Performance Engineering of Software Systems

Lecture 2
 Bentley Rules for Optimizing Work

Saman Amarasinghe
September 13, 2022

Work

Definition.

The work of a program (on a given input) is the sum total of all the operations executed by the program.

Reducing Work

- Less work \approx faster code.
- Reducing the work of a program does not automatically reduce its running time, however, due to the complex nature of computer hardware:
- instruction-level parallelism (ILP),
- caching,
- vectorization,
- speculation and branch prediction,
- etc.
- Nevertheless, reducing the work serves as a good heuristic for reducing overall running time.
- Algorithm design can produce dramatic reductions in the work to solve a problem, as when a $\Theta(n \lg n)$-time sort replaces a $\Theta\left(n^{2}\right)$-time sort.

Bentley Rules for Optimizing Work

Jon Louis Bentley

New Bentley Rules

Data structures

Lobacking and encoding

- Augmentation
- Caching
- Precomputation
- Compile-time initialization
- Sparsity

Loops

- Loop unrolling
- Hoisting
- Sentinels
- Loop fusion
- Eliminating wasted iterations

Logic

Functstant folding and propagation

- Common-subexpression elimination
- Algebraic identities
- Creating a fast path
- Short-circuiting
- Ordering tests
- Combining tests

Functions

- Inlining
- Tail-recursion elimination
- Coarsening recursion

Data Structures

Packing and Encoding

The idea of packing is to store more than one data value in a machine word. The related idea of encoding is to convert data values into a representation that requires fewer bits.

Example: Encoding dates

- The string "September 3, 2020" can be stored in 17 bytes more than two 64-bit words - which must must move whenever the date is manipulated.
- Assuming that we only store dates between 4096 B.C.E. and 4096 C.E., there are about $365.25 \times 8192 \approx 3 \mathrm{M}$ dates, which can be encoded in $\left\lceil\lg \left(3 \times 10^{6}\right)\right\rceil=22$ bits, easily fitting in a 32 -bit word.
- Problem: How can we represent dates compactly so that determining the year, month, and day is fast?

Packing and Encoding (2)

Example: Packing dates

- Let us pack the three fields into a word:

```
typedef struct {
    int year: 13;
    int month: 4;
    int day: 5;
} date_t;
```

- This packed representation still only takes 22 bits, but the individual fields can be extracted much more quickly than if we had encoded the 3 M dates as sequential integers.

Augmentation

The idea of data-structure augmentation is to add information to a data structure to make common operations do less work.

Example: Appending singly linked lists.

- Appending one list to another requires walking the length of the first list to set its null pointer to the start of the second.

- Augmenting the list with a tail pointer allows appending to operate in constant time.

Caching

The idea of caching is to store results that have been accessed recently so that the program need not compute them again.

```
double hypotenuse(double A, double B) { Before
    return sqrt(A*A + B*B);
}
double cached_A = 0.0;
double cached_B = 0.0;
double cached_h = 0.0;
About 30\% faster if cache is hit \(2 / 3\) of the time.
```

```
double hypotenuse(double A, double B) {
```

double hypotenuse(double A, double B) {
if (A == cached_A \&\& B == cached_B) {
if (A == cached_A \&\& B == cached_B) {
return cached_h;
return cached_h;
}
}
cached_A = A;
cached_A = A;
cached_B = B;
cached_B = B;
cached_h = sqrt(A*A + B*B);
cached_h = sqrt(A*A + B*B);
return cached_h;
return cached_h;
}

```
}
```


Precomputation

The idea of precomputation is to perform calculations in advance so as to avoid doing them at "mission-critical" times.

Example: Binomial coefficients

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Idea: Precompute the table of coefficients when initializing, and perform table look-up at runtime.

Note: Computing the "choose" function by implementing this formula can be expensive (lots of multiplications), and watch out for integer overflow for even modest values of n and k.

Step 1: Pascal's Triangle

$$
\binom{\mathrm{n}}{\mathrm{k}}=\frac{\mathrm{n}!}{\mathrm{k}!(\mathrm{n}-\mathrm{k})!} \left\lvert\, \begin{array}{rrrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 3 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 4 & 6 & 4 & 1 & 0 & 0 & 0 & 0 \\
1 & 5 & 10 & 10 & 5 & 1 & 0 & 0 & 0 \\
1 & 6 & 15 & 20 & 15 & 6 & 1 & 0 & 0 \\
1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 & 0 \\
1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1
\end{array}\right.
$$

```
int choose(int n, int k) {
    if (n < k) return 0;
    if (k == 0) return 1;
    return choose(n-1, k-1) + choose(n-1, k);
}
```


Step 2: Precomputing Pascal

```
#define CHOOSE_SIZE 100
int choose[CHOOSE_SIZE][CHOOSE_SIZE];
void init_choose() {
    for (int n = 0; n < CHOOSE_SIZE; ++n) {
        choose[n][0] = 1;
        choose[n][n] = 1;
    }
    for (int n = 1; n < CHOOSE_SIZE; ++n) {
        choose[0][n] = 0;
        for (int k = 1; k < n; ++k) {
            choose[n][k] = choose[n-1][k-1] + choose[n-1][k];
            choose[k][n] = 0;
        }
    }
}
```

Now, whenever we need a binomial coefficient (less than 100), we can simply index the choose array.

Compile-Time Initialization

The idea of compile-time initialization is to store the values of constants during compilation, saving work at execution time.

Example

```
int choose[10][10] = {
    { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, },
    {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, },
    {1, 2, 1, 0, 0, 0, 0, 0, 0, 0, },
    { 1, 3, 3, 1, 0, 0, 0, 0, 0, 0, },
    { 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, },
    {1, 5, 10, 10, 5, 1, 0, 0, 0, 0, },
    {1, 6, 15, 20, 15, 6, 1, 0, 0, 0, },
    {1, 7, 21, 35, 35, 21, 7, 1, 0, 0, },
    { 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, },
    { 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, },
};
```


Compile-Time Initialization (2)

Idea: Create large static tables by metaprogramming.

```
#define N 100
int main(int argc, const char *argv[]) {
    init_choose();
    printf("#define N %3d\n", N);
    printf("int choose[N][N] = {\n");
    for (int a = 0; a < N; ++a) {
        printf(" {");
        for (int b = 0; b < N; ++b) {
            printf("%3d, ", choose[a][b]);
        }
        printf("},\n");
    }
    printf("};\n");
}
```


Compile-Time Initialization (3)

Idea: Multi-stage Programming

```
static dyn_var<int> choose(dyn_var<int> n
    int comp[MAX_N][MAX_N];
    for (int i = 0; i < MAX_N; i++) {
        comp[i][0] = 1;
        comp[i][i] = 1;
    }
    for (int i = 1; i < MAX_N; ++i) {
        comp[0][i] = 0;
        for (int j = 1; j < i; ++j
                        comp[i][j] = comp[
                comp[j][i] = 0;
        }
    }
    dyn_var<int[]> comp_r;
    resize(comp_r, MAX_N * MAX_N);
    for (static_var<int> i = 0; i < MA
            comp_r[i] = comp[i / MAX_\
    }
    return comp_r[n * MAX_N + k];
```

\}

See the Buildlt research project if you are interested (https://buildit.so/)

Sparsity

The idea of exploiting sparsity is to avoid storing and computing on zeroes. "The fastest way to compute is not to compute at all."

Example: Matrix-vector multiplication

$$
y=\left(\begin{array}{llllll}
3 & 0 & 0 & 0 & 1 & 0 \\
0 & 4 & 1 & 0 & 5 & 9 \\
0 & 0 & 0 & 2 & 0 & 6 \\
5 & 0 & 0 & 3 & 0 & 0 \\
5 & 0 & 0 & 0 & 8 & 0 \\
0 & 0 & 0 & 9 & 7 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
4 \\
2 \\
8 \\
5 \\
7
\end{array}\right)
$$

Dense matrix-vector multiplication performs $n^{2}=36$ scalar multiplies, but only 14 entries are nonzero.

Sparsity

The idea of exploiting sparsity is to avoid storing and computing on zeroes. "The fastest way to compute is not to compute at all."

Example: Matrix-vector multiplication

$$
y=\left(\begin{array}{llllll}
3 & & & & 1 & \\
& 4 & 1 & & 5 & 9 \\
& & & 2 & & 6 \\
5 & & & 3 & & \\
5 & & & & 8 & \\
& & & 9 & 7 &
\end{array}\right)\left(\begin{array}{l}
1 \\
4 \\
2 \\
8 \\
5 \\
7
\end{array}\right)
$$

Dense matrix-vector multiplication performs $n^{2}=36$ scalar multiplies, but only 14 entries are nonzero.

Sparsity (2)

Storage is $\mathrm{O}(\mathrm{n}+\mathrm{nnz})$ instead of n^{2}

Sparsity (3)

CSR matrix-vector multiplication

```
typedef struct {
    int n, nnz;
    int *rows; // length n
    int *cols; // length nnz
    double *vals; // length nnz
} sparse_matrix_t;
void spmv(sparse_matrix_t *A, double *x, double *y) {
    for (int i = 0; i < A->n; i++) {
        y[i] = 0;
        for (int k = A->rows[i]; k < A->rows[i+1]; k++) {
            int j = A->cols[k];
            y[i] += A->vals[k] * x[j];
        }
    }
}
```

Number of scalar multiplications = nnz, which is potentially much less than n^{2}.

Sparsity (3)

Number of scalar multiplications = nnz, which is potentially much less than n^{2}.

Sparsity (4)

Storing a static sparse graph

- Many graph algorithms run efficiently on this representation, e.g., breadth-first search, PageRank.
- Edge weights can be stored in an additional array or by making each edges element a record containing the both the edge index and the edge weight.

LOGIC

SPEED LIMIT

Constant Folding and Propagation

The idea of constant folding and propagation is to evaluate constant expressions and substitute the result into further expressions, all during compilation.

```
#include <math.h>
void orrery() {
    const double radius = 6371000.0;
    const double diameter = 2 * radius;
    const double circumference = M_PI * diameter;
    const double cross area = M PI * radius * radius;
    const double surface_area =
            circumference * diameter;
    const double volume =
        4 * M_PI * radius * radius * radius / 3;
    // ...
}
```


mechanical orrery ${ }^{1}$

With a sufficiently high optimization level, all the expressions are evaluated at compile-time.

Common-Subexpression Elimination

The idea of common-subexpression elimination is to avoid computing the same expression multiple times by evaluating the expression once and reusing the result when you later need it.

$$
\begin{aligned}
& \mathrm{a}=\mathrm{b}+\mathrm{c} ; \\
& \mathrm{b}=\mathrm{a}-\mathrm{d} ; \\
& \mathrm{c}=\mathrm{b}+\mathrm{c} ; \\
& \mathrm{d}=\mathrm{a}-\mathrm{d} ;
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{b}+\mathrm{c} ; \\
& \mathrm{b}=\mathrm{a}-\mathrm{d} ; \\
& \mathrm{c}=\mathrm{b}+\mathrm{c} ; \\
& \mathrm{d}=\mathrm{b} ;
\end{aligned}
$$

Common-Subexpression Elimination

The idea of common-subexpression elimination is to avoid computing the same expression multiple times by evaluating the expression once and storing the result for later use.

$$
\begin{aligned}
& a=b+c ; \\
& b=a-d ; \\
& c=b+c ; \\
& d=a-d ;
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{b}+\mathrm{c} ; \\
& \mathrm{b}=\mathrm{a}-\mathrm{d} ; \\
& \mathrm{c}=\mathrm{b}+\mathrm{c} ; \\
& \mathrm{d}=\mathrm{b} ;
\end{aligned}
$$

The third line cannot be replaced by c = a, because the value of b changes in the second line.

Algebraic Identities

The idea of exploiting algebraic identities is to replace expensive algebraic expressions with algebraic equivalents that require less work.

```
#include <stdbool.h>
#include <math.h>
typedef struct {
    double x, y, z; // spatial coordinates
    double r; // radius of ball
} ball_t;
double square(double x) {
    return x*x;
}
bool collides(b)11_t *b1, ball_t *b2) {
    double d = sqrt(square(b1->x - b2->x)
                        + square(b1->y - b2->y)
                        + square(b1->z - b2->z));
    return d <= b1->r + b2->r;
}
```


Algebraic Identities

The idea of exploiting algebraic identities is to replace expensive algebraic expressions with algebraic equivalents that require less work.

```
#include <stdbool.h>
#include <math.h>
typedef struct {
    double x, y, z; // spatial coordinates
    double r; // radius [bool collides(ball_t *b1, ball_t *b2) {
} ball_t;
double square(double x) {
    return x*x;
}
    \sqrt{}{u}}\leqv exactly when
    u}\leq\mp@subsup{v}{}{2}
    double dsquared = square(b1->x - b2->x)
    + square(b1->y - b2->y)
    + square(b1->z - b2->z);
    return dsquared <= square(b1->r + b2->r);
}
bool collides(ball_t *b1, ball_t *b2) {
    double d = sqrt(square(b1->x - b2->x)
                        + square(b1->y - b2->y)
                            + square(b1->z - b2->z));
        return d <= b1->r + b2->r;
}
```

Caution: Be careful with floating point!

Creating a Fast Path

```
#include <stdbool.h>
#include <math.h>
typedef struct {
    double x, y, z; // spatial coordinates
    double r; // radius of ball
} ball_t;
double square(double x) {
    return x*x;
}
bool collides(ball_t *b1, ball_t *b2) {
    double dsquared = square(b1->x - b2->x)
                        + square(b1->y - b2->y)
                        + square(b1->z - b2->z);
    return dsquared <= square(b1->r + b2->r);
}
```


Creating a Fast Path

```
#include <stdbool.h>
#include <math.h>
typedef struct {
    double x, y, z; // spatial coordinates
    double r; // radius of ball
} ball_t;
double square(double x) {
    return x*x;
}
bool collides(ball_t *b1, ball_t *b2) {
    double dsquared = square(b1->x - b2->x)
                        + square(b1->y - b2->y)
                            + square(b1->z - b2->z);
    return dsquared <= square(b1->r + b2->r);
}
```


Creating a Fast Path

```
#include <stdbool.h>
#include <math.h>
typedef struct {
    double x, y, z; // spatial coordinates
    double r; // radius of ball
} ball_t;
double square(double x) {
    return x*x;
}
bool collides(ball_t *b1, ball_t *b2) {
    if ((abs(b1->x - b2->x) > (b1->r + b2->r)) ||
                (abs(b1->y - b2->y) > (b1->r + b2->r))
                (abs(b1->z - b2->z) > (b1->r + b2->r)))
        return false;
    double dsquared = square(b1->x - b2->x)
                        + square(b1->y - b2->y)
                        + square(b1->z - b2->z);
    return dsquared <= square(b1->r + b2->r);
}
```


Short-Circuiting

When performing a series of tests, the idea of short-circuiting is to stop evaluating as soon as you know the answer.

```
#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
    int sum = 0;
    for (int i = 0; i < n; i++) {
        sum += A[i];
    }
    return sum > limit;
}
```


Short-Circuiting

When performing a series of tests, the idea of short-circuiting is to stop evaluating as soon as you know the answer.

```
#include <stdbool.h> Before
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
    int sum = 0;
    for (int i = 0; i < n; i++) {
        sum += A[i];
    }
    return sum > limit;
}
```

```
#include <stdbool.h> After
```

\#include <stdbool.h> After
// All elements of A are nonnegative
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
bool sum_exceeds(int *A, int n, int limit) {
int sum = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
for (int i = 0; i < n; i++) {
sum += A[i];
sum += A[i];
if (sum > limit) {
if (sum > limit) {
return true;
return true;
}
}
}
}
return false;
return false;
}

```
}
```


Ordering Tests

Consider code that executes a sequence of logical tests. The idea of ordering tests is to perform those that are more often "successful" - a particular alternative is selected by the test - before tests that are rarely successful.

```
#include <stdbool.h> Before
bool is_whitespace(char c) {
    return (c == '\r' || c == '\t' || c == ' ' || c == '\n');
}
```

```
#include <stdbool.h> After
bool is_whitespace(char c) {
    return (c == ' ' || c == '\n' || c == '\t' || c == '\r');
}
```

Note that \&\& and || are short-circuiting logical operators, whereas \& and | are not.

Combining Tests

The idea of combining tests is to replace a sequence of tests with one test or switch.

Full adder

a	b	c	carry	sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

```
void full_add(int a,
                        int b,
                        int c,
                        int *sum,
                            int *carry) {
if (a == 0) {
    if (b == 0) {
        if (c == 0) {
            *sum = 0;
            *carry = 0;
        } else {
            *sum = 1;
            *carry = 0;
        }
    } else {
        if (c == 0) {
            *sum = 1;
            *carry = 0;
            } else {
                *sum = 0;
                *carry = 1;
    }
}
```

```
} else {
```

} else {
if (b == 0) {
if (b == 0) {
if (c == 0) {
if (c == 0) {
*sum = 1;
*sum = 1;
*carry = 0;
*carry = 0;
} else {
} else {
*sum = 0;
*sum = 0;
*carry = 1;
*carry = 1;
}
}
} else {
} else {
if (c == 0) {
if (c == 0) {
*sum = 0;
*sum = 0;
*sum = 0;
*sum = 0;
} else {
} else {
} else {
} else {
*carry = 1;
*carry = 1;
}
}
}
}
}
}
}
}
if
if
}

```
        }
```


Combining Tests (2)

The idea of combining tests is to replace a sequence of tests with one test or switch.

Full adder

a	b	c	carry	sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

In this case, the outputs can be computed mathematically.

```
void full_add(int a,
            int b,
            int c,
            int *sum,
            int *carry) {
    int test = ((a == 1)<< 2)
            | ((b == 1) << 1)
            (c == 1);
    switch(test) {
        case 0:
            *sum = 0;
            *carry = 0;
            break;
        case 1:
            *sum = 1;
            *carry = 0;
            break;
    case 2:
            *sum = 1;
            *carry = 0;
            break;
```

case 3:
*sum = 0;
*carry = 1;
break;
case 4:
*sum = 1;
*carry $=0$;
break;
case 5:
*sum = 0;
*carry = 1;
break;
case 6:
*sum = 0;
*carry = 1; break;
case 7:
*sum = 1;
*carry = 1;
break;
\}
\}

LOOPS

SPEED LIMIT

PER ORDER OF 6.106

Why Loops?

Loops are often the focus of performance optimization. Why?

> Loops account for a lot of work!

Consider this thought experiment:

- Suppose that a 2 GHz processor can execute 1 instruction per clock cycle.
- Suppose that a program contains 16 GB of instructions, but it is all simple straight-line code, i.e., no backwards branches.
- Question: How long does the code take to run?

Answer: at most 8 seconds!

What Happens When a Loop Runs?

A simple loop


```
int sum = 0;
int i = 0;
if (i >= N)
    goto loop_exit;
sum += A[i];
i++;
if (i >= N)
    goto loop_exit;
sum += A[i];
i++;
if (i >= N)
    goto loop_exit;
sum += A[i];
i++;
if (i >= N)
    goto loop_exit;
sum += A[i];
i++;
if (i >= N)
    goto loop_exit;
// ...
```


Loop Unrolling

Loop unrolling attempts to save work by combining several consecutive iterations of a loop into a single iteration, thereby reducing the total number of iterations of the loop and, consequently, the number of times that the instructions that control the loop must be executed.

- Full loop unrolling: All iterations are unrolled.
- Partial loop unrolling: Several, but not all, of the iterations are unrolled.

Full Loop Unrolling

```
int sum = 0; Before
for (int i = 0; i < 10; i++) {
    sum += A[i];
}
```

```
int sum = 0; After
sum += A[0];
sum += A[1];
sum += A[2];
sum += A[3];
sum += A[4];
sum += A[5];
sum += A[6];
sum += A[7];
sum += A[8];
sum += A[9];
```


Partial Loop Unrolling

```
int sum = 0; Before
for (int i = 0; i < n; ++i) {
    sum += A[i];
}
```

```
int sum = 0;
int j;
for (j = 0; j < n-3; j += 4) {
    sum += A[j];
    sum += A[j+1];
    sum += A[j+2];
    sum += A[j+3];
}
for (int i = j; i < n; ++i) {
    sum += A[i];
}
```


Benefits of loop unrolling

- Fewer instructions devoted to loop control.
- Enables more compiler optimizations.

Caution: Unrolling too much can cause poor use of the instruction cache, because the code is bigger.

Hoisting

The goal of hoisting - also called loop-invariant code motion - is to avoid recomputing loop-invariant code each time through the body of a loop.

Hoisting

The goal of hoisting - also called loop-invariant code motion - is to avoid recomputing loop-invariant code each time through the body of a loop.

```
#include <math.h> Before
void scale(double *X, double *Y, int N) {
    for (int i = 0; i < N; i++) {
    }
}
```


Sentinels

Sentinels are special dummy values placed in a data structure to simplify the logic of boundary conditions, and in particular, the handling of loop-exit tests.

```
#include <stdint.h>
#include <stdbool.h>
bool overflow(uint64_t *A, size_t n) {
    // All elements of A are nonnegative
    uint64_t sum = 0;
    for (size_t i = 0; i < n; ++i) {
        sum += A[i];
        if (sum < A[i]) return true;
    }
    return false;
}
```


Sentinels

Sentinels are special dummy values placed in a data structure to simplify the logic of boundary conditions, and in particular, the handling of loop-exit tests.

Loop Fusion

The idea of loop fusion — also called jamming — is to combine multiple loops over the same index range into a single loop body, thereby saving the overhead of loop control.

```
for (int i = 0; i < n; ++i) { Before
    C[i] = (A[i] <= B[i]) ? A[i] : B[i];
}
for (int i = 0; i < n; ++i) {
    D[i] = (A[i] <= B[i]) ? B[i] : A[i];
    Ternary operator
    for if-else.
}
```

```
for (int i = 0; i < n; ++i) { After
```

for (int i = 0; i < n; ++i) { After
C[i] = (A[i] <= B[i]) ? A[i] : B[i];
C[i] = (A[i] <= B[i]) ? A[i] : B[i];
D[i] = (A[i] <= B[i]) ? B[i]: A[i];
D[i] = (A[i] <= B[i]) ? B[i]: A[i];
}

```
}
```


Eliminating Wasted Iterations

The idea of eliminating wasted iterations is to modify loop bounds to avoid executing loop iterations over essentially empty loop bodies.

```
for (int i = 0; i < n; ++i) { Before
    for (int j = 0; j< n; ++j) {
    if (i > j) {
        A[i][j] = A[j][i];
        A[j][i] = temp;
        }
    }
}
```

```
for (int i = 1; i < n; ++i) { After
```

for (int i = 1; i < n; ++i) { After
for (int j = 0; j< i; ++j) {
for (int j = 0; j< i; ++j) {
int temp = A[i][j];
int temp = A[i][j];
A[i][j] = A[j][i];
A[i][j] = A[j][i];
A[j][i] = temp;
A[j][i] = temp;
}
}
}

```
}
```

Functions

Inlining

The idea of inlining is to avoid the overhead of a function call by replacing a call to the function with the body of the function itself.

```
double square(double x) { Before
    return x*x;
}
double sum_of_squares(double *A, int n) {
    double sum = 0.0;
    for (int i = 0; i < n; ++i) {
        sum += square(A[i]);
    }
    return sum;
}
double sum_of_squares(double *A, int n) { After
    double sum = 0.0;
    for (int i = 0; i < n; ++i) {
        double temp = A[i];
        sum += temp*temp;
    }
    return sum;
}
```


Inlining (2)

The idea of inlining is to avoid the overhead of a function call by replacing a call to the function with the body of the function itself.

Inlined functions can be just as efficient as macros, and they are safer to use and better structured.

Tail-Recursion Elimination

Tail-recursion elimination removes the overhead of a recursive call that occurs as the last step of a function. The call is replaced with a branch to the top of the function, and the storage for the local variables of the function is reused by the erstwhile recursive call.

Coarsening Recursion

The idea of coarsening recursion is to increase the size of the base case and handle it with more efficient code that avoids function-call overhead.

```
void quicksort(int *A, int n) { Before
    while (n > 1) {
        int r = partition(A, n);
        quicksort (A, r);
        A += r + 1;
        n -= r + 1;
    }
}
```

```
#define THRESHOLD 64
After
void quicksort(int *A, int n) {
    while (n > THRESHOLD) {
        int r = partition(A, n);
        quicksort (A, r);
        A += r + 1;
        n -= r + 1;
    }
    // insertion sort for small arrays
    for (int j = 1; j < n; ++j) {
        int key = A[j];
        int i = j - 1;
        while (i >= 0 && A[i] > key) {
            A[i+1] = A[i];
            --i;
        }
        A[i+1] = key;
    }
```

\}

SPEED LIMIT

SUMMARY

New Bentley Rules

Data structures

- Packing and encoding
- Augmentation
- Caching
- Precomputation
- Compile-time initialization
- Sparsity

Loops

- Loop unrolling
- Hoisting
- Sentinels
- Loop fusion
- Eliminating wasted iterations

Logic

- Constant folding and propagation
- Common-subexpression elimination
- Algebraic identities
- Creating a fast path
- Short-circuiting
- Ordering tests
- Combining tests

Functions

- Inlining
- Tail-recursion elimination
- Coarsening recursion

Closing Advice

- Avoid premature optimization. First, get correct working code. Then optimize, preserving correctness by regression testing.
- Reducing the work of a program does not necessarily decrease its running time, but it is a good heuristic.
- Many optimizations involve tradeoffs. Use a profiler to see what code needs to be optimized. (See Homework 2.)
- The compiler automates many low-level optimizations, but not all. We will see how to look at the compiler output in upcoming lectures.

If you find interesting examples of work optimization, please let us know!

