Software
 Performance
 Engineering

Lecture 9
Scheduling Theory and Task-Parallel Algorithms I

Charles E. Leiserson

October 6, 2022

Performance Measures

$T_{P}=$ execution time on P processors

Parallelism

Because the Span Law dictates that T_{p} $\geqslant \mathrm{T}_{\infty}$, the maximum possible speedup given T_{1} and T_{∞} is
$T_{1} / T_{\infty}=$ parallelism
$=$ the average amount of work per step along the span
= 18/9
$=2$.

SPEED

 LIMIT
SCHEDULING THEORY

Scheduling

- Cilk allows the programmer to express potential parallelism in an application
- The Cilk scheduler maps strands onto processors dynamically at runtime
- Since the theory of distributed schedulers is complicated, we'll explore the ideas with a simple, centralized scheduler

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its predecessors have executed.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its predecessors have executed.

Complete step

- $\geqslant P$ strands ready.
- Run any P.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its predecessors have executed.

Complete step

- $\geqslant \mathrm{P}$ strands ready.
- Run any P.

Incomplete step

- < P strands ready.
- Run all of them.

Analysis of Greedy

Greedy Scheduling Theorem [G68, B75, EZL89]. Any greedy scheduler achieves

$$
T_{P} \leqslant T_{1} / P+T_{\infty} .
$$

Proof.

- \# complete steps $\leqslant T_{1} / P$ since each complete step performs P work.
- \# incomplete steps $\leqslant T_{\infty}$ since each incomplete step reduces the span of the unexecuted dag by 1.

Optimality of Greedy

Corollary. Any greedy scheduler achieves within a factor of 2 of optimal.

Proof. Let $T_{p} *$ be the execution time produced by the optimal scheduler. Since $T_{p^{*}} \geqslant \max \left\{T_{1} / P, T_{\infty}\right\}$ by the Work and Span Laws, we have

$$
\begin{aligned}
\mathrm{T}_{\mathrm{p}} & \leqslant \mathrm{~T}_{1} / \mathrm{P}+\mathrm{T}_{\infty} \\
& \leqslant 2 \cdot \max \left\{\mathrm{~T}_{1} / P, \mathrm{~T}_{\infty}\right\} \\
& \leqslant 2 T_{\mathrm{p}^{*}} .
\end{aligned}
$$

Linear Speedup

Corollary. Any greedy scheduler achieves nearperfect linear speedup whenever $T_{1} / T_{\infty} \gg P$.

Proof. Since $T_{1} / T_{\infty} \gg P$ is equivalent to
$T_{\infty} \ll T_{1} / P$, the Greedy Scheduling Theorem gives us

$$
\begin{aligned}
T_{P} & \leqslant T_{1} / P+T_{\infty} \\
& \approx T_{1} / P .
\end{aligned}
$$

Thus, the speedup is $T_{1} / T_{P} \approx P$. \square

Definition. The quantity $\left(T_{1} / T_{\infty}\right) / P=T_{1} / P T_{\infty}$ is called the parallel slackness.

Cilk Performance

- Cilk's randomized work-stealing scheduler achieves
- $T_{p}=T_{1} / P+O\left(T_{\infty}\right)$ expected time (provably);
- $T_{P} \approx T_{1} / P+T_{\infty}$ time (empirically).
- Near-perfect linear speedup as long as $P \ll T_{1} / T_{\infty}$.
- Instrumentation in Cilkscale allows you to measure T_{1} and T_{∞}.

CILK LOOPS

Loop Parallelism in Cilk

Example:
In-place matrix
transpose

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right) \quad \square\left(\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{n 1} \\
a_{12} & a_{22} & \ldots & a_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \ldots & a_{n n}
\end{array}\right)
$$

The iterations of a cilk_for loop execute in parallel.

```
// indices run from 0, not 1
for (int i=1; i<n; ++i) {
    for (int j=0; j<i; ++j) {
        double temp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = temp;
    }
}
```


Loop Parallelism in Cilk

Example:
In-place matrix
transpose

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right) \quad \square\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{n 1} \\
a_{12} & a_{22} & \cdots & a_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{n n}
\end{array}\right)
$$

The iterations of a cilk_for loop execute in parallel.

```
// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
    for (int j=0; j<i; ++j) {
        double temp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = temp;
    }
}
```


Implementation of Parallel Loops

```
// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
    Compiler-generated
    for (int j=0; j<i; ++j) { recursion
        double temp = A[i][j]; void p_loop(int lo, int hi) //half open
        A[i][j] = A[j][i];
    A[j][i] = temp;
    }
}
Original code
```


Divide-and-conquer

```
The OpenCilk compiler implements cilk_for loops using divide and conquer at optimization levels -01 and higher.
```

```
if (hi > lo + 1) {
        int mid = lo + (hi - lo)/2;
        cilk_scope {
                                cilk_spawn p_loop(lo, mid);
                p_loop(mid, hi);
        }
        return;
    }
    int i = lo;
    for (int j=0; j<i; ++j) {
        double temp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = temp;
    }
}
p_loop(1, n);
```


Implementation of Parallel Loops

 \(A[i][j]=\Delta 5][i] ; \quad\{\)
 Original code

Divide-and-conquer

The OpenCilk compiler implements cilk_for loops using divide and conquer at optimization levels -01 and higher.

```
        int mid = lo + (hi - lo)/2;
        cilk_scope {
                        cilk_spawn p_loop(lo, mid);
                        p_loop(mid, hi);
        }
        return;
    }
    int i = lo;
    for (int j=0; j<i; ++j) {
        double temp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = temp;
    }
}
p_loop(1, n);
```

 double telm = Al][j]; void p_loop(int lo, int hi) //half open
 \(A[j][j]=\) temp; \(\quad\) if (hi > lo + 1) \(\{\)
 Compiler-generated recursion

Implementation of Parallel Loops

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) \{
for (int j=0; j<i; ++j) \{
cilk_for
loop control
double temp = A[i][j];
$A[i][j]=A[j][i] ;$
$A[j][i]=$ temp;
\}
\}

Implementation of Parallel Loops

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) \{
for (int $j=0$; $j<i ;++j$) \{
double temp $=A[i][j] ;$ void p_loop(int lo, int hi) //half open
$A[i][j]=A[j][i] ;$
$A[j][i]=$ temp;
\}
\}
lifted loop body

Execution of Parallel Loops

Execution of Parallel Loops

Analysis of Parallel Matrix Transpose

Analysis of Nested Parallel Loops

```
// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
    cilk_for (int j=0; j<i; ++j) {
        double temp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = temp;
    }
}
```

Span of outer loop control $=\Theta$ (lgn)

Max span of inner loop control $=\Theta$ (lgn)

Span of body $=\Theta(1)$

Work: $T_{1}(n)=\Theta\left(n^{2}\right)$
Span: $T_{\infty}(n)=\Theta(\operatorname{lgn})$
Parallelism: $T_{1}(n) / T_{\infty}(n)=\Theta\left(n^{2} / \lg n\right)$

A Closer Look at Parallel Loops

Vector addition

```
cilk_for (int i=0; i<n; ++i) {
    A[i] += B[i];
}
```


Optimizing Parallel-Loop Control

```
cilk_for (int i=0; i<n; ++i) {
    A[i] += B[i];
}
```

Original code
Compiler-generated recursion

```
void p_loop(int lo, int hi) { //half open
    if (hi > lo + 1) {
        int mid = lo + (hi - lo)/2;
        cilk_scope {
            cilk_spawn p_loop(lo, mid);
            p_loop(mid, hi);
        }
        return;
    }
    for (int i=lo; i<hi; ++i) {
        A[i] += B[i];
    }
}
p_loop(0, n);
```


Coarsening Parallel Loops

```
#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
    A[i] += B[i];
}
```

Compiler-generated recursion

If a grain-size pragma is not specified, the Cilk runtime system heuristically guesses G to minimize overhead.

```
void p_loop(int lo, int hi) { //half open
    if (hi > lo + G) {
        int mid = lo + (hi - lo)/2;
        cilk_scope {
            cilk_spawn p_loop(lo, mid);
            p_loop(mid, hi);
        }
        return;
    }
    for (int i=lo; i<hi; ++i) {
        A[i] += B[i];
    }
}
p_loop(0, n);
```


Loop Grain Size

Let I be the time for one iteration of the loop body.
Let S be the time to perform a level of the recursion.

Loop Grain Size

Loop Grain Size

Loop Grain Size

Loop Grain Size

Another Implementation

```
void vadd (double *A, double *B, int n){
    cilk_scope {
        for (int j=0; j<n; j+=G) {
            cilk_spawn {
                for (int i=j; i<MIN(j+G,n); i++)
                A[i] += B[i];
} } } }
```


Work: $\mathrm{T}_{1}=\Theta(\mathrm{n})$
Assume that $\mathrm{G}=1$.
Span: $\mathrm{T}_{\infty}=$

Another Implementation

```
void vadd (double *A, double *B, int n){
    cilk_scope {
        for (int j=0; j<n; j+=G) {
            cilk_spawn {
                for (int i=j; i<MIN(j+G,n); i++)
                A[i] += B[i];
} } } }
```


Parallelism: $\mathrm{T}_{1} / \mathrm{T}_{\infty}=\Theta(1)$

Another Implementation

```
void vadd (double *A, double *B, int n){
    cilk_scope {
        for (int j=0; j<n; j+=G) {
            cilk_spawn {
                for (int i=j; i<MIN(j+G,n); i++)
                A[i] += B[i];
} } } }
```


Work: $\mathrm{T}_{1}=\Theta(\mathrm{n})$
Span: $T_{\infty}=\Theta(G+n / G)=\Theta(\sqrt{ } n)$
Paral/elism.' $T_{1} / T_{\infty}=\Theta(\sqrt{ } n)$

Quiz on Parallel Loops

Question: Let $\mathrm{P} \ll \mathrm{n}$ be the number of workers on the system. How does the asymptotic parallelism of Code A compare to that of Code B? (Differences highlighted.)

Code A

```
#pragma cilk grainsize 1
cilk_for (int i=0; i<n; i+=32) {
    for (int j=i; j<MIN(i+32, n); ++j)
        A[j] += B[j];
}
```


Code B

```
#pragma cilk grainsize 1
cilk_for (int i=0; i<n; i+=n/P) {
    for (int j=i; j<MIN(i+n/P, n); ++j)
        A[j] += B[j];
}
```


Three Performance Tips

1. Minimize the span to maximize parallelism. Try to generate 10 times more parallelism than processors for near-perfect linear speedup.
2. If you have plenty of parallelism, try to trade some of it off to reduce work overhead.
3. Use divide-and-conquer recursion or parallel loops rather than spawning one small thing after another.

Do this:

```
cilk_for (int i=0; i<n; ++i) {
    foo(i);
}
```

Not this:
cilk_scope \{
for (int $i=0 ; i<n ;++i)$ \{
cilk_spawn foo(i);
\} \}

And Three More

4. Ensure that work/\#spawns is sufficiently large.

- Coarsen by using function calls and inlining near the leaves of recursion, rather than spawning.

5. Parallelize outer loops, as opposed to inner loops, if you're forced to make a choice.
6. Watch out for scheduling overheads.

Do this:

```
cilk_for (int i=0; i<2; ++i) {
    for (int j=0; j<n; ++j)
        f(i,j);
}
```

Not this:

```
for (int j=0; j<n; ++j) {
    cilk_for (int i=0; i<2; ++i)
        f(i,j);
}
```


Take-Aways

- Any greedy scheduler provides linear speedup on computations having sufficient parallel slackness.
- The OpenCilk runtime system incorporates a randomized workstealing scheduler that has strong theoretical bounds on its running time similar to those for greedy scheduling.
- Loops in Cilk are synthesized using divide-and-conquer spawning, which incurs linear work and logarithmic span.
- Coarsening recursion can lower loop overhead.

