
© 2008–2022 by the MIT 6.106/6.172 Lecturers

Software
Performance
Engineering

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

LECTURE 9
Scheduling Theory and
Task-Parallel Algorithms I
Charles E. Leiserson
October 6, 2022

© 2008–2022 by the MIT 6.106/6.172 Lecturers

WORK LAW
∙ TP ≥T1/P

SPAN LAW
∙ TP ≥ T∞

Performance Measures

TP = execution time on P processors

= 18 = 9
T1 = work T∞ = span

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Parallelism

Because the SPAN LAW dictates that TP
≥ T∞, the maximum possible speedup
given T1 and T∞ is
T1/T∞ = parallelism
 = the average
 amount of work
 per step along
 the span
 = 18/9
 = 2 .

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.106
PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

SCHEDULING THEORY

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Scheduling

● Cilk allows the programmer to
express potential parallelism in an
application

● The Cilk scheduler maps strands
onto processors dynamically at
runtime

● Since the theory of distributed
schedulers is complicated, we’ll
explore the ideas with a simple,
centralized scheduler

…

Memory I/O

$

P

$

P

$

P

Network

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its
predecessors have executed.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Greedy Scheduling

Complete step
● ≥ P strands ready.
● Run any P.

P = 3
Definition. A strand is ready if all its
predecessors have executed.

IDEA: Do as much as possible on every step.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Greedy Scheduling

Complete step
● ≥ P strands ready.
● Run any P.

P = 3

Incomplete step
● < P strands ready.
● Run all of them.

Definition. A strand is ready if all its
predecessors have executed.

IDEA: Do as much as possible on every step.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Greedy Scheduling Theorem [G68, B75, EZL89]. Any greedy
scheduler achieves

TP ≤ T1/P + T∞.

Analysis of Greedy

Proof.
∙ # complete steps ≤ T1/P since

each complete step performs
P work.

∙ # incomplete steps ≤ T∞
since each incomplete step
reduces the span of the
unexecuted dag by 1. ■

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Optimality of Greedy

Corollary. Any greedy scheduler achieves within a factor
of 2 of optimal.

Proof. Let TP* be the execution time produced by the
optimal scheduler. Since TP* ≥ max{T1/P, T∞} by the
WORK and SPAN LAWS, we have
 TP ≤ T1/P + T∞
 ≤ 2⋅max{T1/P, T∞}
 ≤ 2TP* . ■

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Linear Speedup

Corollary. Any greedy scheduler achieves near-
perfect linear speedup whenever T1/T∞ ≫ P.

Proof. Since T1/T∞ ≫ P is equivalent to
T∞ ≪ T1/P, the Greedy Scheduling Theorem gives us
 TP ≤ T1/P + T∞

 ≈ T1/P .
Thus, the speedup is T1/TP ≈ P. ■

Definition. The quantity (T1/T∞)/P = T1/PT∞ is called
the parallel slackness.

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Cilk Performance

● Cilk’s randomized work-stealing scheduler achieves
■ TP = T1/P + O(T∞) expected time (provably);
■ TP ≈ T1/P + T∞ time (empirically).

● Near-perfect linear speedup as long as P ≪ T1/T∞ .

● Instrumentation in Cilkscale allows you to measure T1 and T∞ .

© 2008–2022 by the MIT 6.106/6.172 Lecturers

PER ORDER OF 6.106
PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

CILK LOOPS

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Loop Parallelism in Cilk

The iterations of a
cilk_for loop
execute in parallel.

Example:
In-place
matrix
transpose

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

a11 a21 ⋯ an1

a12 a22 ⋯ an2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ ann

A AT

// indices run from 0, not 1
for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Loop Parallelism in Cilk

The iterations of a
cilk_for loop
execute in parallel.

Example:
In-place
matrix
transpose

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

a11 a21 ⋯ an1

a12 a22 ⋯ an2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ ann

A AT

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Divide-and-conquer

Implementation of Parallel Loops

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

void p_loop(int lo, int hi) //half open
{
 if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 int i = lo;
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}
⋮
p_loop(1, n);

The OpenCilk compiler
implements cilk_for loops
using divide and conquer at
optimization levels –O1 and
higher.

Compiler-generated
recursion

Original code

void p_loop(int lo, int hi) //half open

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Divide-and-conquer

Implementation of Parallel Loops

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

The OpenCilk compiler
implements cilk_for loops
using divide and conquer at
optimization levels –O1 and
higher.

Original code

void p_loop(int lo, int hi) //half open
{
 if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 int i = lo;
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}
⋮
p_loop(1, n);

Compiler-generated
recursion

p_loop(1, n);

© 2008–2022 by the MIT 6.106/6.172 Lecturers

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

void p_loop(int lo, int hi) //half open
{
 if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 int i = lo;
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}
⋮
p_loop(1, n);

Implementation of Parallel Loops

if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }

cilk_for
loop control

cilk_for (int i=1; i<n; ++i) {

© 2008–2022 by the MIT 6.106/6.172 Lecturers

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }

void p_loop(int lo, int hi) //half open
{
 if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 int i = lo;
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}
⋮
p_loop(1, n);

Implementation of Parallel Loops

lifted
loop body

for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }

for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }

© 2008–2022 by the MIT 6.106/6.172 Lecturers

void p_loop(int lo, int hi) //half open
{
 if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 int i = lo;
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}
⋮
p_loop(1, n);

Divide-and-conquer
implementation

Execution of Parallel Loops

1 2 3 ⋅ ⋅ ⋅ n–2 n–1

cilk_for loop control
(internal nodes)

Trace

© 2008–2022 by the MIT 6.106/6.172 Lecturers

void p_loop(int lo, int hi) //half open
{
 if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 int i = lo;
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}
⋮
p_loop(1, n);

Divide-and-conquer
implementation

Execution of Parallel Loops

1 2 3 ⋅ ⋅ ⋅ n–2 n–1

Trace

cilk_for body
(leaves)

© 2008–2022 by the MIT 6.106/6.172 Lecturers

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

Work: T1(n) = Θ(n2)

Parallelism: T1(n)/T∞(n) = Θ(n2)/Θ(n) = Θ(n)

Work: T1(n) =

Parallelism: T1(n)/T∞(n) =

Analysis of Parallel Matrix Transpose

1 2 3 ⋅ ⋅ ⋅ n–2 n–1

Span of loop control = Θ(lg n) .

Max span of body = Θ(n) .

Span: T∞(n) =Span: T∞(n) = Θ(n + lg n) = Θ(n)

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Span: T∞(n) = Θ(lg n)
Work: T1(n) = Θ(n2)
Span: T∞(n) =
Parallelism: T1(n)/T∞(n) = Θ(n2/lg n)

Work: T1(n) =

Parallelism: T1(n)/T∞(n) =

Analysis of Nested Parallel Loops

Span of outer loop control = Θ(lg n)

Span of body = Θ(1)

Max span of inner loop control = Θ(lg n)

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
 cilk_for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Parallelism: T1/T∞ =Parallelism: T1/T∞ = Θ(n/lg n)
Span: T∞ =Span: T∞ = Θ(lg n)
Work: T1 = Θ(n)

Vector
addition

Work: T1 =

A Closer Look at Parallel Loops
cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

Includes
substantial
overhead!

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Compiler-generated recursion

Optimizing Parallel-Loop Control

cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

void p_loop(int lo, int hi) { //half open
 if (hi > lo + 1) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 for (int i=lo; i<hi; ++i) {
 A[i] += B[i];
 }
}
⋮
p_loop(0, n);

Original code

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Coarsening Parallel Loops

If a grain-size pragma
is not specified, the
Cilk runtime system
heuristically guesses G
to minimize overhead.

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

Compiler-generated recursion
void p_loop(int lo, int hi) { //half open
 if (hi > lo + G) {
 int mid = lo + (hi - lo)/2;
 cilk_scope {
 cilk_spawn p_loop(lo, mid);
 p_loop(mid, hi);
 }
 return;
 }
 for (int i=lo; i<hi; ++i) {
 A[i] += B[i];
 }
}
⋮
p_loop(0, n);

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Let I be the time for one iteration of the loop body.
Let S be the time to perform a level of the recursion.

Loop Grain Size

Vector
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

G⋅I

S

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Work: T1 = n⋅I + (n/G – 1)⋅S

Loop Grain Size

Vector
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

G⋅I

S

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Work: T1 = n⋅I + (n/G – 1)⋅S
Span: T∞ = G⋅I + lg(n/G)⋅S

Loop Grain Size

Vector
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

G⋅I

S

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Work: T1 = n⋅I + (n/G – 1)⋅S
Span: T∞ = G⋅I + lg(n/G)⋅S

Loop Grain Size

Vector
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

G⋅I

S

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Work: T1 = n⋅I + (n/G – 1)⋅S
Span: T∞ = G⋅I + lg(n/G)⋅S

Loop Grain Size

Vector
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}

G⋅I

S

E.g., G ≈ 10(S/I) for 10%
work overhead.

Want G ≫S/I (work) and
G small (span).

Parallelism:
T1/T∞ ≈ Θ(n/lg n)/(S/I).

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Work: T1 =Work: T1 = Θ(n)
Span: T∞ =

void vadd (double *A, double *B, int n){
 cilk_scope {
 for (int j=0; j<n; j+=G) {
 cilk_spawn {
 for (int i=j; i<MIN(j+G,n); i++)
 A[i] += B[i];
} } } }

…

G⋅I

…

Assume that G = 1.

Another Implementation

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Work: T1 =Work: T1 = Θ(n)
Span: T∞ =
Parallelism: T1/T∞ = Θ(1)
Span: T∞ = Θ(n)
Parallelism: T1/T∞ =

…

G⋅I

…

Assume that G = 1.

puny

Another Implementation
void vadd (double *A, double *B, int n){
 cilk_scope {
 for (int j=0; j<n; j+=G) {
 cilk_spawn {
 for (int i=j; i<MIN(j+G,n); i++)
 A[i] += B[i];
} } } }

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Work: T1 = Θ(n)
Span: T∞ = Θ(G + n/G)
Parallelism: T1/T∞ =

Work: T1 =
Span: T∞ = Θ(G + n/G) = Θ(√n)
Parallelism: T1/T∞ = Θ(√n)
Span: T∞ =

Analysis in
terms of G

Another Implementation

Choose
G = √n to
minimize.…

G⋅I

…

void vadd (double *A, double *B, int n){
 cilk_scope {
 for (int j=0; j<n; j+=G) {
 cilk_spawn {
 for (int i=j; i<MIN(j+G,n); i++)
 A[i] += B[i];
} } } }

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Work:
Span:

Parallelism:

Work:
Span:

Parallelism:

Quiz on Parallel Loops

Question: Let P ≪ n be the number of workers on the system.
How does the asymptotic parallelism of Code A compare to that
of Code B? (Differences highlighted.)

#pragma cilk grainsize 1
cilk_for (int i=0; i<n; i+=n/P) {
 for (int j=i; j<MIN(i+n/P, n); ++j)
 A[j] += B[j];
}

#pragma cilk grainsize 1
cilk_for (int i=0; i<n; i+=32) {
 for (int j=i; j<MIN(i+32, n); ++j)
 A[j] += B[j];
}

n/P
n/P

32
32

Code A

Code B

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Three Performance Tips

1. Minimize the span to maximize parallelism. Try to
generate 10 times more parallelism than processors
for near-perfect linear speedup.

2. If you have plenty of parallelism, try to trade some of it
off to reduce work overhead.

3. Use divide-and-conquer recursion or parallel loops
rather than spawning one small thing after another.

cilk_scope {
 for (int i=0; i<n; ++i) {
 cilk_spawn foo(i);
} }

cilk_for (int i=0; i<n; ++i) {
 foo(i);
}

Do this:

Not this:

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Do this:

And Three More

4. Ensure that work/#spawns is sufficiently large.
• Coarsen by using function calls and inlining near the leaves of

recursion, rather than spawning.

5. Parallelize outer loops, as opposed to inner loops, if you’re
forced to make a choice.

6. Watch out for scheduling overheads.
cilk_for (int i=0; i<2; ++i) {
 for (int j=0; j<n; ++j)
 f(i,j);
}

for (int j=0; j<n; ++j) {
 cilk_for (int i=0; i<2; ++i)
 f(i,j);
}

Not this:

© 2008–2022 by the MIT 6.106/6.172 Lecturers

Take-Aways

∙ Any greedy scheduler provides linear speedup on computations
having sufficient parallel slackness.

∙ The OpenCilk runtime system incorporates a randomized work-
stealing scheduler that has strong theoretical bounds on its running
time similar to those for greedy scheduling.

∙ Loops in Cilk are synthesized using divide-and-conquer spawning,
which incurs linear work and logarithmic span.

∙ Coarsening recursion can lower loop overhead.

	Lecture 9 �Scheduling Theory and Task-Parallel Algorithms I
	Performance Measures
	Parallelism
	Scheduling Theory
	Scheduling
	Greedy Scheduling
	Greedy Scheduling
	Greedy Scheduling
	Analysis of Greedy
	Optimality of Greedy
	Linear Speedup
	Cilk Performance
	Cilk Loops
	Loop Parallelism in Cilk
	Loop Parallelism in Cilk
	Implementation of Parallel Loops
	Implementation of Parallel Loops
	Implementation of Parallel Loops
	Implementation of Parallel Loops
	Execution of Parallel Loops
	Execution of Parallel Loops
	Analysis of Parallel Matrix Transpose
	Analysis of Nested Parallel Loops
	A Closer Look at Parallel Loops
	Optimizing Parallel-Loop Control
	Coarsening Parallel Loops
	Loop Grain Size
	Loop Grain Size
	Loop Grain Size
	Loop Grain Size
	Loop Grain Size
	Another Implementation
	Another Implementation
	Another Implementation
	Quiz on Parallel Loops
	Three Performance Tips
	And Three More
	Take-Aways

