A	[1];	100
sum	+= A	[2];	
sum	+= A	[3];	
sum	+= A	[4];	
sum	+= A	[5];	
sum	+= A	[6];	
sum	+= A	[7];	
sum	+= A	[8];	
sum	+= A	[9];	

Partial Loop Unrolling

Benefits of loop unrolling

- Fewer instructions devoted to loop control.
- Enables more compiler optimizations.
 Caution: Unrolling too much can cause poor use of the instruction cache, because the code is bigger.

Hoisting

The goal of hoisting — also called loop-invariant code motion — is to avoid recomputing loop-invariant code each time through the body of a loop.

Hoisting

The goal of hoisting — also called loop-invariant code motion — is to avoid recomputing loop-invariant code each time through the body of a loop.

Before #include <math.h> void scale(double *X, double *Y, int N) { for (int i = 0; i < N; i++) {</pre> Y[i] = X[i] * exp(sqrt(M_PI/N)); } }

Sentinels

Sentinels are special dummy values placed in a data structure to simplify the logic of boundary conditions, and in particular, the handling of loop-exit tests.

```
#include <stdint.h>
#include <stdbool.h>
bool overflow(uint64_t *A, size_t n) {
    // All elements of A are nonnegative
    uint64_t sum = 0;
    for (size_t i = 0; i < n; ++i) {
        sum += A[i];
        if (sum < A[i]) return true;
    }
    return false;
}</pre>
```

Sentinels

Sentinels are special dummy values placed in a data structure to simplify the logic of boundary conditions, and in particular, the handling of loop-exit tests.

Loop Fusion

The idea of loop fusion — also called jamming — is to combine multiple loops over the same index range into a single loop body, thereby saving the overhead of loop control.

Eliminating Wasted Iterations

The idea of eliminating wasted iterations is to modify loop bounds to avoid executing loop iterations over essentially empty loop bodies.

FUNCTIONS

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

SPEED

LIMIT

PER ORDER OF 6.106

Inlining

The idea of inlining is to avoid the overhead of a function call by replacing a call to the function with the body of the function itself.

Inlining (2)

The idea of inlining is to avoid the overhead of a function call by replacing a call to the function with the body of the function itself.

Ask the compiler to inline for you.

```
inline double square(double x) {
  return x*x;
}
double sum_of_squares(double *A, int n) {
  double sum = 0.0;
  for (int i = 0; i < n; ++i)
    sum += square(A[i]);
  return sum;
}</pre>
```

Inlined functions can be just as efficient as macros, and they are safer to use and better structured.

Tail-Recursion Elimination

Tail-recursion elimination removes the overhead of a recursive call that occurs as the last step of a function. The call is replaced with a branch to the top of the function, and the storage for the local variables of the function is reused by the erstwhile recursive call.

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Coarsening Recursion

The idea of coarsening recursion is to increase the size of the base case and handle it with more efficient code that avoids function-call overhead.

<pre>void quicksort(int *A, int n) { Before</pre>
while $(n > 1)$ {
<pre>int r = partition(A, n);</pre>
quicksort (A, r);
A += r + 1;
n -= r + 1;
}
}
, /

SUMMARY

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

New Bentley Rules

Data structures

- Packing and encoding
- Augmentation
- Caching
- Precomputation
- Compile-time initialization
- Sparsity

Loops

- Loop unrolling
- Hoisting
- Sentinels
- Loop fusion
- Eliminating wasted iterations

Logic

- Constant folding and propagation
- Common-subexpression elimination
- Algebraic identities
- Creating a fast path
- Short-circuiting
- Ordering tests
- Combining tests

Functions

- Inlining
- Tail-recursion elimination
- Coarsening recursion

Closing Advice

- Avoid premature optimization. First, get correct working code. Then optimize, preserving correctness by regression testing.
- Reducing the work of a program does not necessarily decrease its running time, but it is a good heuristic.
- Many optimizations involve tradeoffs. Use a profiler to see what code needs to be optimized. (See Homework 2.)
- The compiler automates many low-level optimizations, but not all.
 We will see how to look at the compiler output in upcoming lectures.

If you find interesting examples of work optimization, please let us know!