Performance
Engineering of
Software Systems

SPEED LIMIT

Lecture 14
Cache-Efficient Algorithms

Srini Devadas

November 1, 2022

Cache Hardware

Multicore Cache Hierarchy

Memory Prices through History

Source: John C. McCallum, "Memory prices 1957+," available at http://jcmit.net/memoryprice.htm , last updated 2021-10-21.

Cache Specs for Typical High-End Multicore

Level	Size/core	Associativity	Latency (cycles)
DRAM	up to 160 GiB		$85-240$
L3	1.375 MiB	11	$50-70$
L2	1 MiB	16	14
L1-D	32 KiB	8	$4-5$
L1-I	32 KiB	8	5

Intel Xeon Platinum 8280L (Cascade Lake)

- Launched April 2019 for \$17,906 - cheaper now.
- 2.7 GHz clock, Turbo Boost up to 4 GHz
- 28 cores/chip + 2-way hyperthreading
- 2190 GFLOPS
- 64 B cache lines/blocks
- Up to 8 -way multiprocessing

Fully Associative Cache

Fully Associative Cache

To find a block in the cache, all the cache lines must be searched for the tag. When the cache becomes full, a replacement policy determines which block to evict to make room for a new block.

Direct-Mapped Cache

byte address

	tag	set
bits	offset	
	$w-\lg \mathcal{M}$	$\operatorname{Ig}(\mathcal{M} / \mathcal{B})$
	$\operatorname{Ig} \mathcal{B}$	

To find a block in the cache, only a single line in the cache needs to be checked.

Set-Associative Cache

byte address

tag	set	offset
bits	$w-\lg (\mathcal{M} / \kappa)$	$\operatorname{Ig}(\mathcal{M} / \kappa \mathcal{B})$
	$\lg \mathcal{B}$	

To find a block in the cache, the κ cache lines in its set need to be searched.

Taxonomy of Cache Misses

Cold miss

- The first time the cache block is accessed.

Capacity miss

- The previous cached copy would have been evicted even with a fully associative cache.

Conflict miss

- Too many blocks from the same set in the cache. The block would not have been evicted with a fully associative cache.
Sharing miss
- Another processor acquired exclusive access to the cache block.
- True-sharing miss: The two processors access to the same data on the cache block.
- False-sharing miss: The two processors access different data on the cache block.

Conflict Misses for Submatrices

Assume:

- word width $\mathcal{w}=64$ bits.
- cache size $\mathcal{M}=32 \mathrm{~K}$ bytes.
- line/block size $\mathcal{B}=64$ bytes.
- $\mathcal{K}=4$-way associativity.

Conflict misses can be problematic for caches with limited associativity.
byte address

tag	set	offset
$w-\lg (\mathcal{M} / \kappa)$	$\operatorname{Ig}(\mathcal{M} / \kappa \mathcal{B})$	$\lg \mathcal{B}$
51	7	6

Analysis
Look at a column of submatrix A.
The addresses of the elements are x, $x+2^{13}, x+2 \cdot 2^{13}, \ldots, x+31 \cdot 2^{13}$.
They all fall into the same set!
Solutions
Copy A into a temporary 32×32 matrix, or pad rows.

Ideal-Cache Model

Ideal-Cache Model

Parameters

- Two-level hierarchy.
- Cache size of \mathcal{M} bytes.
- Cache-line length of \mathcal{B} bytes.
- Fully associative.

- Optimal, omniscient replacement.

```
Performance Measures
    - work T (ordinary running time)
    - cache misses Q
```


How Reasonable Are Ideal Caches?

"LRU" Lemma [ST85]. Suppose that an algorithm incurs Q cache misses on an ideal cache of size \mathcal{M}. Then on a fully associative cache of size $2 \mathcal{M}$ that uses the least-recently used (LRU) replacement policy, it incurs at most $2 Q$ cache misses.

Implication: For asymptotic analyses, assume optimal or LRU replacement, whichever is more convenient.

Performance Engineering

- Design a theoretically good algorithm.
- Engineer the details for performance.
> Real caches are set associative.
> Loads and stores have different costs with respect to bandwidth and latency.

Segment Caching Lemma

Lemma. Suppose that a program reads a set of r data segments, where the i th segment consists of s_{i} contiguous bytes in memory, and suppose that

$$
\sum_{i=1}^{r} s_{i}=N<\mathcal{M} / 3 \text { and } N / r \geq \mathcal{B}
$$

Then all the segments fit into cache, and the number of misses to read them all is at most $3 \mathrm{~N} / \mathcal{B}$. Proof. A single segment s_{i} incurs at most $\mathrm{s}_{\mathrm{i}} / \mathcal{B}+2$ misses, and hence we have

$$
\begin{array}{rl}
\sum_{\mathrm{i}=1}^{r}\left(s_{\mathrm{i}} / \mathcal{B}+2\right) & =\mathrm{N} / \mathcal{B}+2 r \\
& =\mathrm{N} / \mathcal{B}+(2 \mathrm{~B} \mathcal{B}) / \mathcal{B} \\
\mathcal{B} & \mathcal{B} \\
& \leq \mathrm{B} \\
& \leq \mathrm{N} / \mathcal{B}+2 \mathrm{~N} / \mathcal{B} \\
& =3 \mathrm{~N} / \mathcal{B} .
\end{array}
$$

Tall Caches

Tall-cache assumption $\mathcal{B}^{2}<\mathrm{c} \mathcal{M}$ for some sufficiently small constant $\mathrm{c} \leq 1$.

Example: Intel Xeon Platinum 8280L

- Cache-line length $\mathcal{B}=64$ bytes.
- L1-cache size $\mathcal{M}=32$ kibibytes.

What's Wrong with Short Caches?

Tall-cache assumption
$\mathcal{B}^{2}<c \mathcal{M}$ for some sufficiently small constant $\mathrm{c} \leq 1$.
An $n \times n$ submatrix stored in row-major order may not fit in a short cache even if $\mathrm{n}^{2}<c \mathcal{M}$!

Submatrix Caching Lemma

Lemma. Suppose that an $n \times n$ submatrix A is read into a tall cache satisfying $\mathcal{B}^{2}<\mathrm{c} \mathcal{M}$, where $\mathrm{c}<1 / 3$ is constant, and suppose that $c \mathcal{M} \leq \mathrm{n}^{2}<\mathcal{M} / 3$. Then A fits into the cache, and the number of misses to read all of A's elements is at most $3 n^{2} / \mathcal{B}$.

Proof. We have $r=n, s_{i}=n, N=n^{2}$. Since $\mathcal{B}^{2}<c \mathcal{M}$ $\leq n^{2}$, we have $\mathcal{B} \leq n=N / r$. And since $N<\mathcal{M} / 3$, the segment caching lemma applies.

Cache Analysis of Matrix MULTIPLICATION

Multiply Square Matrices

```
void Mult(double *C, double *A, double *B, int64_t n) {
    for (int64_t i=0; i < n; i++)
        for (int64_t j=0; j < n; j++)
            for (int64_t k=0; k < n; k++)
            C[i*n+j] += A[i*n+k] * B[k*n+j];
}
```


Analysis of work

 $T(n)=\Theta\left(n^{3}\right)$.
Analysis of Cache Misses

```
void Mult(double *C, double *A, double *B, int64_t n) {
    for (int64_t i=0; i < n; i++)
        for (int64_t j=0; j < n; j++)
        for (int64_t k=0; k < n; k++)
            C[i*n+j] += A[i*n+k] * B[k*n+j];
}
```

Assume row major and tall cache

A

Case 1

$\mathrm{n} \geq \mathcal{M} / \mathcal{B}$.
Analyze matrix B.
Assume LRU.
$Q(n)=\Theta\left(n^{3}\right)$, since matrix B misses on every access.

Analysis of Cache Misses

```
void Mult(double *C, double *A, double *B, int64_t n) {
    for (int64_t i=0; i < n; i++)
        for (int64_t j=0; j < n; j++)
        for (int64_t k=0; k < n; k++)
            C[i*n+j] += A[i*n+k] * B[k*n+j];
}
```

Assume row major and tall cache

A

Case 2

 $\mathcal{M}^{1 / 2} \leq \mathrm{n}<\mathcal{M} / \mathcal{B}$.Analyze matrix B.
Assume LRU.
$Q(n)=n \cdot \Theta\left(n^{2} / \mathcal{B}\right)=$ $\Theta\left(n^{3} / \mathcal{B}\right)$, since matrix B can exploit spatial locality.

Analysis of Cache Misses

```
void Mult(double *C, double *A, double *B, int64_t n) {
    for (int64_t i=0; i < n; i++)
        for (int64_t j=0; j < n; j++)
        for (int64_t k=0; k < n; k++)
            C[i*n+j] += A[i*n+k] * B[k*n+j];
}
```

Assume row major and tall cache

A

Case 3
$\mathrm{n}<\mathrm{c} \mathcal{M}^{1 / 2}$.
Analyze matrix B.
Assume LRU.
$Q(n)=\Theta\left(n^{2} / \mathcal{B}\right)$, by the submatrix caching lemma.

Tiling

Tiled Matrix Multiplication

```
void Tiled_Mult(double *C, double *A, double *B, int64_t n) {
    for (int64_t i1=0; i1<n/s; i1+=s)
        for (int64_t j1=0; j1<n/s; j1+=s) } outer nest
            for (int64_t k1=0; k1<n/s; k1+=s)
            for (int64_t i=i1; i<i1+s && i<n; i++)
                for (int64_t j=j1; j<j1+s && j<n; j++) } Ínner nest
                    for (int64_t k=k1; k<k1+s && k<n; k++)
                        C[i*n+j] += A[i*n+k] * B[k*n+j];
}
```


Analysis of work

- Work $T(n)=\Theta\left((n / s)^{3}\left(s^{3}\right)\right)$

$$
=\Theta\left(n^{3}\right) .
$$

Tiled Matrix Multiplication

```
void Tiled_Mult(double *C, double *A, double *B, int64_t n) {
    for (int64_t i1=0; i1<n/s; i1+=s)
        for (int64_t j1=0; j1<n/s; j1+=s) } outer nest
            for (int64_t k1=0; k1<n/s; k1+=s)
            for (int64_t i=i1; i<i1+s && i<n; i++)
                for (int64_t j=j1; j<j1+s && j<n; j++) }ínner nest
                    for (int64_t k=k1; k<k1+s && k<n; k++)
                        C[i*n+j] += A[i*n+k] * B[k*n+j];
}
```


Analysis of cache misses

- Tune s so that the tiles just fit into cache $\Rightarrow s=\Theta\left(\mathcal{M}^{1 / 2}\right)$.
- Submatrix caching lemma implies $\Theta\left(s^{2} / \mathcal{B}\right)$ misses per tile.
- $Q(\mathrm{n})=\Theta\left((\mathrm{n} / \mathrm{s})^{3}\left(\mathrm{~s}^{2} / \mathcal{B}\right)\right)$
$=\Theta\left(n^{3} / \mathcal{B M}^{1 / 2}\right)$.
- Optimal [HK81].

Tiled Matrix Multiplication

n

Analysis of cache misses

- Tune s so that the tiles just fit into cache $\Rightarrow s=\Theta\left(\mathcal{M}^{1 / 2}\right)$.
- Submatrix caching lemma implies $\Theta\left(s^{2} / \mathcal{B}\right)$ misses per tile.
- $Q(n)=\Theta\left((n / s)^{3}\left(s^{2} / \mathcal{B}\right)\right)$
$=\Theta\left(n^{3} / \mathcal{B M}^{1 / 2}\right)$.
- Optimal [HK81].

Two-Level Cache

Two-Level Cache

```
\[
\stackrel{\leftarrow}{\leftarrow} \mathrm{\leftarrow} \longrightarrow
\]
```

```
    void Twice_Tiled_Mult(double *C, double *A, double *B, int64_t n) {
    for (int64_t i2=0; i2<n; i2+=s)
        for (int64_t j2=0; j2<n; j2+=s)
            for (int64_t k2=0; k2<n; k2+=s)
                for (int\overline{64_t i1=i2; i1<i2+s && i1<n; i1+=t)}
                    for (int64_t j1=j2; j1<j2+s && j1<n; j1+=t)
                        for (int64_t k1=k2; k1<k2+s && k1<n; k1+=t)
                            for (int64_t i=i1; i<i1+s && i<i2+t && i<n; i++)
                        for (int64_t j=j1; j<j1+s && j<j2+t && j<n; j++)
                        for (int64_t k=k1; k1<k1+s && k<k2+t && k<n; k++)
                        C[i*n+j] += A[i*n+k] * B[k*n+j];
}
```


Three-Level Cache

DIVIDE \& CONQUER

Recursive Matrix Multiplication

Divide-and-conquer on $n \times n$ matrices.

C_{11}	C_{12}			
C_{21}	C_{22}	$=$	A_{11}	A_{12}
:---	:---	:---		
A_{21}	A_{22}			

$=$| $A_{11} B_{11}$ | $A_{11} B_{12}$ |
| :--- | :--- |
| $A_{21} B_{11}$ | $A_{21} B_{12}$ |

8 multiply-adds of $(n / 2) \times(n / 2)$ matrices.

Recursive Code

```
// Assume that n is an exact power of 2.
void Rec_Mult(double *C, double *A, double *B,
    int64_t n, int64_t rowsize) {
    if (n == 1)
        C[0] += A[0]
    else {
        int64_t d11 = 0;
        int64_t d12 = n/2;
        Coarsen base case to
        overcome function-
                        call overheads.
    int64 t d21 = (n/2) * rowsize;
    int64_t d22 = (n/2) * (rowsize+1);
    Rec_Mult(C+d11, A+d11, B+d11, n/2, rowsize);
    Rec_Mult(C+d11, A+d12, B+d21, n/2, rowsize);
    Rec_Mult(C+d12, A+d11, B+d12, n/2, rowsize);
    Rec_Mult(C+d12, A+d12, B+d22, n/2, rowsize);
    Rec_Mult(C+d21, A+d21, B+d11, n/2, rowsize);
    Rec_Mult(C+d21, A+d22, B+d21, n/2, rowsize);
    Rec_Mult(C+d22, A+d21, B+d12, n/2, rowsize);
    Rec_Mult(C+d22, A+d22, B+d22, n/2, rowsize);
    }
}
```


Recursive Code

```
// Assume that n is an exact power of 2.
void Rec_Mult(double *C, double *A, double *B,
            int64_t n, int64_t rowsize) {
    if (n == 1)
        C[0] += A[0] * B[0];
    else {
    |int64_t d11 = 0;
    |int64_t d12 = n/2;
    int64_t d21 = (n/2) * rowsize;
    int64_t d22 = (n/2) * (rowsize+1);
        Rec_Mult(C+d11, A+d11, B+d11, n/2, rowsize);
        Rec_Mult(C+d11, A+d12, B+d21, n/2, rowsize);
        Rec_Mult(C+d12, A+d11, B+d12, n/2, rowsize);
        Rec_Mult(C+d12, A+d12, B+d22, n/2, rowsize);
        Rec_Mult(C+d21, A+d21, B+d11, n/2, rowsize);
        Rec_Mult(C+d21, A+d22, B+d21, n/2, rowsize);
        Rec_Mult(C+d22, A+d21, B+d12, n/2, rowsize);
        Rec_Mult(C+d22, A+d22, B+d22, n/2, rowsize);
    }
}
```


Analysis of Work

```
// Assume that n is an exact power of 2.
void Rec_Mult(double *C, double *A, double *B,
    int64_t n, int64_t rowsize) {
    if (n == 1)
        C[0] += A[0] * B[0];
    else {
        int64_t d11 = 0;
        int64_t d12 = n/2;
        int64_t d21 = (n/2) * rowsize;
        int64_t d22 = (n/2) * (rowsize+1);
        Rec_Mult(C+d11, A+d11, B+d11, n/2, rowsize);
        Rec_Mult(C+d11, A+d12, B+d21, n/2, rowsize);
        Rec_Mult(C+d12, A+d11, B+d12, n/2, rowsize);
        Rec_Mult(C+d12, A+d12, B+d22, n/2, rowsize);
        Rec_Mult(C+d21, A+d21, B+d11, n/2, rowsize);
        Rec_Mult(C+d21, A+d22, B+d21, n/2, rowsize);
        Rec_Mult(C+d22, A+d21, B+d12, n/2, rowsize);
        Rec_Mult(C+d22, A+d22, B+d22, n/2, rowsize);
    }
}
```

$$
\begin{aligned}
T(n) & =8 T(n / 2)+\Theta(1) \\
& =\Theta\left(n^{3}\right)
\end{aligned}
$$

Analysis of Work

$$
T(n)=8 T(n / 2)+1
$$

recursion tree
$T(n)$

Analysis of Work

$$
T(n)=8 T(n / 2)+1
$$

Analysis of Work

$$
T(n)=8 T(n / 2)+1
$$

Analysis of Work

$$
T(n)=8 T(n / 2)+1
$$

Analysis of Cache Misses

```
// Assume that n is an exact power of 2.
void Rec_Mult(double *C, double *A, double *B,
    int64_t n, int64_t rowsize) {
    if (n == 1)
        C[0] += A[0] * B[0];
    else {
        int64_t d11 = 0;
        int64_t d12 = n/2;
        int64_t d21 = (n/2) * rowsize;
        int64_t d22 = (n/2) * (rowsize+1);
        Rec_Mult(C+d11, A+d11, B+d11, n/2, rowsize);
        Rec_Mult(C+d11, A+d12, B+d21, n/2, rowsize);
        Rec_Mult(C+d12, A+d11, B+d12, n/2, rowsize);
        Rec_Mult(C+d12, A+d12, B+d22, n/2, rowsize)
        Rec_Mult(C+d21, A+d21, B+d11, n/2, rowsize);
        Rec_Mult(C+d21, A+d22, B+d21, n/2, rowsize);
        Rec_Mult(C+d22, A+d21, B+d12, n/2, rowsize);
        Rec_Mult(C+d22, A+d22, B+d22, 1/2, rowsize);
    }
}
```


Analysis of Cache Misses

$$
Q(n)=\left\{\begin{array}{l}
\Theta\left(n^{2} / \mathcal{B}\right) \text { if } n^{2}<c \mathcal{M} \text { for suff. small const } c \leq 1, \\
8 Q(n / 2)+1 \text { otherwise. }
\end{array}\right.
$$

$$
\text { recursion tree } \quad Q(n)
$$

Analysis of Cache Misses

$$
Q(n)=\left\{\begin{array}{l}
\Theta\left(n^{2} / \mathcal{B}\right) \text { if } n^{2}<c \mathcal{M} \text { for suff. small const } c \leq 1, \\
8 Q(n / 2)+1 \text { otherwise. }
\end{array}\right.
$$

Analysis of Cache Misses

$$
Q(n)=\left\{\begin{array}{l}
\Theta\left(n^{2} / \mathcal{B}\right) \text { if } n^{2}<c \mathcal{M} \text { for suff. small const } c \leq 1, \\
8 Q(n / 2)+1 \text { otherwise. }
\end{array}\right.
$$

Analysis of Cache Misses

$$
Q(n)=\left\{\begin{array}{l}
\Theta\left(n^{2} / \mathcal{B}\right) \text { if } n^{2}<c \mathcal{M} \text { for suff. small const } c \leq 1, \\
8 Q(n / 2)+1 \text { otherwise. }
\end{array}\right.
$$

Cache-Oblivious Algorithms

Cache-oblivious algorithms [FLPR99]

- No voodoo tuning parameters.
- No explicit knowledge of caches.
- Passively autotune.
- Handle multilevel caches automatically.
- Good in multitenancy environments.

Recursive Parallel Matrix Multiply

```
// Assume that n is an exact power of 2.
void Rec_Mult(double *C, double *A, double *B,
    int64_t n, int64_t rowsize) {
    if (n == 1)
        C[0] += A[0] * B[0];
    else {
        int64_t d11 = 0;
        int64_t d12 = n/2;
        int64_t d21 = (n/2) * rowsize;
        int64_t d22 = (n/2) * (rowsize+1);
        cilk_scope {
        cilk_spawn Rec_Mult(C+d11, A+d11, B+d11, n/2, rowsize);
        cilk_spawn Rec_Mult(C+d21, A+d22, B+d21, n/2, rowsize);
        cilk snawn Rec Mult(C+d12. A+d11. B+d12. n/2. rowsize):
```

Minimizing cache misses in serial projection tends to minimize them in (Cilk) parallel executions.

```
        cilk_spawn Rec_Mult(C+d21, A+d21, B+d11, n/2, rowsize);
        cilk_spawn Rec_Mult(C+d12, A+d12, B+d22, n/2, rowsize);
        cilk_spawn Rec_Mult(C+d22, A+d21, B+d12, n/2, rowsize);
```

 \}
 \}
 \}

