Software Performance Engineering

SPEED LIMIT

PER ORDER OF 6.106

LECTURE 9 Scheduling Theory and Task-Parallel Algorithms I

Charles E. Leiserson October 6, 2022

Performance Measures

Parallelism

Because the SPAN LAW dictates that $T_P \ge T_{\infty}$, the maximum possible speedup given T_1 and T_{∞} is

- T_1/T_{∞} = parallelism
 - the average amount of work
 per step along the span
 - = 18/9
 - = 2.

SCHEDULING THEORY

SPEED

LIMIT

PER ORDER OF 6.106

Scheduling

- Cilk allows the programmer to express potential parallelism in an application
- The Cilk scheduler maps strands onto processors dynamically at runtime
- Since the theory of distributed schedulers is complicated, we'll explore the ideas with a simple, centralized scheduler

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its predecessors have executed.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its predecessors have executed.

Complete step

- \geq P strands ready.
- Run any P.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its predecessors have executed.

Complete step

- \geq P strands ready.
- Run any P.

Incomplete step

- < P strands ready.
- Run all of them.

Analysis of Greedy

Greedy Scheduling Theorem [G68, B75, EZL89]. Any greedy

scheduler achieves

 $T_{P} \leq T_{1}/P + T_{\infty}$.

Proof.

- # complete steps ≤ T₁/P since each complete step performs P work.
- # incomplete steps ≤ T_∞ since each incomplete step reduces the span of the unexecuted dag by 1.

Optimality of Greedy

Corollary. Any greedy scheduler achieves within a factor of 2 of optimal.

Proof. Let T_P^* be the execution time produced by the optimal scheduler. Since $T_P^* \ge \max\{T_1/P, T_\infty\}$ by the WORK and SPAN LAWS, we have

$$\begin{array}{rcl} \mathsf{T}_{\mathsf{P}} & \leq \mathsf{T}_{1}/\mathsf{P} + \mathsf{T}_{\infty} \\ & \leq 2 \cdot \max\{\mathsf{T}_{1}/\mathsf{P}, \mathsf{T}_{\infty} \\ & \leq 2\mathsf{T}_{\mathsf{P}}^{\star} \ . \end{array}$$

Linear Speedup

Corollary. Any greedy scheduler achieves nearperfect linear speedup whenever $T_1/T_{\infty} \gg P$.

Proof. Since $T_1/T_{\infty} \gg P$ is equivalent to $T_{\infty} \ll T_1/P$, the Greedy Scheduling Theorem gives us $T_P \ll T_1/P + T_{\infty}$ $\approx T_1/P$. Thus, the speedup is $T_1/T_P \approx P$.

Definition. The quantity $(T_1/T_{\infty})/P = T_1/PT_{\infty}$ is called the parallel slackness.

Cilk Performance

- Cilk's randomized work-stealing scheduler achieves
 T_P = T₁/P + O(T_∞) expected time (provably);
 T_P ≈ T₁/P + T_∞ time (empirically).
- Near-perfect linear speedup as long as $P \ll T_1/T_{\infty}$.
- Instrumentation in Cilkscale allows you to measure T_1 and T_{∞} .

CILK LOOPS

SPEED

LIMIT

PER ORDER OF 6.106

Loop Parallelism in Cilk

Example: In-place matrix transpose

The iterations of a **cilk_for** loop execute in parallel.

// indices run from 0, not 1 for (int i=1; i<n; ++i) {</pre> for (int j=0; j<i; ++j) {</pre> double temp = A[i][j]; A[i][j] = A[j][i];A[j][i] = temp;

Loop Parallelism in Cilk

Example: In-place matrix transpose

The iterations of a **cilk_for** loop execute in parallel.

// indices run from 0, not 1 cilk_for (int i=1; i<n; ++i) {</pre> for (int j=0; j<i; ++j) {</pre> double temp = A[i][j]; A[i][j] = A[j][i];A[j][i] = temp;

// indices run from 0, not 1 **Compiler-generated** cilk_ter (int i=1; i<n; ++i)</pre> for (int i=0; j<i; ++j) {</pre> recursion double temp = A[1][j]; void p_loop(int lo, int hi) //half open A[i][j] = A[j][i];A[j][i] = temp;if (hi > lo + 1) { int mid = 10 + (hi - 10)/2;cilk scope { cilk_spawn p_loop(lo, mid); p_loop(mid, hi); **Original code** return; int i = lo;**Divide-and-conquer** for (int j=0; j<i; ++j) {</pre> double temp = A[i][j]; The OpenCilk compiler A[i][j] = A[j][i];implements **cilk_for** loops A[j][i] = temp;using divide and conquer at optimization levels -01 and higher. p_loop(1, n);

Execution of Parallel Loops

Execution of Parallel Loops

Analysis of Parallel Matrix Transpose

Analysis of Nested Parallel Loops

// indices run from 0, not 1 cilk_for (int i=1; i<n; ++i) {</pre> cilk_for (int j=0; j<i; ++j) {</pre> double temp = A[i][j]; A[i][j] = A[j][i];A[j][i] = temp;

Span of outer loop control = $\Theta(lgn)$

Max span of inner loop control = $\Theta(lgn)$

Span of body = $\Theta(1)$

Work: $T_1(n) = \Theta(n^2)$ Span: $T_{\infty}(n) = \Theta(\lg n)$ Parallelism: $T_1(n)/T_{\infty}(n) = \Theta(n^2/\lg n)$

A Closer Look at Parallel Loops

Optimizing Parallel-Loop Control

```
cilk_for (int i=0; i<n; ++i) {
    A[i] += B[i];
}</pre>
```

Original code

Compiler-generated recursion

```
void p_loop(int lo, int hi) { //half open
  if (hi > lo + 1) {
    int mid = 10 + (hi - 10)/2;
    cilk scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    return;
  for (int i=lo; i<hi; ++i) {</pre>
   A[i] += B[i];
p_loop(0, n);
```

Coarsening Parallel Loops

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
 A[i] += B[i];
}</pre>

Compiler-generated recursion

If a grain-size pragma is not specified, the Cilk runtime system heuristically guesses G to minimize overhead.

```
void p_loop(int lo, int hi) { //half open
  if (hi > lo + G) {
    int mid = 10 + (hi - 10)/2;
    cilk scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    return;
  for (int i=lo; i<hi; ++i) {</pre>
   A[i] += B[i];
p_loop(0, n);
```


Let **I** be the time for one iteration of the loop body. Let **S** be the time to perform a level of the recursion.

Another Implementation

Assume that G = 1.

Work: $T_1 = \Theta(n)$ *Span:* $T_{\infty} =$

Another Implementation

Another Implementation

Quiz on Parallel Loops

Question: Let $P \ll n$ be the number of workers on the system. How does the asymptotic parallelism of Code A compare to that of Code B? (Differences highlighted.)

Code B

```
#pragma cilk grainsize 1
cilk_for (int i=0; i<n; i+=n/P) {
  for (int j=i; j<MIN(i+n/P, n); ++j)
        A[j] += B[j];
}</pre>
```

Work: Span:

Parallelism:

Three Performance Tips

- 1. Minimize the span to maximize parallelism. Try to generate 10 times more parallelism than processors for near-perfect linear speedup.
- 2. If you have plenty of parallelism, try to trade some of it off to reduce work overhead.
- 3. Use divide-and-conquer recursion or parallel loops rather than spawning one small thing after another.

And Three More

- 4. Ensure that work/#spawns is sufficiently large.
 - Coarsen by using function calls and inlining near the leaves of recursion, rather than spawning.
- 5. Parallelize outer loops, as opposed to inner loops, if you're forced to make a choice.
- 6. Watch out for scheduling overheads.

}

- Any greedy scheduler provides linear speedup on computations having sufficient parallel slackness.
- The OpenCilk runtime system incorporates a randomized workstealing scheduler that has strong theoretical bounds on its running time similar to those for greedy scheduling.
- Loops in Cilk are synthesized using divide-and-conquer spawning, which incurs linear work and logarithmic span.
- Coarsening recursion can lower loop overhead.