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Summary from Tuesday

Manual Reference 
Counting

Mark and 
Sweep

Stop and 
Copy

Ease of Use Bad Medium Good
Throughput Good Medium Medium
Latency Good Good Bad
External 
Fragmentation Bad Bad Bad

Example C Malloc/Free C++ 
STD::shared_ptr Java C#
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REVIEW OF MEMORY-ALLOCATION 
PRIMITIVES
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Heap Storage in C

● Allocation
 void* malloc(size_t s);
 Effect: Allocate and return a pointer to a block of memory containing at least s bytes.

● Deallocation
 void free(void *p);
 Effect: p is a pointer to a block of memory returned by malloc() or 

memalign(). Deallocate the block.
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● Aligned allocation
 void* memalign(size_t a, size_t s);
 Effect: Allocate and return a pointer to a block of memory containing at least 

s bytes, aligned to a multiple of a, where a must be an exact power of 2:
assert(0==((size_t) memalign(a, s))%a) .
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Allocating Virtual Memory

void *p = mmap(0,                 // Don't care where
          size,                   // #bytes
          PROT_READ | PROT_WRITE, // Read/write
          MAP_PRIVATE | MAP_ANON, // Private anonymous
          -1,                     // no backing file
          0                       // offset (N/A)
);

The mmap() system call can be used to allocate virtual 
memory by memory mapping:

The Linux kernel finds a contiguous, unused region in the address 
space of the application large enough to hold size bytes, 
modifies the page table, and creates the necessary virtual-
memory management structures within the OS to make the user’s 
accesses to this area “legal” so that accesses won’t segfault.
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Properties of mmap()

● mmap() is lazy.  It does not immediately allocate physical memory 
for the requested allocation.

● Instead, it populates the page table with entries pointing to a 
special zero page and marks the page as read only.

● The first write into such a page causes a page fault.

● At that point, the OS allocates a physical page, modifies the page 
table, and restarts the instruction.

● You can mmap() a terabyte of virtual memory on a machine with 
only a gigabyte of DRAM.

● A process may die from running out of physical memory well after 
the mmap() call.
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What’s the Difference…
…between malloc() and mmap() used in this way?

● The functions malloc() and free() are part of the memory-allocation 
interface of the heap-management code in the C library.  

● The heap-management code uses available system facilities, including 
mmap(), to obtain memory (virtual address space) from the kernel.  

● The heap-management code within malloc() attempts to satisfy user 
requests for heap storage by reusing freed memory whenever possible.

● When necessary, the malloc() implementation invokes mmap() and 
other system calls to expand the size of the user’s heap storage.
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Address Translation

virtual page # offset

virtual address

page table

frame #

frame # offset

physical address

frame 0

frame 1

frame 2

frame 3

⋮

physical memory

If the virtual page does not reside in 
physical memory, a page fault occurs.  

search
offset
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Address Translation

virtual page # offset

virtual address

page table

frame #

frame # offset

physical address

frame 0

frame 1

frame 2

frame 3

⋮

physical memory

search
offset

Since page-table lookups are costly, the hardware 
contains a translation lookaside buffer (TLB) to cache 
recent page-table lookups. 
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CACTUS STACKS
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invocation tree views of stack

An execution of a serial C/C++ program can be 
viewed as a serial walk of an invocation tree.
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Rule for pointers:  A parent can pass pointers to its stack 
variables down to its children, but not the other way 
around.

Traditional Linear Stack
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A cactus stack  supports multiple views in parallel. 

Cactus Stack
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Heap-Based Cactus Stack

A heap-based cactus stack allocates frames off the heap.  

A

C

D E

B
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Interoperability

Problem: With heap-based linkage, parallel functions fail to 
interoperate with legacy and third-party serial binaries.  Our 
implementation of Cilk uses a less space-efficient strategy that 
preserves interoperability by using a pool of linear stacks.

A

C

D E

B
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Theorem. Let S1 be the stack space required by a serial 
execution of a Cilk program.  The stack space of a P-worker 
execution using a heap-based cactus stack is at most SP ≤ 
P S1.
Proof. Cilk’s work-stealing 
algorithm maintains the busy-
leaves property: 
Every active leaf frame has a 
worker executing it. ∎

S1

P = 4

Space Bound

16
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D&C Matrix Multiplication
void mm_dac(double *restrict C, int n_C, 
            double *restrict A, int n_A, 
            double *restrict B, int n_B,
            int n)
{ // C = A * B  
  assert((n & (-n)) == n);                    
  if (n <= THRESHOLD) {                       
    mm_base(C, n_C, A, n_A, B, n_B, n);        
  } else {                                     
    double *D = malloc(n * n * sizeof(*D));   
    assert(D != NULL);
    #define n_D n
    #define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2)) 
    cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2); 
    cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2); 
    cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2); 
    cilk_spawn mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2); 
    cilk_spawn mm_dac(X(D,0,0), n_D, X(A,0,1), n_A, X(B,1,0), n_B, n/2); 
    cilk_spawn mm_dac(X(D,0,1), n_D, X(A,0,1), n_A, X(B,1,1), n_B, n/2); 
    cilk_spawn mm_dac(X(D,1,0), n_D, X(A,1,1), n_A, X(B,1,0), n_B, n/2); 
               mm_dac(X(D,1,1), n_D, X(A,1,1), n_A, X(B,1,1), n_B, n/2); 
    cilk_sync;
    m_add(C, n_C, D, n_D, n);              
    free(D);
  }
}

Allocations of the 
temporary matrix 
D obey a stack 
discipline.

double *D = malloc(n * n * sizeof(*D));

free(D);
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Work:  T1(n) =     ?

Span:  T∞(n) =     ?

Space:  S1(n) =     ?

   =     ?

By the busy-leaves property, we have

  SP(n) =     ?

Analysis of D&C Matrix Mult.

O(Pn2).

We can actually prove a stronger bound.

Θ(n3)

Θ(lg2n)

S1(n/2) + Θ(n2)

Θ(n2)

18



© 2008-2022 by the MIT 6.172  and 6.106 Lecturers 

…
8

Worst-Case Recursion Tree

(n/2)2

(n/2k)2(n/2k)2 (n/2k)2…
8

(n/2)2(n/2)2

n2

Θ(1) Θ(1) Θ(1)

…

Branch fully (8-
way) until we get 
to a level k with P 
nodes and then 
branch serially 
from there on.

We have 8k = P, which implies that k = log8P = (lg P)/3.  
The cost per level grows geometrically from the root to level k and then 
decreases geometrically from level k to the leaves.  

Thus, the space is Θ(P(n/2(lg P)/3)2) =  Θ(P1/3 n2).

P nodes 
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BASIC PROPERTIES OF STORAGE 
ALLOCATORS
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Allocator Speed

Definition.  Allocator speed  is the number of allocations 
and deallocations per second that the allocator can sustain.

Q. Is it more important to maximize allocator speed for 
large blocks or small blocks?

A. Small blocks!
Q. Why?
A. Typically, a user program writes all the bytes of an 

allocated block.  A large block takes so much time to 
write that the allocator time has little effect on the 
overall runtime.  In contrast, if a program allocates 
many small blocks, the allocator time can represent a 
significant overhead.

21
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Fragmentation

Definition.  The user footprint  is the maximum over time of 
the number M of bytes in use by the user program 
(allocated but not freed).  The allocator footprint  is the 
maximum over time of the number H of bytes of memory 
provided to the allocator by the operating system.  The 
fragmentation is F = H/M, and the space utilization is M/H. 

Remark. H grows monotonically with time for many allocators.

Theorem (proved in Lecture 12).  The fragmentation for 
binned free lists is F = O(lg M).  ∎
Remark. Modern 64-bit processors provide about 248 
bytes of virtual address space.  A big server might have 240 
bytes of physical memory.
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Fragmentation Glossary

∙ Space overhead: Space used by the allocator for bookkeeping.

∙ Internal fragmentation: Waste due to allocating larger 
blocks than the user requests.

∙ External fragmentation: Waste due to the inability to use 
storage because it is not contiguous.

∙ Blowup: For a parallel allocator, the additional space 
beyond what a serial allocator would require.

23
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PARALLEL HEAP 
ALLOCATION STRATEGIES
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Strategy 1: Global Heap

global heap
∙Default C allocator.
∙All threads (processors) 

share a single heap.
∙Accesses are mediated by a 

mutex (or lock-free 
synchronization) to 
preserve atomicity.

J Blowup = 1.
L Slow — acquiring a lock is 

like an L2-cache access.  
L Contention can inhibit 

scalability.
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Scalability

Ideally, as the number of threads (processors) grows, the time to 
perform an allocation or deallocation should not increase.  
∙ The most common reason for loss of scalability is lock contention.

Q. Is lock contention more of a problem for large blocks or for 
small blocks?

A. Small blocks!
Q. Why?
A. Typically, a user program writes all the bytes of an allocated 

block, making it hard for a thread allocating large blocks to 
issue allocation requests at a high rate.  In contrast, if a program 
allocates many small blocks in parallel, contention can be a 
significant issue.

26
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Strategy 2: Local Heaps

∙ Each thread allocates out of its own heap. 
∙No locking is necessary.

J Fast — no synchronization.
L Suffers from memory drift: 

blocks allocated by one 
thread are freed on another  
⇒ unbounded blowup. 

heap heap heap heap
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Strategy 3: Local Ownership

∙ Each object is labeled with its owner.
∙ Freed objects are returned to the owner’s heap.

J Fast allocation and freeing 
of local objects.

L Freeing remote objects 
requires synchronization.

K Blowup ≤ P.
J Resilience to false sharing.

heap heap heap heap
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FALSE SHARING
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False Sharing Example

…
P P P

x y

Write x

The compiler happens 
to place x and y in the 
same cache block.
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False Sharing Example

…
P P P

x y Write y
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False Sharing Example

…
P P P

x y
Write x

The compiler happens to 
place x and y in the 
same cache block.
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False Sharing Example

…
P P P

x y Write y

The compiler happens to 
place x and y in the 
same cache block.
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How False Sharing Can Occur

A program can induce false sharing having different threads 
process nearby objects.
∙ The programmer can mitigate this problem by aligning the object 

on a cache-line boundary and padding out the object to the size 
of a cache line, but this solution can be wasteful of space.

An allocator can induce false sharing in two ways:
∙ Actively, when the allocator satisfies memory requests from different 

threads using the same cache block.
∙ Passively, when the program passes objects lying on the same cache 

line to different threads, and the allocator reuses the objects’ storage 
after the objects are freed to satisfy requests from those threads.
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BACK TO PARALLEL HEAP 
ALLOCATION
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The Hoard Allocator

∙ P local heaps.
∙ 1 global heap.
∙Memory is organized into large 

superblocks of size S.
∙Only superblocks are moved 

between the local heaps and 
the global heap.

J Fast.
J Scalable.
J Bounded blowup.
J Resilience to false sharing

heap heap heap heap

global heap

heap

(See reading.)

Heap, heap, array!
36
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Hoard Allocation

if (there exists a free object in heap i) {
  x = an object from the fullest nonfull superblock in i’s heap;
} else {
  if (the global heap is empty) {
    B = a new superblock from the OS;
  } else {
    B = a superblock in the global heap;
  }
  set the owner of B to i;
  x = a free object in B;
}
return x;

x = malloc() on thread i:

Assume without loss of generality that all blocks are 
the same size (fixed-size allocation).  

37
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Hoard Deallocation

put x back in heap i;
if (mi < min(hi - 2S, hi/2)) {
  move a superblock that is at least half empty from
  heap i to the global heap;
};

free(x), where x is owned by thread i:

Let mi be the in-use storage in heap i, and let hi be the 
storage owned by heap i.
Hoard maintains the following invariant for all heaps i:

mi ≥ min(hi - 2S, hi/2),
where S is the superblock size.

38



© 2008-2022 by the MIT 6.172  and 6.106 Lecturers 

Hoard’s Blowup

Theorem.  Let M be the user footprint for a program, and let H 
be Hoard’s allocator footprint.  We have

H ≤ O(SP + M) ,
and hence the blowup is

H/M = O(SP/M + 1) . ∎ 

Proof.  Analyze the storage in local heaps. 
Recall that mi ≥ min(hi - 2S, hi/2).
First term: at most 2S unutilized storage per heap for a total of O(SP).
Second term: allocated storage is at most twice the used storage for a 
total of O(M). ∎ 

Lemma.  The maximum storage allocated in global heap is at 
most maximum storage allocated in local heaps. 
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Other Solutions

jemalloc is like Hoard, with a few differences:

● jemalloc has a separate global lock for each different allocation size.

● jemalloc allocates the object with the smallest address among all 
objects of the requested size.

● jemalloc releases empty pages using

madvise(p, MADV_DONTNEED, ...) ,

 which zeros the page while keeping the virtual address valid.

● jemalloc is a popular choice for parallel systems due to its 
performance and robustness.

SuperMalloc (see reading) is an interesting contender. 
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Allocator Speeds

Allocator SLOC 32 threads
Default 6,281 0.97 M/s
Hoard 16,948 17.1  M/s

jemalloc 22,230 38.2  M/s
SuperMalloc 3,571 131.7  M/s
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DRAM ANTICS
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Levels of the Memory Hierarchy

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Disk
10s T Bytes, 10 ms 
(10,000,000 ns)
~ $1 / GByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
~$1 / GByte

Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level

Lower Level

faster

Larger

L2 Cache

Blocks
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DRAM accesses

Many programs may tax the DRAM
∙Bulk reads or writes
■ Example: Video editing

∙Accesses without locality 
■ Example: Graph analytics 
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DRAM Layout

Each socket has its own DRAMs

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M
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CPU to DRAM

Long pipeline from the CPU to DRAM
∙ Fanout at each level
■ Unfortunately, intel randomizes à uniformly slow L 
∙ Bulk access at the row granularity 
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CPU to DRAM

Each DRAM is 
∙ A complex state machine
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CPU to DRAM

Each DRAM is 
∙ A complex state machine
∙ Slow to respond

1 cycle = 1.25 ns 48
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DRAM Performance

When writing DRAM utilization is low
∙ First need to read
∙ Then change the DRAM state
∙ Finally, write

49
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DRAM Performance

Why need to read???
∙ Streaming Writes

50

When writing DRAM utilization is low
∙ First need to read
∙ Then change the DRAM state
∙ Finally, write
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DRAM Performance

#include <immintrin.h>

void copy(int n, int * restrict src, int * restrict dst) {
  int vector_len = 256 / 32; // 8?
  int remainder = n % vector_len;
  for (int i = 0; i < remainder; i++)
    dst[i] = src[i];
  for (int i = 0; i < n / vector_len; i++) {
    __m256i *dst_ptr = (__m256i *)(dst + remainder + i * vector_len);
    __m256i *src_ptr = (__m256i *)(src + remainder + i * vector_len);
    _mm256_stream_si256(dst_ptr, _mm256_stream_load_si256(src_ptr));
  }
}

void copy(int n, int * restrict src, int * restrict dst) {
  for (int i = 0; i < n; i++)
    dst[i] = src[i];
 }
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