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WORK LAW
∙ TP ≥T1/P

SPAN LAW
∙ TP ≥ T∞

Performance Measures

TP = execution time on P processors

= 18 = 9
T1 = work T∞ = span
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Parallelism

Because the SPAN LAW dictates that TP 
≥ T∞, the maximum possible speedup 
given T1 and T∞ is
T1/T∞ = parallelism
 = the average 
  amount of work 
  per step along 
  the span
 = 18/9
 = 2 .
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SCHEDULING THEORY
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Scheduling

● Cilk allows the programmer to 
express potential parallelism in an 
application

● The Cilk scheduler maps strands 
onto processors dynamically at 
runtime

● Since the theory of distributed 
schedulers is complicated, we’ll 
explore the ideas with a simple, 
centralized scheduler

…

Memory I/O
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Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its 
predecessors have executed.
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Greedy Scheduling

Complete step 
● ≥ P strands ready.
● Run any P.

P = 3
Definition. A strand is ready if all its 
predecessors have executed.

IDEA: Do as much as possible on every step.
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Greedy Scheduling

Complete step 
● ≥ P strands ready.
● Run any P.

P = 3

Incomplete step 
● < P strands ready.
● Run all of them.

Definition. A strand is ready if all its 
predecessors have executed.

IDEA: Do as much as possible on every step.
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Greedy Scheduling Theorem [G68, B75, EZL89].  Any greedy 
scheduler achieves

TP ≤ T1/P + T∞.

Analysis of Greedy

Proof. 
∙ # complete steps ≤ T1/P since 

each complete step performs 
P work.

∙ # incomplete steps ≤ T∞ 
since each incomplete step 
reduces the span of the 
unexecuted dag by 1.  ■
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Optimality of Greedy

Corollary. Any greedy scheduler achieves within a factor 
of 2 of optimal.

Proof. Let TP* be the execution time produced by the 
optimal scheduler.  Since TP* ≥ max{T1/P, T∞} by the 
WORK and SPAN LAWS, we have
 TP ≤ T1/P + T∞ 
  ≤ 2⋅max{T1/P, T∞}
  ≤ 2TP* .  ■
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Linear Speedup

Corollary. Any greedy scheduler achieves near-
perfect linear speedup whenever T1/T∞ ≫ P.

Proof. Since T1/T∞ ≫ P is equivalent to 
T∞ ≪ T1/P, the Greedy Scheduling Theorem gives us 
 TP ≤ T1/P + T∞

  ≈ T1/P .
Thus, the speedup is T1/TP ≈ P.  ■

Definition. The quantity (T1/T∞)/P = T1/PT∞ is called 
the parallel slackness.
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Cilk Performance

● Cilk’s randomized work-stealing scheduler achieves
■  TP = T1/P + O(T∞) expected time (provably);
■  TP ≈ T1/P + T∞ time (empirically).

● Near-perfect linear speedup as long as P ≪ T1/T∞ .

● Instrumentation in Cilkscale allows you to measure T1 and T∞ .



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

PER ORDER OF 6.106
PER ORDER OF 6.172

SPEED
LIMIT∞
PER ORDER OF 6.106

CILK LOOPS



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Loop Parallelism in Cilk

The iterations of a 
cilk_for loop 
execute in parallel.

Example: 
In-place 
matrix 
transpose

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

a11 a21 ⋯ an1

a12 a22 ⋯ an2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ ann

A AT

// indices run from 0, not 1
for (int i=1; i<n; ++i) {
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}
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Loop Parallelism in Cilk

The iterations of a 
cilk_for loop 
execute in parallel.

Example: 
In-place 
matrix 
transpose

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

a11 a21 ⋯ an1

a12 a22 ⋯ an2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ ann

A AT

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}
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Divide-and-conquer

Implementation of Parallel Loops

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}

void p_loop(int lo, int hi)  //half open
{
  if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  int i = lo;
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}
⋮
p_loop(1, n); 

The OpenCilk compiler 
implements cilk_for loops 
using divide and conquer at 
optimization levels –O1 and 
higher. 

Compiler-generated 
recursion

Original code

void p_loop(int lo, int hi)  //half open
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Divide-and-conquer

Implementation of Parallel Loops

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}

The OpenCilk compiler 
implements cilk_for loops 
using divide and conquer at 
optimization levels –O1 and 
higher. 

Original code

void p_loop(int lo, int hi)  //half open
{
  if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  int i = lo;
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}
⋮
p_loop(1, n); 

Compiler-generated 
recursion

p_loop(1, n);



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}

void p_loop(int lo, int hi)  //half open
{
  if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  int i = lo;
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}
⋮
p_loop(1, n); 

Implementation of Parallel Loops

if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    } 
    return;
  } 

cilk_for 
loop control

cilk_for (int i=1; i<n; ++i) {
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// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}

for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }

void p_loop(int lo, int hi)  //half open
{
  if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  int i = lo;
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}
⋮
p_loop(1, n); 

Implementation of Parallel Loops

lifted
loop body

for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }

for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
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void p_loop(int lo, int hi)  //half open
{
  if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  int i = lo;
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}
⋮
p_loop(1, n); 

Divide-and-conquer 
implementation

Execution of Parallel Loops

1 2 3 ⋅ ⋅ ⋅ n–2 n–1

cilk_for loop control
(internal nodes)

Trace
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void p_loop(int lo, int hi)  //half open
{
  if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  int i = lo;
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}
⋮
p_loop(1, n); 

Divide-and-conquer 
implementation

Execution of Parallel Loops

1 2 3 ⋅ ⋅ ⋅ n–2 n–1

Trace

cilk_for body 
(leaves)
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// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}

Work: T1(n) = Θ(n2) 

Parallelism: T1(n)/T∞(n) = Θ(n2)/Θ(n) = Θ(n) 

Work: T1(n) =

Parallelism: T1(n)/T∞(n) =

Analysis of Parallel Matrix Transpose

1 2 3 ⋅ ⋅ ⋅ n–2 n–1

Span of loop control = Θ(lg n) .

Max span of body = Θ(n) .

Span: T∞(n) =Span: T∞(n) = Θ(n + lg n) = Θ(n) 
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Span: T∞(n) = Θ(lg n)
Work: T1(n) = Θ(n2) 
Span: T∞(n) =
Parallelism: T1(n)/T∞(n) = Θ(n2/lg n)  

Work: T1(n) =

Parallelism: T1(n)/T∞(n) =

Analysis of Nested Parallel Loops

Span of outer loop control = Θ(lg n)

Span of body = Θ(1) 

Max span of inner loop control = Θ(lg n) 

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {
  cilk_for (int j=0; j<i; ++j) {
    double temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}
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Parallelism: T1/T∞ =Parallelism: T1/T∞ = Θ(n/lg n) 
Span: T∞ =Span: T∞ = Θ(lg n)
Work: T1 = Θ(n) 

Vector 
addition

Work: T1 =

A Closer Look at Parallel Loops
cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

Includes 
substantial 
overhead!
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Compiler-generated recursion

Optimizing Parallel-Loop Control

cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

void p_loop(int lo, int hi) { //half open
  if (hi > lo + 1) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  for (int i=lo; i<hi; ++i) {
    A[i] += B[i];
  }
}
⋮
p_loop(0, n);

Original code
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Coarsening Parallel Loops

If a grain-size pragma 
is not specified, the 
Cilk runtime system 
heuristically guesses G 
to minimize overhead.

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

Compiler-generated recursion
void p_loop(int lo, int hi) { //half open
  if (hi > lo + G) { 
    int mid = lo + (hi - lo)/2;
    cilk_scope {
      cilk_spawn p_loop(lo, mid);
      p_loop(mid, hi);
    }
    return;
  } 
  for (int i=lo; i<hi; ++i) {
    A[i] += B[i];
  }
}
⋮
p_loop(0, n);
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Let I be the time for one iteration of the loop body.
Let S be the time to perform a level of the recursion. 

Loop Grain Size

Vector 
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

G⋅I

S
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Work: T1 = n⋅I + (n/G – 1)⋅S

Loop Grain Size

Vector 
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

G⋅I

S
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Work: T1 = n⋅I + (n/G – 1)⋅S
Span: T∞ = G⋅I + lg(n/G)⋅S

Loop Grain Size

Vector 
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

G⋅I

S
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Work: T1 = n⋅I + (n/G – 1)⋅S
Span: T∞ = G⋅I + lg(n/G)⋅S

Loop Grain Size

Vector 
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

G⋅I

S
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Work: T1 = n⋅I + (n/G – 1)⋅S
Span: T∞ = G⋅I + lg(n/G)⋅S

Loop Grain Size

Vector 
addition

#pragma cilk grainsize G
cilk_for (int i=0; i<n; ++i) {
  A[i] += B[i];
}

G⋅I

S

E.g., G ≈ 10(S/I) for 10% 
work overhead.

Want G ≫S/I (work) and 
G small (span).

Parallelism: 
T1/T∞ ≈ Θ(n/lg n)/(S/I).
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Work: T1 =Work: T1 = Θ(n) 
Span: T∞ =

void vadd (double *A, double *B, int n){
  cilk_scope {
    for (int j=0; j<n; j+=G) {
      cilk_spawn {
        for (int i=j; i<MIN(j+G,n); i++) 
          A[i] += B[i];
} } } }

…

G⋅I

…

Assume that G = 1.

Another Implementation
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Work: T1 =Work: T1 = Θ(n) 
Span: T∞ =
Parallelism: T1/T∞ = Θ(1)  
Span: T∞ = Θ(n)
Parallelism: T1/T∞ =

…

G⋅I

…

Assume that G = 1.

puny

Another Implementation
void vadd (double *A, double *B, int n){
  cilk_scope {
    for (int j=0; j<n; j+=G) {
      cilk_spawn {
        for (int i=j; i<MIN(j+G,n); i++) 
          A[i] += B[i];
} } } }
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Work: T1 = Θ(n) 
Span: T∞ = Θ(G + n/G)
Parallelism: T1/T∞ =

Work: T1 =
Span: T∞ = Θ(G + n/G) = Θ(√n) 
Parallelism: T1/T∞ = Θ(√n)  
Span: T∞ =

Analysis in 
terms of G

Another Implementation

Choose 
G = √n to 
minimize.…

G⋅I

…

void vadd (double *A, double *B, int n){
  cilk_scope {
    for (int j=0; j<n; j+=G) {
      cilk_spawn {
        for (int i=j; i<MIN(j+G,n); i++) 
          A[i] += B[i];
} } } }
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Work:
Span:

Parallelism:

Work:
Span:

Parallelism:

Quiz on Parallel Loops

Question: Let P ≪ n be the number of workers on the system.  
How does the asymptotic parallelism of Code A compare to that 
of Code B?  (Differences highlighted.)

#pragma cilk grainsize 1
cilk_for (int i=0; i<n; i+=n/P) {
  for (int j=i; j<MIN(i+n/P, n); ++j)
    A[j] += B[j]; 
}

#pragma cilk grainsize 1
cilk_for (int i=0; i<n; i+=32) {
  for (int j=i; j<MIN(i+32, n); ++j)
    A[j] += B[j]; 
}

n/P
n/P

32
32

Code A

Code B
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Three Performance Tips

1. Minimize the span to maximize parallelism.  Try to 
generate 10 times more parallelism than processors 
for near-perfect linear speedup.

2. If you have plenty of parallelism, try to trade some of it 
off to reduce work overhead.

3. Use divide-and-conquer recursion or parallel loops 
rather than spawning one small thing after another.

cilk_scope {
  for (int i=0; i<n; ++i) {
    cilk_spawn foo(i);
}  }

cilk_for (int i=0; i<n; ++i) {
  foo(i);
}

Do this:

Not this:



© 2008–2022 by the MIT 6.106/6.172 Lecturers 

Do this:

And Three More

4. Ensure that work/#spawns is sufficiently large.
• Coarsen by using function calls and inlining near the leaves of 

recursion, rather than spawning.

5. Parallelize outer loops, as opposed to inner loops, if you’re 
forced to make a choice.

6. Watch out for scheduling overheads.
cilk_for (int i=0; i<2; ++i) {
  for (int j=0; j<n; ++j)
    f(i,j);
}

for (int j=0; j<n; ++j) {
  cilk_for (int i=0; i<2; ++i)
    f(i,j);
}

Not this:
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Take-Aways

∙ Any greedy scheduler provides linear speedup on computations 
having sufficient parallel slackness.

∙ The OpenCilk runtime system incorporates a randomized work-
stealing scheduler that has strong theoretical bounds on its running 
time similar to those for greedy scheduling.

∙ Loops in Cilk are synthesized using divide-and-conquer spawning, 
which incurs linear work and logarithmic span.

∙ Coarsening recursion can lower loop overhead.
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