Performance Engineering of Software Systems

LECTURE 14 Cache-Efficient Algorithms

SPEED

LIMIT

PER ORDER OF 6.106

Srini Devadas November 1, 2022

CACHE HARDWARE

 $\ensuremath{\textcircled{}}$ 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Multicore Cache Hierarchy

Memory Prices through History

Source: John C. McCallum, "Memory prices 1957+," available at http://jcmit.net/memoryprice.htm , last updated 2021-10-21.

Cache Specs for Typical High-End Multicore

Level	Size/core	Associativity	Latency (cycles)
DRAM	up to 160 GiB		85–240
L3	1.375 MiB	11	50–70
L2	1 MiB	16	14
L1-D	32 KiB	8	4–5
L1-I	32 KiB	8	5

Intel Xeon Platinum 8280L (Cascade Lake)

- Launched April 2019 for \$17,906 cheaper now.
- 2.7 GHz clock, Turbo Boost up to 4 GHz
- 28 cores/chip + 2-way hyperthreading
- 2190 GFLOPS
- 64 B cache lines/blocks
- Up to 8-way multiprocessing

Fully Associative Cache

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Fully Associative Cache

To find a block in the cache, all the cache lines must be searched for the tag. When the cache becomes full, a replacement policy determines which block to evict to make room for a new block.

Direct-Mapped Cache

	tag	set	offset
bits	w – lg ${\mathcal M}$	$\lg(\mathcal{M}/\mathcal{B})$	$Ig\mathcal{B}$

To find a block in the cache, only a single line in the cache needs to be checked.

Set-Associative Cache

byte address

	tag	set	offset
bits	$w - \lg(\mathcal{M}/k)$	$\lg(\mathcal{M}/\&\mathcal{B})$	$Ig\mathcal{B}$

To find a block in the cache, the k cache lines in its set need to be searched.

Taxonomy of Cache Misses

Cold miss

• The first time the cache block is accessed.

Capacity miss

• The previous cached copy would have been evicted even with a fully associative cache.

Conflict miss

• Too many blocks from the same set in the cache. The block would not have been evicted with a fully associative cache.

Sharing miss

- Another processor acquired exclusive access to the cache block.
- True-sharing miss: The two processors access to the same data on the cache block.
- False-sharing miss: The two processors access different data on the cache block.

Conflict Misses for Submatrices

Assume:

- word width w = 64 bits.
- cache size $\mathcal{M} = 32K$ bytes.
- line/block size $\mathcal{B} = 64$ bytes.
- k = 4-way associativity.

Conflict misses can be problematic for caches with limited associativity.

byte address

tag	set	offset
$w - \lg(\mathcal{M}/k)$	$\lg(\mathcal{M}/k\mathcal{B})$	lg ${\mathcal B}$
51	7	6

Analysis

Look at a column of submatrix A. The addresses of the elements are x, x+2¹³, x+2·2¹³, ..., x+31·2¹³. They all fall into the same set!

Solutions

Copy A into a temporary 32×32 matrix, or pad rows.

SPEED LIMIT

PER ORDER OF 6.106

IDEAL-CACHE MODEL

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Ideal-Cache Model

• Optimal, omniscient replacement.

Performance Measures

- work T (ordinary running time)
- cache misses Q

How Reasonable Are Ideal Caches?

"LRU" Lemma [ST85]. Suppose that an algorithm incurs Q cache misses on an ideal cache of size \mathcal{M} . Then on a fully associative cache of size $2\mathcal{M}$ that uses the least-recently used (LRU) replacement policy, it incurs at most 2Q cache misses.

Implication: For asymptotic analyses, assume optimal or LRU replacement, whichever is more convenient.

Performance Engineering

- Design a theoretically good algorithm.
- Engineer the details for performance.
 - > Real caches are set associative.
 - Loads and stores have different costs with respect to bandwidth and latency.

Segment Caching Lemma

Lemma. Suppose that a program reads a set of r data segments, where the ith segment consists of s_i contiguous bytes in memory, and suppose that

$$\sum_{\mathrm{i}=1}^{\mathsf{r}} \mathtt{s}_{\mathrm{i}} = \mathtt{N} < \mathcal{M}/\mathtt{3} ext{ and } \mathtt{N/r} \geq \mathcal{B}$$
 .

Then all the segments fit into cache, and the number of misses to read them all is at most 3N/B.

Proof. A single segment s_i incurs at most s_i/\mathcal{B} + 2 misses, and hence we have

$$\begin{split} \sum_{i=1}^{'} (s_i/\mathcal{B} + 2) &= N/\mathcal{B} + 2r \\ &= N/\mathcal{B} + (2r\mathcal{B})/\mathcal{B} \\ \hline s_i \\ \hline \mathcal{B} \quad \mathcal{B} \quad \mathcal{B} \quad \mathcal{B} \quad \mathcal{B} \\ &= 3N/\mathcal{B} \\ \end{split}$$

Tall Caches

Tall-cache assumption

 $\mathcal{B}^2 < c \mathcal{M}$ for some sufficiently small constant $c \leq 1$.

Example: Intel Xeon Platinum 8280L • Cache-line length $\mathcal{B} = 64$ bytes.

• L1-cache size $\mathcal{M} = 32$ kibibytes.

What's Wrong with Short Caches?

Tall-cache assumption

 $\mathcal{B}^2 < c\mathcal{M}$ for some sufficiently small constant $c \leq 1$.

An $n \times n$ submatrix stored in row-major order may not fit in a short cache even if $n^2 < c \mathcal{M}$!

Submatrix Caching Lemma

Lemma. Suppose that an $n \times n$ submatrix A is read into a tall cache satisfying $\mathcal{B}^2 < c\mathcal{M}$, where c < 1/3is constant, and suppose that $c\mathcal{M} \leq n^2 < \mathcal{M}/3$. Then A fits into the cache, and the number of misses to read all of A's elements is at most $3n^2/\mathcal{B}$.

Proof. We have r = n, $s_i = n$, $N = n^2$. Since $\mathcal{B}^2 < c\mathcal{M} \le n^2$, we have $\mathcal{B} \le n = N/r$. And since $N < \mathcal{M}/3$, the segment caching lemma applies.

CACHE ANALYSIS OF MATRIX MULTIPLICATION

PER ORDER OF 6.106

Multiply Square Matrices

```
void Mult(double *C, double *A, double *B, int64_t n) {
  for (int64_t i=0; i < n; i++)
    for (int64_t j=0; j < n; j++)
    for (int64_t k=0; k < n; k++)
        C[i*n+j] += A[i*n+k] * B[k*n+j];
}</pre>
```

Analysis of work $T(n) = \Theta(n^3).$

TILING

Tiled Matrix Multiplication

Analysis of work

• Work
$$T(n) = \Theta((n/s)^{3}(s^{3}))$$

$$= \Theta(n^3).$$

Tiled Matrix Multiplication

void Tiled_Mult(double *C, double *A, double *B, int64_t n) {
 for (int64_t i1=0; i1<n/s; i1+=s)
 for (int64_t j1=0; j1<n/s; j1+=s)
 for (int64_t k1=0; k1<n/s; k1+=s)
 for (int64_t i=i1; i<i1+s && i<n; i++)
 for (int64_t j=j1; j<j1+s && j<n; j++)
 for (int64_t k=k1; k<k1+s && k<n; k++)
 for (int64_t k=k1; k<k1+s && k<n; k++)
 C[i*n+j] += A[i*n+k] * B[k*n+j];</pre>

Analysis of cache misses

- Tune s so that the tiles just fit into cache \Rightarrow s = $\Theta(\mathcal{M}^{1/2})$.
- Submatrix caching lemma implies

 $\Theta(s^2/B)$ misses per tile.

• $Q(n) = \Theta((n/s)^3(s^2/\mathcal{B}))$ = $\Theta(n^3/\mathcal{BM}^{1/2}).$

Optimal [нк81].

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Tiled Matrix Multiplication

Optimal [HK81].

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Two-Level Cache

Two-Level Cache

Three-Level Cache

SPEED LIMIT

PER ORDER OF 6.106

DIVIDE & CONQUER

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Recursive Matrix Multiplication

Divide-and-conquer on $n \times n$ matrices.

8 multiply-adds of $(n/2) \times (n/2)$ matrices.

Recursive Code

© 2008–2022 by the MIT 6.172 and 6.106 Lecturers

Recursive Code


```
// Assume that n is an exact power of 2.
void Rec Mult(double *C, double *A, double *B,
             int64 t n, int64 t rowsize) {
 if (n == 1)
   C[0] += A[0] * B[0];
 else {
   int64 t d11 = 0;
   int64 t d12 = n/2;
   int64 t d21 = (n/2) * rowsize;
   int64 t d22 = (n/2) * (rowsize+1);
    Rec Mult(C+d11, A+d11, B+d11, n/2, rowsize);
    Rec Mult(C+d11, A+d12, B+d21, n/2, rowsize);
    Rec Mult(C+d12, A+d11, B+d12, n/2, rowsize);
    Rec Mult(C+d12, A+d12, B+d22, n/2, rowsize);
    Rec Mult(C+d21, A+d21, B+d11, n/2, rowsize);
    Rec Mult(C+d21, A+d22, B+d21, n/2, rowsize);
    Rec Mult(C+d22, A+d21, B+d12, n/2, rowsize);
    Rec Mult(C+d22, A+d22, B+d22, n/2, rowsize);
```

$$T(n) = 8T(n/2) + \Theta(1)$$

= $\Theta(n^3)$

T(n) = 8T(n/2) + 1

recursion tree T(n)

T(n) = 8T(n/2) + 1

T(n) = 8T(n/2) + 1

T(n) = 8T(n/2) + 1

 $Q(n) = \begin{cases} \Theta(n^2/\mathcal{B}) \text{ if } n^2 < c\mathcal{M} \text{ for suff. small const } c \leq 1, \\ 8Q(n/2) + 1 \text{ otherwise.} \end{cases}$

recursion tree Q(n)

 $Q(n) = \begin{cases} \Theta(n^2/\mathcal{B}) \text{ if } n^2 < c\mathcal{M} \text{ for suff. small const } c \leq 1, \\ 8Q(n/2) + 1 \text{ otherwise.} \end{cases}$

 $Q(n) = \begin{cases} \Theta(n^2/\mathcal{B}) \text{ if } n^2 < c\mathcal{M} \text{ for suff. small const } c \leq 1, \\ 8Q(n/2) + 1 \text{ otherwise.} \end{cases}$

 $Q(n) = \begin{cases} \Theta(n^2/\mathcal{B}) \text{ if } n^2 < c\mathcal{M} \text{ for suff. small const } c \leq 1, \\ 8Q(n/2) + 1 \text{ otherwise.} \end{cases}$

Cache-Oblivious Algorithms

Cache-oblivious algorithms [FLPR99]

- No voodoo tuning parameters.
- No explicit knowledge of caches.
- Passively autotune.
- Handle multilevel caches automatically.
- Good in multitenancy environments.

Recursive Parallel Matrix Multiply

