
Performance
Engineering of
Software Systems

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞PER ORDER OF 6.106

LECTURE 13
Parallel Storage
Allocation
Saman Amarasinghe
October 27, 2022

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Summary from Tuesday

Manual Reference
Counting

Mark and
Sweep

Stop and
Copy

Ease of Use Bad Medium Good
Throughput Good Medium Medium
Latency Good Good Bad
External
Fragmentation Bad Bad Bad

Example C Malloc/Free C++
STD::shared_ptr Java C#

Manual Reference
Counting

Mark and
Sweep

Stop and
Copy

Ease of Use Bad Medium Good Good

Throughput Good Medium Medium Bad

Latency Good Good Bad Bad

External
Fragmentation Bad Bad Bad Good

Example C
malloc/free

C++
std::shared_ptr Java C#

2

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞PER ORDER OF 6.106

REVIEW OF MEMORY-ALLOCATION
PRIMITIVES

3

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Heap Storage in C

● Allocation
 void* malloc(size_t s);
 Effect: Allocate and return a pointer to a block of memory containing at least s bytes.

● Deallocation
 void free(void *p);
 Effect: p is a pointer to a block of memory returned by malloc() or

memalign(). Deallocate the block.

4

● Aligned allocation
 void* memalign(size_t a, size_t s);
 Effect: Allocate and return a pointer to a block of memory containing at least

s bytes, aligned to a multiple of a, where a must be an exact power of 2:
assert(0==((size_t) memalign(a, s))%a) .

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Allocating Virtual Memory

void *p = mmap(0, // Don't care where
 size, // #bytes
 PROT_READ | PROT_WRITE, // Read/write
 MAP_PRIVATE | MAP_ANON, // Private anonymous
 -1, // no backing file
 0 // offset (N/A)
);

The mmap() system call can be used to allocate virtual
memory by memory mapping:

The Linux kernel finds a contiguous, unused region in the address
space of the application large enough to hold size bytes,
modifies the page table, and creates the necessary virtual-
memory management structures within the OS to make the user’s
accesses to this area “legal” so that accesses won’t segfault.

5

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Properties of mmap()

● mmap() is lazy. It does not immediately allocate physical memory
for the requested allocation.

● Instead, it populates the page table with entries pointing to a
special zero page and marks the page as read only.

● The first write into such a page causes a page fault.

● At that point, the OS allocates a physical page, modifies the page
table, and restarts the instruction.

● You can mmap() a terabyte of virtual memory on a machine with
only a gigabyte of DRAM.

● A process may die from running out of physical memory well after
the mmap() call.

6

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

What’s the Difference…
…between malloc() and mmap() used in this way?

● The functions malloc() and free() are part of the memory-allocation
interface of the heap-management code in the C library.

● The heap-management code uses available system facilities, including
mmap(), to obtain memory (virtual address space) from the kernel.

● The heap-management code within malloc() attempts to satisfy user
requests for heap storage by reusing freed memory whenever possible.

● When necessary, the malloc() implementation invokes mmap() and
other system calls to expand the size of the user’s heap storage.

7

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Address Translation

virtual page # offset

virtual address

page table

frame #

frame # offset

physical address

frame 0

frame 1

frame 2

frame 3

⋮

physical memory

If the virtual page does not reside in
physical memory, a page fault occurs.

search
offset

8

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Address Translation

virtual page # offset

virtual address

page table

frame #

frame # offset

physical address

frame 0

frame 1

frame 2

frame 3

⋮

physical memory

search
offset

Since page-table lookups are costly, the hardware
contains a translation lookaside buffer (TLB) to cache
recent page-table lookups.

9

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞PER ORDER OF 6.106

CACTUS STACKS

10

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

A

C

C

A

B

B

A

A

A

C

D

D

A

C

E

E

Traditional Linear Stack

B

A

C

ED

invocation tree views of stack

An execution of a serial C/C++ program can be
viewed as a serial walk of an invocation tree.

A

A

A

C

C

11

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Rule for pointers: A parent can pass pointers to its stack
variables down to its children, but not the other way
around.

Traditional Linear Stack

A

C

C

A

B

B

A

A

A

C

D

D

A

C

E

E

B

A

C

ED

invocation tree views of stack

A

A

A

C

C

12

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

A cactus stack supports multiple views in parallel.

Cactus Stack

A

C

C

A

B

B

A

A

A

C

D

D

A

C

E

E

B

A

C

ED

invocation tree views of stack

A

A

A

C

C

13

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Heap-Based Cactus Stack

A heap-based cactus stack allocates frames off the heap.

A

C

D E

B

14

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Interoperability

Problem: With heap-based linkage, parallel functions fail to
interoperate with legacy and third-party serial binaries. Our
implementation of Cilk uses a less space-efficient strategy that
preserves interoperability by using a pool of linear stacks.

A

C

D E

B

15

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Theorem. Let S1 be the stack space required by a serial
execution of a Cilk program. The stack space of a P-worker
execution using a heap-based cactus stack is at most SP ≤
P S1.
Proof. Cilk’s work-stealing
algorithm maintains the busy-
leaves property:
Every active leaf frame has a
worker executing it. ∎

S1

P = 4

Space Bound

16

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

D&C Matrix Multiplication
void mm_dac(double *restrict C, int n_C,
 double *restrict A, int n_A,
 double *restrict B, int n_B,
 int n)
{ // C = A * B
 assert((n & (-n)) == n);
 if (n <= THRESHOLD) {
 mm_base(C, n_C, A, n_A, B, n_B, n);
 } else {
 double *D = malloc(n * n * sizeof(*D));
 assert(D != NULL);
 #define n_D n
 #define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
 cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
 cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
 cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);
 cilk_spawn mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
 cilk_spawn mm_dac(X(D,0,0), n_D, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
 cilk_spawn mm_dac(X(D,0,1), n_D, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
 cilk_spawn mm_dac(X(D,1,0), n_D, X(A,1,1), n_A, X(B,1,0), n_B, n/2);
 mm_dac(X(D,1,1), n_D, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
 cilk_sync;
 m_add(C, n_C, D, n_D, n);
 free(D);
 }
}

Allocations of the
temporary matrix
D obey a stack
discipline.

double *D = malloc(n * n * sizeof(*D));

free(D);

17

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Work: T1(n) = ?

Span: T∞(n) = ?

Space: S1(n) = ?

 = ?

By the busy-leaves property, we have

 SP(n) = ?

Analysis of D&C Matrix Mult.

O(Pn2).

We can actually prove a stronger bound.

Θ(n3)

Θ(lg2n)

S1(n/2) + Θ(n2)

Θ(n2)

18

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

…
8

Worst-Case Recursion Tree

(n/2)2

(n/2k)2(n/2k)2 (n/2k)2…
8

(n/2)2(n/2)2

n2

Θ(1) Θ(1) Θ(1)

…

Branch fully (8-
way) until we get
to a level k with P
nodes and then
branch serially
from there on.

We have 8k = P, which implies that k = log8P = (lg P)/3.
The cost per level grows geometrically from the root to level k and then
decreases geometrically from level k to the leaves.

Thus, the space is Θ(P(n/2(lg P)/3)2) = Θ(P1/3 n2).

P nodes

19

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞PER ORDER OF 6.106

BASIC PROPERTIES OF STORAGE
ALLOCATORS

20

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Allocator Speed

Definition. Allocator speed is the number of allocations
and deallocations per second that the allocator can sustain.

Q. Is it more important to maximize allocator speed for
large blocks or small blocks?

A. Small blocks!
Q. Why?
A. Typically, a user program writes all the bytes of an

allocated block. A large block takes so much time to
write that the allocator time has little effect on the
overall runtime. In contrast, if a program allocates
many small blocks, the allocator time can represent a
significant overhead.

21

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Fragmentation

Definition. The user footprint is the maximum over time of
the number M of bytes in use by the user program
(allocated but not freed). The allocator footprint is the
maximum over time of the number H of bytes of memory
provided to the allocator by the operating system. The
fragmentation is F = H/M, and the space utilization is M/H.

Remark. H grows monotonically with time for many allocators.

Theorem (proved in Lecture 12). The fragmentation for
binned free lists is F = O(lg M). ∎
Remark. Modern 64-bit processors provide about 248
bytes of virtual address space. A big server might have 240
bytes of physical memory.

22

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Fragmentation Glossary

∙ Space overhead: Space used by the allocator for bookkeeping.

∙ Internal fragmentation: Waste due to allocating larger
blocks than the user requests.

∙ External fragmentation: Waste due to the inability to use
storage because it is not contiguous.

∙ Blowup: For a parallel allocator, the additional space
beyond what a serial allocator would require.

23

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞PER ORDER OF 6.106

PARALLEL HEAP
ALLOCATION STRATEGIES

24

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Strategy 1: Global Heap

global heap
∙Default C allocator.
∙All threads (processors)

share a single heap.
∙Accesses are mediated by a

mutex (or lock-free
synchronization) to
preserve atomicity.

J Blowup = 1.
L Slow — acquiring a lock is

like an L2-cache access.
L Contention can inhibit

scalability.

25

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Scalability

Ideally, as the number of threads (processors) grows, the time to
perform an allocation or deallocation should not increase.
∙ The most common reason for loss of scalability is lock contention.

Q. Is lock contention more of a problem for large blocks or for
small blocks?

A. Small blocks!
Q. Why?
A. Typically, a user program writes all the bytes of an allocated

block, making it hard for a thread allocating large blocks to
issue allocation requests at a high rate. In contrast, if a program
allocates many small blocks in parallel, contention can be a
significant issue.

26

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Strategy 2: Local Heaps

∙ Each thread allocates out of its own heap.
∙No locking is necessary.

J Fast — no synchronization.
L Suffers from memory drift:

blocks allocated by one
thread are freed on another
⇒ unbounded blowup.

heap heap heap heap

27

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Strategy 3: Local Ownership

∙ Each object is labeled with its owner.
∙ Freed objects are returned to the owner’s heap.

J Fast allocation and freeing
of local objects.

L Freeing remote objects
requires synchronization.

K Blowup ≤ P.
J Resilience to false sharing.

heap heap heap heap

28

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞PER ORDER OF 6.106

FALSE SHARING

29

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

False Sharing Example

…
P P P

x y

Write x

The compiler happens
to place x and y in the
same cache block.

30

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

False Sharing Example

…
P P P

x y Write y

31

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

False Sharing Example

…
P P P

x y
Write x

The compiler happens to
place x and y in the
same cache block.

32

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

False Sharing Example

…
P P P

x y Write y

The compiler happens to
place x and y in the
same cache block.

33

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

How False Sharing Can Occur

A program can induce false sharing having different threads
process nearby objects.
∙ The programmer can mitigate this problem by aligning the object

on a cache-line boundary and padding out the object to the size
of a cache line, but this solution can be wasteful of space.

An allocator can induce false sharing in two ways:
∙ Actively, when the allocator satisfies memory requests from different

threads using the same cache block.
∙ Passively, when the program passes objects lying on the same cache

line to different threads, and the allocator reuses the objects’ storage
after the objects are freed to satisfy requests from those threads.

34

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞PER ORDER OF 6.106

BACK TO PARALLEL HEAP
ALLOCATION

35

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

The Hoard Allocator

∙ P local heaps.
∙ 1 global heap.
∙Memory is organized into large

superblocks of size S.
∙Only superblocks are moved

between the local heaps and
the global heap.

J Fast.
J Scalable.
J Bounded blowup.
J Resilience to false sharing

heap heap heap heap

global heap

heap

(See reading.)

Heap, heap, array!
36

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Hoard Allocation

if (there exists a free object in heap i) {
 x = an object from the fullest nonfull superblock in i’s heap;
} else {
 if (the global heap is empty) {
 B = a new superblock from the OS;
 } else {
 B = a superblock in the global heap;
 }
 set the owner of B to i;
 x = a free object in B;
}
return x;

x = malloc() on thread i:

Assume without loss of generality that all blocks are
the same size (fixed-size allocation).

37

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Hoard Deallocation

put x back in heap i;
if (mi < min(hi - 2S, hi/2)) {
 move a superblock that is at least half empty from
 heap i to the global heap;
};

free(x), where x is owned by thread i:

Let mi be the in-use storage in heap i, and let hi be the
storage owned by heap i.
Hoard maintains the following invariant for all heaps i:

mi ≥ min(hi - 2S, hi/2),
where S is the superblock size.

38

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Hoard’s Blowup

Theorem. Let M be the user footprint for a program, and let H
be Hoard’s allocator footprint. We have

H ≤ O(SP + M) ,
and hence the blowup is

H/M = O(SP/M + 1) . ∎

Proof. Analyze the storage in local heaps.
Recall that mi ≥ min(hi - 2S, hi/2).
First term: at most 2S unutilized storage per heap for a total of O(SP).
Second term: allocated storage is at most twice the used storage for a
total of O(M). ∎

Lemma. The maximum storage allocated in global heap is at
most maximum storage allocated in local heaps.

39

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Other Solutions

jemalloc is like Hoard, with a few differences:

● jemalloc has a separate global lock for each different allocation size.

● jemalloc allocates the object with the smallest address among all
objects of the requested size.

● jemalloc releases empty pages using

madvise(p, MADV_DONTNEED, ...) ,

 which zeros the page while keeping the virtual address valid.

● jemalloc is a popular choice for parallel systems due to its
performance and robustness.

SuperMalloc (see reading) is an interesting contender.

40

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Allocator Speeds

Allocator SLOC 32 threads
Default 6,281 0.97 M/s
Hoard 16,948 17.1 M/s

jemalloc 22,230 38.2 M/s
SuperMalloc 3,571 131.7 M/s

41

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

SPEED
LIMIT∞PER ORDER OF 6.106

DRAM ANTICS

42

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
~$1 / GByte

Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level

Lower Level

faster

Larger

L2 Cache

Blocks

43

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

DRAM accesses

Many programs may tax the DRAM
∙Bulk reads or writes
■ Example: Video editing

∙Accesses without locality
■ Example: Graph analytics

44

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

DRAM Layout

Each socket has its own DRAMs

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

45

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

CPU to DRAM

Long pipeline from the CPU to DRAM
∙ Fanout at each level
■ Unfortunately, intel randomizes à uniformly slow L
∙ Bulk access at the row granularity

46

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

CPU to DRAM

Each DRAM is
∙ A complex state machine

47

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

CPU to DRAM

Each DRAM is
∙ A complex state machine
∙ Slow to respond

1 cycle = 1.25 ns 48

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

DRAM Performance

When writing DRAM utilization is low
∙ First need to read
∙ Then change the DRAM state
∙ Finally, write

49

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

DRAM Performance

Why need to read???
∙ Streaming Writes

50

When writing DRAM utilization is low
∙ First need to read
∙ Then change the DRAM state
∙ Finally, write

© 2008-2022 by the MIT 6.172 and 6.106 Lecturers

DRAM Performance

#include <immintrin.h>

void copy(int n, int * restrict src, int * restrict dst) {
 int vector_len = 256 / 32; // 8?
 int remainder = n % vector_len;
 for (int i = 0; i < remainder; i++)
 dst[i] = src[i];
 for (int i = 0; i < n / vector_len; i++) {
 __m256i *dst_ptr = (__m256i *)(dst + remainder + i * vector_len);
 __m256i *src_ptr = (__m256i *)(src + remainder + i * vector_len);
 _mm256_stream_si256(dst_ptr, _mm256_stream_load_si256(src_ptr));
 }
}

void copy(int n, int * restrict src, int * restrict dst) {
 for (int i = 0; i < n; i++)
 dst[i] = src[i];
 }

51

