
© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Software 
Performance 
Engineering

© 2008–2022 by the MIT 6.106/6.172 Lecturers 

PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

LECTURE 8 
Races and Parallelism

Charles E. Leiserson
October 4, 2022



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Poll

Situation
You and your partner discover a clever algorithm, compiler switch, etc. 
that speeds up your code.  
Q. Which of the following would you do?

a. Keep it secret so that you can beat the other teams.
b. Publish the idea on Piazza.

Course Policy
1. You are not competing with other teams.  The cutoffs for grades are 

determined independently of how teams perform. 
2. You receive class-contribution points for sharing ideas and code 

snippets on Piazza.
3. You may not copy code, but you can take inspiration from each other.



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Nested Parallelism in Cilk

int64_t fib(int64_t n) { 
  if (n < 2)
    return n; 
  int64_t x, y;
  cilk_scope {
    x = cilk_spawn fib(n-1);
    y = fib(n-2);
  }
  return (x + y);
}

The named child 
function may execute in 
parallel with the parent 
caller.

Control cannot exit this 
context until all spawned 
children have returned.

Cilk keywords grant permission for parallel execution.  They 
do not command parallel execution.



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Loop Parallelism in Cilk

The iterations of 
a cilk_for 
loop execute in 
parallel.

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
    for (int j=0; j<i; ++j) {
        double temp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = temp;
    }
}

Example: 
In-place 
matrix 
transpose

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

a11 a21 ⋯ an1

a12 a22 ⋯ an2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ ann

A AT



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

B

A

C

ED

Views of stack

A A

B

A

C

A

C

D

A

C

E

CBA D E

Cilk supports C’s rule for pointers: A pointer to stack-allocated 
memory can be passed from parent to child, but not from 
child to parent.

Cilk’s cactus stack supports multiple 
views in parallel.

Cactus Stack



© 2008–2022 by the MIT 6.106/6.172 Lecturers  

SPEED
LIMIT∞

PER ORDER OF 6.106

DETERMINACY RACES



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Race Conditions

Race conditions are the bane of 
concurrency.  Famous race bugs 
include the following:

 Therac-25 radiation therapy 
machine — killed 3 people and 
seriously injured many more.

 Northeast Blackout of 2003 — left 
50 million people without power.

Race bugs are notoriously 
difficult to discover by 
conventional testing!



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

int x = 0;
cilk_for (int i=0, i<2, ++i) {
    x++;
}
assert(x == 2);

Determinacy Races

Definition. A determinacy race occurs when two logically 
parallel instructions access the same memory location and 
at least one of the instructions performs a write.

A

B C

D

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D

Trace

★Example



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

A Closer Look

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Race Bugs

1

2

3

4

5

67

8

?

x

?

r1

?

r2

00

01

0

011

1

1

1
r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

Definition. A determinacy race occurs when two logically 
parallel instructions access the same memory location and 
at least one of the instructions performs a write.



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Types of Races

A B Race Type
read read none
read write read race
write read read race
write write write race

Two sections of code are independent if they have no 
determinacy races between them.

Suppose that instruction A and instruction B both access 
a location x, and suppose that A∥B (A is parallel to B).  



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Avoiding Races

 Iterations of a cilk_for should be independent

 After a cilk_spawn, the code executed by the spawned task should be 
independent of the subsequent code executed by the parent and any tasks 
that the parent spawns or calls, until the cilk_scope block is exited 
 Note:  The arguments to a spawned function are evaluated in the parent 

before the spawn occurs.

 Machine word size matters.  Watch out for races in packed data structures:

struct {
  char a;
  char b;
} x;

Ex. Updating x.a and x.b in parallel may cause a 
race!  Nasty, because it may depend on the 
compiler optimization level.  (Safe on x86-64.)



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Cilksan Race Detector

 Compile with the –fsanitize=cilk command-line compiler switch to 
produce a Cilksan-instrumented program which you run on program inputs.

 If an ostensibly deterministic Cilk program could possibly behave differently 
on a given input than its serial projection, Cilksan guarantees to report and 
localize the offending race.

 Cilksan employs a regression-test methodology, where the programmer 
provides test inputs.

 Cilksan identifies filenames, lines, and variables involved in races, including 
stack traces.

 Ensure that all program files are instrumented, or you’ll miss some bugs.

 Cilksan is your best friend. 



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Race Example: Queens

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

OpenCilk Cilksan Execution

The runtime overhead is nearly 
constant compared with a serial 
execution.
 ~7× slower for this example.

$ ./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
*  Read 43ef18 nqueens ./nqueens.c:87:3
|  `-to variable a (declared at nqueens.c:50)
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
|*  Write 43efa9 nqueens ./nqueens.c:89:10
||  `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+  Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error 
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Cilksan Report

ASCII art on the left edge 
depicts the race context.

$ ./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
*  Read 43ef18 nqueens ./nqueens.c:87:3
|  `-to variable a (declared at nqueens.c:50)
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
|*  Write 43efa9 nqueens ./nqueens.c:89:10
||  `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+  Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error 
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Cilksan Report

ASCII art on the left edge 
depicts the race context:
 * = racing instructions

$ ./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
* Read 43ef18 nqueens ./nqueens.c:87:3
|  `-to variable a (declared at nqueens.c:50)
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
|* Write 43efa9 nqueens ./nqueens.c:89:10
||  `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+  Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error 
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Cilksan Report

ASCII art on the left edge 
depicts the race context:
 * = racing instructions
 + = stack frames (call/spawn)

$ ./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
*  Read 43ef18 nqueens ./nqueens.c:87:3
|  `-to variable a (declared at nqueens.c:50)
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
|*  Write 43efa9 nqueens ./nqueens.c:89:10
||  `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+  Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error 
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Cilksan Report

ASCII art on the left edge 
depicts the race context:
 * = racing instructions
 + = stack frames (call/spawn)
 |/ = common calling context

$ ./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
*  Read 43ef18 nqueens ./nqueens.c:87:3
|  `-to variable a (declared at nqueens.c:50)
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
|*  Write 43efa9 nqueens ./nqueens.c:89:10
||  `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+  Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error 
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Cilksan Report

ASCII art on the left edge 
depicts the race context:
 * = racing instructions
 + = stack frames (call/spawn)
 |/ = common calling context

$ ./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
*  Read 43ef18 nqueens ./nqueens.c:87:3
|  `-to variable a (declared at nqueens.c:50)
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
|*  Write 43efa9 nqueens ./nqueens.c:89:10
||  `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+ Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error 
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Cilksan Report

ASCII art on the left edge 
depicts the race context:
 * = racing instructions
 + = stack frames (call/spawn)
 |/ = common calling context
 ⎵ = allocation context

$ ./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
*  Read 43ef18 nqueens ./nqueens.c:87:3
|  `-to variable a (declared at nqueens.c:50)
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
|*  Write 43efa9 nqueens ./nqueens.c:89:10
||  `-to variable b (declared at ./nqueens.c:53)
|/ Common calling context
+  Call 43f73b nqueens ./nqueens.c:91:29
+  Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
+  Call 43f42b main ./nqueens.c:125:9

Allocation context
Stack object b (declared at ./nqueens.c:53)
Alloc 43eef8 in nqueens ./nqueens.c:86:16
Call 43f73b nqueens ./nqueens.c:91:29
Spawn 43efd7 nqueens ./nqueens.c:91:29

[...]
Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error 
messages
$

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i;  /* <-- racy write! */
if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);

}
[...]

nqueens.c terminal



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Tips for Effective Performance Engineering

Good code hygiene
enables fast code.

● Maintain the invariant that your code is correct.
● Regression test heavily and automatically to ensure correctness.
● Don’t be a slob: Treat your source code with respect.



© 2008–2022 by the MIT 6.106/6.172 Lecturers  

SPEED
LIMIT∞

PER ORDER OF 6.106

WHAT IS PARALLELISM?



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Execution Model

int64_t fib(int64_t n) { 
  if (n < 2)
    return n; 
  int64_t x, y;
  cilk_scope {
    x = cilk_spawn fib(n-1);
    y = fib(n-2);
  }
  return (x + y);
}



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

int64_t fib(int64_t n) { 
  if (n < 2)
    return n; 
  int64_t x, y;
  cilk_scope {
    x = cilk_spawn fib(n-1);
    y = fib(n-2);
  }
  return (x + y);
}

Execution Model

The trace unfolds 
dynamically.

Example: 
fib(4)

“Processor 
oblivious”

4

3

2

2

1

1 1 0

0



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Trace Dag

● A parallel instruction stream (trace) is a dag G = (V, E ).
● Each vertex v ∈ V is a strand: a sequence of instructions not 

containing a spawn, sync, or return from a spawn.
● An edge e ∈ E is a spawn, call, return, or continue edge.
● The compiler converts loop parallelism (cilk_for) to spawns 

and syncs using recursive divide-and-conquer.

spawn edge
return edge

continue edge

initial strand final strand

strand

call edge



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

How Much Parallelism?

Assuming that each strand executes in unit time, what is 
the parallelism of this computation?

In other words, what is the maximum possible speedup 
of this computation, where speedup is how much faster 
the parallel code runs compared to the serial code?



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Example Trace Dag

Q. What is the parallelism 
(maximum possible speedup) 
of this computation, 
assuming that each strand 
executes in unit time?  Pick 
the closest number.
a. 1
b. 2
c. 3
d. 4
e. 5
f. 6



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Amdahl’s “Law”

Gene M. Amdahl

If 50% of your application is 
parallel and 50% is serial, you 
can’t get more than a factor of 2 
speedup, no matter how many 
processors it runs on.*

In general, if a fraction α of an application must be run 
serially, the speedup can be at most 1/α. 

*Paraphrased.



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Quantifying Parallelism

What is the parallelism of this computation?

Amdahl’s Law says that since the 
serial fraction is 3/18 = 1/6, the 
speedup is upper-bounded by 6.

But this bound is weak.



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Performance Measures

TP = execution time on P processors

T1 = work
= 18



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Performance Measures

= 18 = 9
T1 = work T∞ = span*

* Also called critical-path length
 or computational depth.

TP = execution time on P processors



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

* Also called critical-path length
 or computational depth.

WORK LAW
∙ TP ≥T1/P

SPAN LAW
∙ TP ≥ T∞

Performance Measures

TP = execution time on P processors

= 18 = 9
T1 = work T∞ = span*



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Work: T1(A∪B) =Work:  T1(A∪B) = T1(A) + T1(B)

Series Composition

A B

Span: T∞(A∪B) = T∞(A) + T∞(B)Span: T∞(A∪B) =



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Work: T1(A∪B) =Work: T1(A∪B) = T1(A) + T1(B)

Parallel Composition

A

B

Span:  T∞(A∪B) = max{T∞(A), T∞(B)}Span: T∞(A∪B) =



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Definition. T1/TP = speedup on P processors.

● If T1/TP = P, we have (perfect) linear speedup.

● If T1/TP < P, we have sublinear speedup. 

● If T1/TP > P, we have superlinear speedup, which is 
not possible in this simple performance model, 
because of the WORK LAW TP ≥ T1/P.

Speedup



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Parallelism

Because the SPAN LAW dictates that TP 
≥ T∞, the maximum possible speedup 
given T1 and T∞ is

T1/T∞ = parallelism

 = the average 
  amount of work 
  per step along 
  the span

 = 18/9

 = 2 .



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Parallelism: T1/T∞ =Parallelism: T1/T∞ = 2.125

Work:  T1 = 17Work: T1 = 

Span: T∞ = 8Span: T∞ 

Example: fib(4)

Assume for simplicity 
that each strand in fib(4) 
takes unit time to 
execute.4

5

6

1

2 7

8

3

Using many more than 2 processors can yield 
only marginal performance gains.



© 2008–2022 by the MIT 6.106/6.172 Lecturers  

SPEED
LIMIT∞

PER ORDER OF 6.106

THE CILKSCALE SCALABILITY 
ANALYZER



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Cilkscale Scalability Analyzer

∙ The OpenCilk compiler provides a scalability analyzer called 
Cilkscale, which is similar in some ways to Intel’s Cilkview tool. 

∙ Like the Cilksan race detector, Cilkscale uses compiler 
instrumentation to analyze a serial execution of a program.

∙ Cilkscale computes work and span to derive upper bounds on 
parallel performance of all or just part of your program.

∙ Cilkscale is really three tools in one:
∙ an analyzer,
∙ an autobenchmarker,
∙ a visualizer.



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

static void qsort(int * begin, int * end)
{
  if (begin < end) {
     int last = *(end - 1);
     // linear-time partition
     int * middle = partition(begin, end - 1, last);
     // move pivot to middle  
     swap(end - 1, middle); 
     // recurse 
     qsort(begin, middle);
     qsort(middle + 1, end);
}

Example: Quicksort

Parallelizing Quicksort



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Example: Parallel quicksort

Parallelizing Quicksort

Analyze the sorting of 10,000,000 numbers.  ⋆⋆⋆ 
Guess the parallelism! ⋆⋆⋆

static void p_qsort(int* begin, int* end)
{
  if (begin < end) {
     int last = *(end - 1);
     // linear-time partition
     int * middle = partition(begin, end - 1, last);
     // move pivot to middle  
     swap(end - 1, middle); 
     // recurse
     cilk_scope {
       cilk_spawn p_qsort(begin, middle);
       p_qsort(middle + 1, end);
     }
}



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Cilkscale: Scalability Visualizer

execution time speedup



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Cilkscale: Scalability Visualizer

execution time speedup

Measured 
speedup

Measured 
runtime

Cilksan autobenchmarks the code, running it on 1, 2, 3, … 
processors, and the visualizer displays the results.



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Cilkscale: Speedup Analysis

speedup

SPAN LAW
T1/TP ≤ T1/T∞ 

Cilkscale’s analyzer 
determines the work 
and span, and the 
visualizer plots the 
WORK and SPAN LAWS.
● The visualizer also plots 

burdened parallelism, 
which indicates whether 
the program might incur 
scheduling overhead. 

WORK LAW
T1/TP ≤ P

burdened 
parallelism



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Expected work = Θ(n lg n)
Expected span = Θ(n)
Parallelism = Θ(lg n)

Example: Parallel quicksort

Theoretical Analysis

static void p_qsort(int* begin, int* end)
{
  if (begin < end) {
     int last = *(end - 1);
     // linear-time partition
     int * middle = partition(begin, end - 1, last);
     // move pivot to middle  
     swap(end - 1, middle); 
     // recurse
     cilk_scope {
       cilk_spawn p_qsort(begin, middle);
       p_qsort(middle + 1, end);
     }
}

puny



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Interesting Practical* Algorithms

Algorithm Work Span Parallelism
Merge sort Θ(n lg n) Θ(lg3n) Θ(n/lg2n)
Matrix multiplication Θ(n3) Θ(lg n) Θ(n3/lg n)
Strassen Θ(nlg7) Θ(lg2n) Θ(nlg7/lg2n)
LU-decomposition Θ(n3) Θ(n lg n) Θ(n2/lg n)
Tableau construction Θ(n2) Θ(nlg3) Θ(n2-lg3)
FFT Θ(n lg n) Θ(lg2n) Θ(n/lg n)
Breadth-first search Θ(E) Θ(Δ lg V) Θ(E/Δ lg V)

*Cilk on 1 processor competitive with the best C 



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Take-Aways

∙ Determinacy races are usually bugs.

∙ Determinacy races can be detected and localized using Cilksan and a 
good regression-testing methodology.

∙ The WORK and SPAN LAWS provide lower bounds on the parallelism 
(maximum possible speedup). 

∙ Cilkscale can analyze the work, span, and parallelism of a computation

∙ Many highly parallel and work-efficient algorithms can be 
programmed in Cilk.


	Lecture 8 �Races and Parallelism
	Poll
	Nested Parallelism in Cilk
	Loop Parallelism in Cilk
	Cactus Stack
	Determinacy Races
	Race Conditions
	Determinacy Races
	A Closer Look
	Race Bugs
	Types of Races
	Avoiding Races
	Cilksan Race Detector
	Race Example: Queens
	OpenCilk Cilksan Execution
	Cilksan Report
	Cilksan Report
	Cilksan Report
	Cilksan Report
	Cilksan Report
	Cilksan Report
	Tips for Effective Performance Engineering
	What Is Parallelism?
	Execution Model
	Execution Model
	Trace Dag
	How Much Parallelism?
	Example Trace Dag
	Amdahl’s “Law”
	Quantifying Parallelism
	Performance Measures
	Performance Measures
	Performance Measures
	Series Composition
	Parallel Composition
	Speedup
	Parallelism
	Example: fib(4)
	The Cilkscale Scalability Analyzer
	Cilkscale Scalability Analyzer
	Parallelizing Quicksort
	Parallelizing Quicksort
	Cilkscale: Scalability Visualizer
	Cilkscale: Scalability Visualizer
	Cilkscale: Speedup Analysis
	Theoretical Analysis
	Interesting Practical* Algorithms
	Take-Aways

